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Load demand is highly stochastic and uncertain. *is is because it was highly influenced by a number of variables like load type,
weather conditions, time of day, the seasonality factor, economic constraints, and other randomness effects. *e loads are
categorized as holiday loads (national and religious), weekdays, and weekend days. *e nonlinearity and uncertain characteristics
of electrical load in a microgrid are one of the major sources of power quality problems in a microgrid system, and they can be
handled using an accurate load forecast model. *e fuzzy load prediction model can effectively handle these nonlinearity and
uncertainty characteristics to have an accurate load forecast, but themain challenge with this model is its inability to accommodate
a large volume of historical load and weather information when the membership function of the input and output fuzzy variables
and the number of the fuzzy rules are tremendous. *e swarm intelligence load forecast model based on particle swarm op-
timization algorithms can improve the limitations of the fuzzy system and increase its forecasting performance.*e parameters of
time, temperature, historical load, and error correction factors are considered as the Fuzzy and Fuzzy-PSO model input variables,
while the forecasted industrial load is the only output variable.*eGaussianmembership function is considered for both the input
and output fuzzy variables. A 3-year historical hourly load data of an Ethiopian industrial system is used to train and validate both
prediction models. *e mean absolute percentage error (MAPE) is used to evaluate the performance of these prediction models.
*e Fuzzy-PSO load prediction model shows results that have superior performance to the fuzzy-alone load prediction results.

1. Introduction

Load forecasting is a critical component of building an
energy management system in a microgrid. It is categorized
as very-short-term load forecast (VSTLF), short-term load
forecast (STLF), medium-term load forecast (MTLF), and
long-term load forecast (LTLF), which are based on the
forecasting horizon and the application of predicting the
load. *e very-short-term load forecasting predicts the load
in minutes to the hourly interval. Short-term load fore-
casting (STLF) predicts one-day up to one-week hourly
loads, whereas medium-term load forecasting predicts loads
from one-month to one-year time horizon, and long-term

load forecasting is the prediction of loads that are more than
one-year period [1–3]. *e purpose of demand forecasting is
to schedule energy generation, assess the security of the
power system, and also schedule electricity prices. In order
to reduce the capacity and investment cost of the energy
storage system, we should maintain a permanent balance
between generation and consumption. A disparity between
supply and demand will lead to economic losses for the
utility. Undergeneration will compromise the reliability and
security of the grid, resulting in power outages. *ese power
interruptions will necessitate compensation of the customers
by the power suppliers, thus leading to reduced profits or
even losses. On the other hand, overgeneration will result in
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losses due to high generation costs. Forecast information
also influences the customers’ decisions on energy man-
agement strategies like load shedding to smooth the load
curve and limit peak loads. Utilities also place electricity
price bids based on the future values of the demand and its
corresponding prices [1, 3]. In this research, the STLF
strategy was implemented in order to accurately balance
generation and demand. It also helps us to maintain the
power quality and stability of the distribution system with
the minimum capacity of an energy storage system. Various
STLF methods have been previously developed. Some of
these methods include regressions, neural networks, similar
day approach, time series method, fuzzy logic, and hybrid
forecasting methods. *e regression technique [4–11] is one
of the most widely used statistical techniques usually
employed to model the relationship between load con-
sumption and other factors such as weather, day type, and
customer class, but this technique needs a large volume of
historical data to develop a mathematical load relationship.

Kumar Singla et al. [12] developed a short-term load
prediction model using the Mamdani approach fuzzy logic
toolbox and obtained a significant prediction error im-
provement between +3.67% and −3.75%. According to Gohil
and Gupta [13], the fuzzy load prediction model provides a
significant accuracy level for predicting holiday and working
day loads as compared to conventional approaches. A
forecast for special days (holidays) is carried out using an
artificial neural network (ANN) and a fuzzy inference
method [14]. *e simulation result shows the ANN model
improves the accuracy level of the fuzzy. Cevick and Cuncas
[15] used the fuzzy load prediction approach to forecast
future holiday loads. *e study provides a significant ac-
curacy level of MAPE of between 2.03% and 11.29%.

Gao et al. [16, 17] developed a short-term load fore-
casting method based on a least squares support vector
machine (LS-SVM) combined with fuzzy control and bac-
terial colony chemotaxis optimization algorithm. In [16], the
methodology is based on the prediction of the peak and
valley loads and determining the prediction coefficients
using the fuzzy rule tuning approach for the prediction of
similar day future loads, whereas in [17] the bacterial colony
chemotaxis optimization algorithm is used to determine
hyperparameters of LS-SVM. Both methods improve the
prediction accuracy. Short-term load forecasting using an
artificial neural network (ANN) technique is conducted by
[18, 19]. In [18], the weekday and weekend day loads are
separately treated, and the training of neural network has
been done separately for weekdays and weekend days. *e
neural network toolbox with 20 neurons has been used for
forecasting an island load, and the prediction accuracy is
promising. According to [19], short-term load forecasting is
done to optimally estimate the load flow in a certain power
system network. *e result shows an accurate load forecast
that helps with optimal generation planning and load flow
studies.

Yang et al. [20–22] developed an improved
Wang–Mendel fuzzy model based on the PSO algorithm to
improve the learning capability and forecasting accuracy of
the fuzzy system. *e PSO algorithm helps to optimize the

fuzzy rules of the WM fuzzy model. *e model yields a very
good forecasting accuracy of MAPE of 2.57%.*e fuzzy load
prediction model for short-term load forecasting lacks self-
learning and tuning capability for stochastic and nonlinear
load variations. *e fuzzy rule base and the fuzzy mem-
bership function are the two variables tuned by using PSO.
*e PSO considers the mean-square error as the optimi-
zation objective function from the fuzzy membership
function tuning approach. *e simulation result demon-
strated a significant improvement in forecasting accuracy.

Swarm intelligence is an area of artificial intelligence
based on the collective and decentralized behavior of in-
dividuals that interact with each other and with the envi-
ronment. PSO is a stochastic evolutionary algorithm based
on swarm intelligence that searches for the solution to
optimization problems in a specific search space and is able
to predict the social behavior of individuals according to
defined objectives [23]. A deep learning model for day-ahead
load forecasting based on expert knowledge is discussed in
[24, 25]. In these methods, the peak load is forecasted using
nonlinear historical load data, temperature data, and eco-
nomic metric data over a similar time horizon. In [25, 26], a
hybrid short-term load forecasting approach using a fuzzy
logic control system is developed. *e short-term load
forecasting approach in [26] and a short-term load fore-
casting model of a nuclear charging station based on PSO-
SVM are proposed. *e PSO is used to optimize the pa-
rameters of the support vector machine (SVM) for optimal
charging and discharging operations of a nuclear charging
station. *e load forecast result based on the normalized
root-mean-square error (NRMS) as a fitness measuring tool
is used as a prewarning signal of the charging station. *e
Fuzzy-PSO load prediction model was also discussed in [27].
In [27], the load prediction model only accounts for the
weekday and weekend industrial load, and the result ob-
tained is at a high level of prediction accuracy. *is paper is
an extension of the paper in [27], which accounts for holiday
loads and adds a new fuzzy input parameter called the error
correction factor that further helps to tune the fuzzy system
and also improves the forecasting accuracy.

*e rest of the paper is organized as follows. Section 2
discusses the analysis of industrial raw data. Section 3
presents the problem formulation of the Fuzzy-PSO load
prediction model. Section 4 is about results and Section 5 is
about the discussion. Section 6 contains the conclusion, and
the references and lists of abbreviations are at the end of the
paper.

2. Industrial Load Data Analysis

Two data sets are required for an effective forecast model of
the industrial load. *ese data sets are the training data set
and the model validation (testing) data set. *e training and
testing load data and weather information are collected from
an industrial load that is fed from a 15 kVKaliti substation in
Addis Ababa, Ethiopia. *e 24-hour load data is collected
from 2017 to 2020 G.C and the holiday, weekday (Monday to
Friday), and weekend day (Saturday and Sunday) annual
average hourly load data is identified and analyzed for the
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Fuzzy-PSO load prediction model design. *e data from
2017 to 2018 is used to train the Fuzzy-PSO model, whereas
the 2019/20 load data is used to validate the model in all the
load categories mentioned earlier. *e MATLAB pro-
gramming and MATLAB/Simulink working environments
are used to model both the Fuzzy and Fuzzy-PSO load
prediction models. Both the training and validation in-
dustrial load data sets are prepared in a 24-hour data format
based on the raw industrial load data that was collected from
the case study area.

Pi �
1
T



T

t�1
Lt, (1)

where Pi is the average load in the ith hour, which is
computed using the average value of the available load data
size in a similar time frame. T is the total load data size in
days, and it is 365 for the validation data set, but 730 for the
training load data set. Lt is the industrial load in the ith hour
of the tth day.

2.1. Holiday Load Profile. In the study area, the categories
and number of holidays in each year are identified. In
Ethiopia, five national holidays, five Christian holidays, and
three Muslim holidays are found in a calendar year. After
analysis using (1), the training and testing load profile curve
from 2017 to 2020 is presented in Figures 1–6. Since each
holiday has different load characteristics, the load prediction
model is separately treated.

2.2.WeekdayLoadProfile. For the training and testing of the
Fuzzy-PSO load prediction model, the annual average
weekday load data from 2017 to 2020 G.C is computed using
(1) and presented in Figure 7.*e load data in 2017 and 2018
is used to train the Fuzzy-PSO load prediction model,
whereas the annual average load data in the 2019/20 calendar
year is used to validate the load prediction model for this
load category.

2.3.WeekendLoadProfile. For the training and testing of the
Fuzzy-PSO prediction model, the annual average weekend
load data from 2017 to 2020 G.C is presented in Figure 8.*e
load data in 2017 and 2018 is used to train the Fuzzy-PSO
load prediction model, whereas the annual average load data
in the 2019/20 calendar year is used to validate the model for
the weekend load.

2.4. Overall System Load Profile. *e total system load in
Figure 9 is used to forecast the overall industrial system load
in order to model the microgrid system which is part of
ongoing research. To consider the inconsistency of load
variation in various events mentioned, a scaling factor (SF)
based on the peak load and average system load ratio is
considered for both training and testing data sets. *e
scaling factor is computed using the peak and average in-
dustrial load values of both the training and testing load data
set values. It can be expressed as

SF �
Lpeak

Lmean
, (2)

where SF is the scaling factor, Lpeak is the peak demand, and
Lmean is the mean demand of the corresponding training and
testing data set values.
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Figure 1: Hourly load profile of religious holidays in 2017/18.
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Figure 3: Hourly load profile of religious holidays in 2019/20.
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Figure 2: Hourly load profile of religious holidays in 2018/19.
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*e Fuzzy-PSO load prediction model proposed in this
paper can be scaled up by increasing the volume of the
training and validation dataset. In addition to that, it also
expanded by considering the different critical fuzzy input
parameters that have a direct impact on load prediction result.

3. Problem Formulation of the Fuzzy-PSO Load
Prediction Model

In this research, a new approach of industrial load fore-
casting to model a microgrid system has been developed

based on a raw industrial load data from the field. *e main
contributions of this work are as follows:

(i) Introducing the PSO algorithm in the fuzzy load
forecast model based on the training and validation
data set correlation. An automatic learning and
training input data-based generation of the fuzzy
rules and optimal parameters of the Gaussian fuzzy
membership functions.

(ii) A new fuzzy input variable called the error cor-
rection factor (ECF) has been introduced to further
enhance the performance of the prediction model
and.
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Figure 9: All events’ hourly average training and testing load data
set of the system.
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Figure 6: Hourly load profile of national holidays in 2019/20.
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Figure 5: Hourly load profile of national holidays in 2018/19.
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Figure 4: Hourly load profile of national holidays in 2017/18.
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Figure 7: Weekdays hourly average load profile in 2017–2020.
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Figure 8: Weekend days hourly average load profile in 2017–2020.
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(iii) *e ECF fuzzy variable is computed from the
Simulink fuzzy load prediction model based on
equation (3) and it is considered as a time series
fuzzy input variable.

*e ECF is a time series normalized error of the validation
load and forecasted load data values. *e deviation of the
forecast value from the validation data set gives us a pre-in-
dicator to understand the forecasting direction and model
adjustment of the Fuzzy-PSO industrial load predictionmodel.

3.1. Fuzzy Logic System. *e load prediction model is based
on four fuzzy input variables and a single fuzzy output
variable whose Gaussian membership function and all the
rules are later optimized using the particle swarm optimi-
zation algorithm.*e fuzzy is trained using PSO based on the
available input and output training data set correlation. *e
fuzzy input variables are temperature, error correction factor,
historical load, and time of the day. *e forecasted load is the
only output fuzzy variable. Both the input and output fuzzy
variables have Gaussian membership function as shown in
Figure 10 and it has two fundamental parameters: the mean
(c) and the standard deviation (b). *e error correction factor
introduced in this research has highly improved the per-
formance of the prediction model, and it can be computed
based on the available data values using the following
mathematical relation, which was later modeled in Simulink.

ECF �
FA − FF

FA

, (3)

where FA is the actual load data set and FF is the forecasted
load data set. *e ECF data is automatically calculated in the
fuzzy load prediction model using Simulink and a 24-hour
ECF time series data is obtained in the process.*e ECF data
computed in the fuzzy prediction model is later used to train
the fuzzy model using PSO.

*e fuzzy inference engine incorporates all possible rules
that help to map the output from the fuzzy inputs based on
the training dataset. LetAk

i be the ith fuzzy input variable (xi)
of k’s membership function and Bt is the t’s membership
function of the output variable (yi); then the fuzzy rule is
generated as follows:

If x1 is Ak
1 and x2 is Ak

2 and ........ and xn is Ak
n, then yi is Bt.

*e fuzzifier in the fuzzy load prediction model is for-
mulated as follows [28]:

μA′ xi
′( ) �

1, if xi
′ � xi,

0, otherwise.

⎧⎨

⎩ (4)

*e defuzzification of the load prediction model, based
on the center-average defuzzifiers, is also formulated as
follows [28]:

y �


T
l�1 y

l
c ω

l


T
l�1 ω

l
. (5)

3.2. Particle Swarm Optimization. PSO is basically the in-
telligence of bird flocking or fish schooling and it was first

introduced by Kennedy and Eberhart in 1995 [29] and later
the original PSO ismodified by Shi and Eberhart in 1999 [30]
in order to improve the convergence rate and accuracy level
by considering the inertia weight factor, ω.

*e algorithm is given as follows [27]:

(i) PSO parameters are being initialized [ω, c1, c2, r1,
r2].

(ii) Random generation of the initial solution in the
swarm’s search space. *e velocity and position of
each particle are randomly initialized and evaluated
according to the fitness function of the initial so-
lution in order to determine the personal best and
global best particle in the population.

(iii) Update the velocity and position of each particle
using the following formula.

V
t+1
id � ω.V

t
id + c1r1 P

t
id − x

t
id  + c2r2 G

t
d − x

t
id ,

x
t+1
id � x

t
id + V

t+1
id .

(6)

(iv) Update the personal best and global best position of
the particle at each iteration.

P
t+1
id � x

t+1
id if f Xk(t + 1) ≤f P

b
k(t) ,

G
b
k(t + 1) � Xk(t + 1) if f Xk(t + 1) ≤f G

b
k(t) .

(7)

(v) Go to step (iii) when the termination criterion is not
satisfied; otherwise, terminate the algorithm.

f is the fitness function; in this research, it is the mean
absolute percentage error (MAPE), t is the current iteration,
c1 and c2 are the acceleration coefficients, r1 and r2 are evenly
distributed random number in the range 0 to 1, and Pt

id and
Gt

d are the personal best and global best positions of the
particles in the population.

3.3.PrematureConvergenceProblemofFuzzy-PSOAlgorithm.
Early convergence to the local optimum point is one of the
problems that rarely happen in a particle swarm optimi-
zation algorithm. *e control of the inertia weight (ω), the
cognitive, and social acceleration coefficients will improve
the performance of PSO algorithm in various application.
Zhang et al. [31] proposed a mutation strategy to avoid the
premature convergence to local optimum of PSO. In this
paper, in order to avoid the premature convergence of the

0 cb x

1

u (x)

Figure 10: *e Gaussian fuzzy membership function.
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Fuzzy-PSO load prediction model, a method by Ratnaweera
et al. [32] was used. *is method needs less computational
time, is easy to implement, and integrates to the basic PSO
algorithm. According to [32], a linearly increasing social
acceleration factor and a linearly decreasing cognitive ac-
celeration factor are of help to boost the global searching
capability while also balancing the local searching of the
particles in a multidimensional particles search space. *e
inertia weight (ω), cognitive acceleration factor (c1), and
social acceleration factors (c2) are dynamically varying and
computed using equations (8)–(10) and later incorporated to
the PSO algorithm in MATLAB programming. At every
iteration, these PSO parameters are adjusted to minimize
and avoid the premature convergence problem of the Fuzzy-
PSO load prediction model.

ω(t) � ωmax −
ωmax − ωmin(  × t

It

, (8)

c1(t) � c1max +
c1min − c1max(  × t

It

, (9)

c2(t) � c2max +
c2max − c2min(  × t

It

. (10)

Here, t is the current iteration, It � 300 is the total number of
iterations, ωmax � 0.99 is the maximum inertia weight,
ωmin � 0.1 is the minimum inertia weight, c1min � 0.25 is the
minimum value of cognitive acceleration factor, c1max � 2.5
is the maximum value of cognitive acceleration factor,
c2min � 0.25 is the minimum value of social acceleration
factor, and c2max � 2.5 is the maximum value of social ac-
celeration factor.

3.4. Encoding of Fuzzy Variables Using the PSO Algorithm.
*e PSO algorithm is used to tune the fuzzy membership
function of an industrial load prediction model using the
Mamdani fuzzy inference system approach. Figure 11
demonstrates the tuning process of the Fuzzy-PSO load
prediction model to improve the performance of the fuzzy
logic system.*ere are two parameters (standard deviation b
and mean c) which represent each fuzzy membership
function of the “n” input variables and the “q” fuzzy output
variable of the fuzzy system. If each input variable has an “m”
fuzzy membership function and each fuzzy output variable
has a “t” fuzzy membership function, then the total pa-
rameters of the input (X) and output (Y) fuzzy variables are
represented in equations (11) and (12). *e parameters (bi
and ci) of every fuzzy membership function in each fuzzy
variable (input and output) can be encoded with the PSO
particles using Eq. 13–Eq. 20.

X � 
n

i�1
2 × mi, (11)

Y � 

q

i�1
2 × ti, (12)

X �
x

b

x
c

⎡⎣ ⎤⎦, (13)

Y �
y

b

y
c

⎡⎣ ⎤⎦, (14)
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x
b
11 � p1 p2 . . . ps , (19)

y
b
11 � p1 p2 . . . ps , (20)

where X is a 2× n×m parameter of the input fuzzy variable,
Y is a 2 ×q× t parameter of the fuzzy output variables, xc

ij is
the mean parameter of the input variables’ ijth membership
function, xb

ij is the standard deviation parameter of the input
variables’ ijth membership function, bi and ci are the fuzzy
Gaussian membership function parameters for each input
and output membership function.

A summary of the above discussion is presented in
Table 1. A total of 42 unknown fuzzy parameters needs to be
optimized using the PSO algorithm. If the swarm size is 100,
then all the 42 parameters are encoded with 100 PSO
particles, and in every iteration of running the simulation of
the PSO algorithm, 42 fuzzy membership function param-
eters are computed, and the values are updated after eval-
uating the fitness of the cost function. *erefore, the
parameters of both the input and output fuzzy variables are
encoded with the particles in the swarm. For example,
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Calculate forecasting error

Start the algorithm

Initialize PSO parameters 
[ω, c1, c2, r1 & r2]

Random generation of initial solution [v & x]

Update the velocity and position of every particle
and evaluate the fitness function 

Generate ForecastImport Testing 
Data

Update the fuzzy membership function 
parameters [b,c]

Max. 
Iteration?

Generate optimal value of b & c

End

No
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Fuzzy Load Prediction Model [initial rule and 
membership function]

Import 
Training Data

Error 
acceptable?

Generate optimal value 
of bi & ci

End

Figure 11: Fuzzy-PSO tuning process for load prediction.

Table 1: *e fuzzy parameter encoding using the particles of PSO.

Parameters
Parameters of the fuzzy membership function

Dimensional search space of particles
b1i c1i b2i c2i b3i c3i b4i c4i b5i c5i

Time xb11 xc11 xb12 xc12 xb13 xc13 xb14 xc14 xb15 xc15 2 × m1 � 2 × 5 � 10
Temperature xb21 xc21 xb22 xc22 xb23 xc23 2 × m2 � 2 × 3 � 6
ECF xb31 xc31 xb32 xc32 xb33 xc33 2 × m3 � 2 × 3 � 6
Historical load xb41 xc41 xb42 xc42 xb43 xc43 xb44 xc44 xb45 xc45 2 × m4 � 2 × 5 � 10
Forecasted load yb1 yc1 yb2 yc2 yb3 yc3 yb4 yc4 yb5 yc5 2 × mt � 2 × 5 � 10

Total fuzzy system parameters encoding to run the PSO simulation 42
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xb11 � p1 + p2 + p3 + · · ·+ ps, where p is the individual particle
in the swarm of population “s.”

3.5. Fitness Function of the Optimization Problem. Based on
the definition of fuzzy parameters in the previous expres-
sions, the following fuzzy prediction model fitness mea-
surement method given in (21) is used. *e fitness function
of the Mamdani fuzzy membership function is the mean
absolute percentage error (MAPE) that measures the per-
formance of the model and is evaluated as follows [27]:

mape �
1
n



n

i�1

yi − yi




yi

. (21)

*e fitness function of the optimization problem is
formulated as follows:

fi bi, ci(  � minimiz(mape), 0≤ bi ≤ ci. (22)

Here yi is the testing data set, yi is the forecasted load data
sets, and n is the forecasting time horizon.

4. Simulation Results

Both the training and testing data set values of the fuzzy
input and output variables are presented on a 24-hour basis
and it was discussed in Section 1. *erefore, the forecast is a
short-term industrial load prediction of various events that
exist in a calendar year with a 24-hour forecasting horizon.

4.1. Holiday Load Forecast. Holidays are special events that
exist once a year in a calendar year, and such types of loads
have distinctive characteristics such that they should be
treated separately for the purpose of load prediction accu-
racy. *ese loads are special loads that exist during national
holidays, Christian holidays, and Muslim holidays. *e
Christian holidays include Christmas, Siqilet, Easter,
Epiphany, and Meskel. *e Muslim holidays include
Mewulid, Eidaldeha, and Eidalfetir, whereas in the national
holidays, Adwa victory, New Year, Labor Day, and Patriots’
Day are considered.*e Fuzzy-PSO prediction of this special
event provides a high level of prediction accuracy. *e
Fuzzy-PSO prediction results of all the holiday load sce-
narios are presented in Figures 12–23 and discussed in
Section 5.

4.2. Weekday and Weekend Day Load Prediction. *e
weekday loads are the loads operated during normal periods
where both national and religious holidays are omitted when
they fall on Monday through Friday.*e loads in this period
should be treated separately because they have a different
operational characteristic than holiday loads (Figure 24). On
the other hand, the weekend day loads are the loads on
Saturday and Sunday. Some private institutions consider
Saturday as a working day, but still, the weekend has its own
distinctive load characteristics, as shown in Figure 25.

4.3. @e Overall System Load Prediction. *e total system
load is the average load considering all the events mentioned
earlier and it was scaled using a constant scaling factor to
account its vulnerability due to the distinctive nature of
various load events. *e prediction result is used to model
the microgrid system. *e scaling factor is computed from
the data sets and it is 1.3 for training data and 1.4 for testing
data sets using equation (2).

*e true correlation between the predicted total system
load and the corresponding fuzzy input variables for the load
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Figure 14: *e Fuzzy-PSO prediction of Meskel load.
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Figure 12: *e Fuzzy-PSO prediction of Christmas load.
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Figure 13: *e Fuzzy-PSO prediction of Siqilet load.
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prediction model based on the available data set is presented
in Figures 26–29.

*e optimized values of the fuzzy membership function
and fuzzy rules are presented in Tables 2 to 6 for the total
system load presented in Figure 30, and Table 7 presents the
summary of the load prediction performance result.

5. Discussion

*e computational cost of the Fuzzy-PSO load prediction
model is measured based on the convergence rate of the
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Figure 15: *e Fuzzy-PSO prediction of Eidaldeha load.
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Figure 17: *e Fuzzy-PSO prediction of Mewulid load.
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Figure 19: *e Fuzzy-PSO prediction of Eidalfetir load.
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Figure 16: *e Fuzzy-PSO prediction of Epiphany load.
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Figure 18: *e Fuzzy-PSO prediction of Easter load.
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Figure 20: *e Fuzzy-PSO prediction of New Year load.
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Figure 21: *e Fuzzy-PSO prediction of Labor Day load.
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algorithm, the computational time required to execute the
prediction model, and the performance of the fitness
function.*e computational time depends on the number of
iterations, the number of particles considered in the swarm,
the number of fuzzy input variables, the number of fuzzy
membership functions in each fuzzy input and output
variable, the size of the input and output training dataset,
and the performance of the hardware device (computer)
used to simulate the model. For the Fuzzy-PSO load pre-
dictionmodel, 4 fuzzy input variables, 100 PSO particles, 300
iterations, and 17,520-hour training dataset values are
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Figure 24: *e Fuzzy-PSO prediction of weekday load.
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Figure 22: *e Fuzzy-PSO prediction of Adwa load.
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Figure 23: *e Fuzzy-PSO prediction of Patriots’ Day load.
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Figure 28: Correlation between forecast load and temperature for
total system load.

3000

4000

5000

6000

7000

lo
ad

 (k
VA

)

MAPE = 3.3117

5 10 15 20
Time (hr)

Forecasted output
Actual output

Figure 25: *e Fuzzy-PSO prediction of weekend day load.
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Figure 26: Correlation between forecast load and time for total
system load.
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Figure 27: Correlation between forecast load and ECF for total
system load.
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simulated using an 8GB RAM, core i7 Dell Latitude 7400
computer. *e simulation takes several hours to simulate
the Fuzzy-PSO load prediction model because of the
complexity of the model, the large number of fuzzy
membership functions, and the large number of itera-
tions considered. *e simulation converges to the so-
lution very quickly after 15 iterations based on the
calculation of the mean-absolute percentage error as a
performance measurement index. *e mean absolute
percentage error is considered as a cost function to
measure the performance of the Fuzzy-PSO load pre-
diction model. *e high level of prediction accuracy is
recorded during the Easter holiday, and its industrial
load prediction result is presented in Figure 18. *e
Fuzzy-PSO prediction model during Easter forecasts the
load with a prediction accuracy of 1.84% (MAPE), which
is significantly very high as compared with the fuzzy
prediction model result alone of 3.54%. *e Fuzzy-PSO
load prediction model for the weekday yields a MAPE of
4.17%, which is a very high accuracy level compared to
the fuzzy-alone load prediction model of 13.89% MAPE.
*e Fuzzy-PSO load prediction model for the weekend
load has a prediction accuracy of 3.3% MAPE, whereas
the overall industrial load Fuzzy-PSO load prediction
result has a prediction accuracy of 3.62% MAPE. In
general, the Fuzzy-PSO load prediction model has a fast
convergence rate and very high prediction accuracy level
and needs a supercomputer to improve the computa-
tional time of the prediction algorithm.

All the fuzzy inputs and fuzzy output membership
functions are encoded using all 100 PSO particles. Each
membership function is represented using two basic fuzzy
parameters: the standard deviation (b) and mean (c), so the
values of b and c are optimized using the training input and
output dataset correlation. Similarly, the initial fuzzy rules
are updated and optimized using the data correlation be-
tween the training input and output dataset. *e Fuzzy-PSO
algorithm executes the correlation between the fuzzy input
variables (time, ECF, temperature, and historical load) and
the fuzzy output variable (forecasted load) based on the
training data set and training performance of the PSO. *e
correlation between time and forecasted load is presented in
Figure 26, and from the correlation graph, we can under-
stand that the time of the day can affect the load forecast
result. During the early morning and after-night periods, the
industrial load is low, while it is at its maximum during the
daytime between 9 am and 15 am. *e correlation between
forecasted load and ECF demonstrates that at an ECF
margin of ±20%, the change in the forecasted load is
negligible, but at lower (negative big) and higher (positive
big) values of the ECF, it has a great impact on the forecasted
load. *e incremental or decremental magnitude of the
forecasted load depends on the sign and magnitude of the
ECF values. *e impact of temperature and historical load
on the forecast of industrial load is very clear. *ey have a
direct relationship with the forecasted load based on the
characteristics of the temperature and historical load in the
training dataset. Table 7 demonstrates the forecasting ac-
curacy of the Fuzzy and Fuzzy-PSO load prediction models
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Figure 29: Correlation between forecast load and historical load
for total system load.

Table 2: Fuzzy-PSO optimized result of temperature for microgrid
model.

Membership function
Initial fuzzy
parameters

PSO optimized
parameters

bi ci bi ci
Low 8.07 5.5 8.07 5.5
Normal 4.23 20 4.23 21.93
High 8.07 34.6 26.09 35.19

Table 5: Fuzzy-PSO optimized result of historical load for
microgrid model.

Membership function
Fuzzy

parameters
PSO optimized
parameters

bi ci bi ci
Very low 270 2500 270 2503
Low 246 3636 609.9 5809
Average 246 4750 246 4930
High 246 5875 246 5697
Very high 270 7000 246 6875

Table 3: Fuzzy-PSO optimized result of time for microgrid model.

Membership function
Fuzzy

parameters
PSO optimized
parameters

bi ci bi ci
Night 2.803 1.7 2.396 1.628
Forenoon 2.803 8 2.302 9.115
Noon 2.803 12 2.081 17.591
Afternoon 2.803 16 1.640 16.176
Evening 2.803 22.3 2.396 20.995

Table 4: Fuzzy-PSO optimized result of ECF for microgrid model.

Membership function
Fuzzy

parameters
PSO optimized
parameters

bi ci bi ci
Negative 0.6 −1 0.557 −1
Null 0.075 0 0.1134 0.0471
Positive 0.6 1 0.5062 1
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in terms of the mean absolute percentage error of the
forecasted dataset and the validation dataset measured in
percentage (%).

6. Conclusion

A microgrid is a viable option to supply reliable, efficient,
and affordable power to an industrial customer. *is load
prediction work is ongoing research that forms an integral
part of microgrid design. *e particle swarm optimization

algorithm is an intelligent technique implemented to opti-
mize the fuzzy load prediction approach. *e model pro-
vides an accurate load prediction result whose absolute-
mean percentage error is less than 5% in most of the sce-
narios that were discussed in this paper.*e Fuzzy-PSO load
prediction model manipulates large volumes of fuzzy input
and output data for both the training and testing datasets in
order to generate fuzzy rules and fuzzy membership func-
tions used for the load prediction model. *e termination
criteria of the PSO algorithmmatter the accuracy level of the

Table 6: Fuzzy-PSO optimized result of overall forecasted load for microgrid model.

Membership function
Fuzzy

parameters
PSO optimized
parameters Initial possible rules PSO generated rules Optimized rules

bi ci bi ci
Very low 400 2000 400 20162

225 129 115
Low 400 4000 400 3930
Average 400 6000 419 5759
High 400 8000 400 9263
Very high 400 10000 400 10000

Table 7: Performance evaluation of fuzzy-alone and Fuzzy-PSO load prediction model based on MAPE.

No. Event
Methods

Fuzzy Fuzzy-PSO
1 Easter 3.54 1.84
2 Epiphany 7.18 5.65
3 Siqilet 9.05 2.48
4 Christmas 11.59 3.05
5 Meskel 10.56 3.04
6 Eidalfetir 5.78 3.54
7 Mewulid 9.34 6.31
8 Eidaldeha 6.61 5.02
9 New Year 9.56 6.10
10 Adwa victory 11.09 3.55
11 Patriots’ day 9.34 3.22
12 May_20 5.37 3.45
13 Labor Day 8.65 3.61
14 Weekday 13.89 4.17
15 Weekend day 13.9 3.31
16 System load 8.85 3.62
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Figure 30: *e Fuzzy-PSO prediction of the total system load for microgrid model.
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load prediction model. *e number of iterations or the
acceptable tolerance of error considered in the Fuzzy-PSO
load prediction model also has a significant impact on the
simulation result.*e load prediction model during the New
Year and Mewulid holidays is simulated based on a maxi-
mum fuzzy rule generation iteration of 50 and an overall
fuzzy system optimization maximum iteration number of
250, which yields a very low level of prediction accuracy as
compared with the other scenarios. Introducing a new fuzzy
input variable (i.e., error correction factor) also improves the
load prediction model based on the Fuzzy-PSO prediction
approach.
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