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Fuzzy Tracking Control Design for Nonlinear
Dynamic Systems via T-S Fuzzy Model

Chung-Shi TsengMember, IEEEBor-Sen ChenSenior Member, IEEEand Huey-Jian Uang

Abstract—This study introduces a fuzzy control design method excite unmodeled high-frequency dynamics, which degrades
for nonlinear systems with a guaranteedH., model reference the performance of the system and may even lead to instability.
tracking performance. First, the Takagi and Sugeno (TS) fuzzy Recently, Takagi-Sugeno (T—S) type fuzzy controllers have

model is employed to represent a nonlinear system. Next, based h I .
on the fuzz;F/J n%odel, apfuzzy observer-base)c/i fuzzy controller been successfully applied to the stabilization control design of

is developed to reduce the tracking error as small as possible nonlinear systems [9]-[13]. In most of these applications, the
for all bounded reference inputs. The advantage of proposed fuzzy systems were thought of as universal approximators for
tracking control design is that only a simple fuzzy controller is ponlinear systems. The T-S fuzzy model [9] has been proved
used in our approach without feedback linearization technique 5 e 5 very good representation for a certain class of nonlinear
and complicated adaptive scheme. By the proposed method, the . . . . i
fuzzy tracking control design problem is parameterized in terms dynamic systems. In_ their studles,_a nonlinear plant was repre
of a linear matrix inequality problem (LMIP). The LMIP can be ~ Sented by a set of linear models interpolated by membership
solved very efficiently using the convex optimization techniques. functions (T-S) fuzzy model) and then a model-based fuzzy
Simulation example is given to illustrate the design procedures controller was developed to stabilize the T-S fuzzy model. On
and tracking performance of the proposed method. the other hand, tracking control designs are also important is-
Index Terms—Fuzzy tracking control, LMIP. sues for practical applications; for example, in robotic tracking
control, missile tracking control and attitude tracking control of
aircraft. However, there are very few studies concerning with
tracking control design based on the T-S fuzzy model, espe-
HE tasks of stabilization and tracking are two typicatially for continuous-time systems.
control problems. In general, tracking problems are In general, tracking control design is more general and more
more difficult than stabilization problems especially for nondifficult than the stabilization control design. In [14], feedback
linear systems. For nonlinear system design, various contligearization technique is proposed to systematically design a
schemes are introduced including exact feedback linearizatifuizzy tracking controller for discrete-time systems. As pointed
sliding mode control and adaptive control. The techniqusutin [15], the controller derived by feedback linearization may
of exact feedback linearization needs perfect knowledge 1wt be bounded, i.e., the fuzzy controller is not guaranteed to
the nonlinear system and uses that knowledge to cancel Bestable for nonminimum phase system. In this work, tracking
nonlinearities of the system. Since perfect knowledge of thentrol design based on the T-S fuzzy model is studied. First,
system is almost impossible, the technique of exact feedbaplk T—S fuzzy model is used to represent a nonlinear system.
linearization seems impractical for nonlinear system design H_, tracking performance, which is related to tracking error
[1], [32]. Recently, based on feedback linearization techniquer all bounded reference inputs, is formulated, then a fuzzy ob-
H., adaptive fuzzy control schemes have been introducedderver-based fuzzy controller is developed to reduce tracking
deal with nonlinear systems [3], [4]. However, the complicategiror as small as possible. Conventionally, the rolist per-
parameter update law and control algorithm make this contfermance design problems for nonlinear systems have to solve
scheme impractical, especially in the case of considering & Hamilton—Jacobi equation, which is a nonlinear partial dif-
projection algorithm for the parameter update law to avoférential equation. Only some very special nonlinear systems
the singularity of feedback linearization control [26], [27]have a closed form solution [34]. To avoid solving nonlinear
An advantage of sliding mode control is its robustness fsartial differential equation, the T-S fuzzy model is employed
uncertainties [5]. However, chattering phenomenon that resultsrepresent a nonlinear system.
in low control accuracy and high heat loss in electrical power Based on the T-S fuzzy model, the outcome of the fuzzy
circuits is inevitable in the sliding mode control. It may alseracking control problem is parameterized in terms of a linear
matrix inequality problem (LMIP) [23]. The LMIP can be
solved very efficiently by a convex optimization techniques
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fuzzy tracking control using state feedback is also introduce¢dhere
in the Appendix.

The main contribution of this paper is as follows. Based on
the proposed fuzzy approach, a simple algorithm based on linear

(1) = [] Fii ()
j=1

matrix inequality (LMI) optimization techniques is developed ha(2(8)) = pi(2(t))
systematically to solve the fuzzy tracking control design for N L
nonlinear systems. Therefore, the proposed tracking control de- > niz(t)

sign is suitable for practical applications. i=1

The paper is organized as follows. Section Il presents the 2(t) = [21(8), 22(t), -+ -, 24(1)] 4
problem formulation. In Section Ill, a fuzzy observer-baseghd wherd;; i(z;(1)) is the grade of membership ef(t) in ;.
tracking control is considered. In Section 1V, simulation \we assume
example is provided to demonstrate the design effectiveness.
Finally, concluding remarks are made in Section V. As a
special case, the fuzzy tracking control using state feedback is
introduced in the Appendix. and

pi(2(t) =z 0

L

S il=(1) > 0,

=1

Il. PROBLEM FORMULATION fori=1,2,...,L

A fuzzy dynamic model has been proposed by Takagi and
Sugeno [9] to represent a nonlinear system. The T-S fuzoy all ¢.
model is a piecewise interpolation of several linear models Therefore, we get [6]-[8], [10]
through membership functions. The fuzzy model is described

. : hi(z(t)) >0, fori=12,... L (5)
by fuzzyIf-Thenrules and will be employed here to deal with
the control design problem for the nonlinear system. fthe and
rule of the fuzzy model for the nonlinear system is of the L
following form [9], [10], [12], [15]: Z hi(2(t)) = 1. (6)
Plant Rule ¢. =1

The TS fuzzy modelin (2) is a general nonlinear time-varying
equation and has been used to model the behaviors of complex
nonlinear dynamic systems [15].

Consider a reference model as follows [20]-[22]:

If z1(¢) is F;; and- - - andz,(t) is Fi,
then (t) = A;x(t) + Biu(t) + w(t)
y(t) = Ciz(t) + v(t), fori =1,2,...,L

(@) En(t) = Arzn(t) + (D) 7)
wherez(t) = [z1(t), z2(t),...,z,(t)]T € R™! denotes the h
state vectoru(t) = [ui(t),u () o um(®)]F € RmxL de- WNETE

LB € z,.(t) reference state;

notes the control inputp(#) = [un (t), wa(t), -, w A,  specific asymptotically stable matrix;

R™*! denotes bounded external disturbangét) denotes () bounded reference input

output of the systemy(#) denotes the measurement noisg; It i7s assumed that,.(t), for allpt > 0, represents a desired
is the fuzzy setd, € R™*", B, € R"™™; L is the number ) NS = O rep

of If-Thenrules; andz(¢), #z2(t),-- -, z,(t) are the premise trajectory forx(.t) to follow. .

variables. Let us consider theH, tracking performance related to

The fuzzy system is inferred as follows [9], [10], [12]: tracking errorz(t) — 2. (t) as follows [2), [3]

ZN )+ Biu(t)] + w(t) / {lz(t) = (D))" Qz(t) — xn(t)]} dt

1) = / BEYT(E) dt B
ZUi(z(t)) or 0
Y 2(t) — z,.(H)]F -z, d
:Zh o®) 1 Bul)] 4wl @) /0 {[=(®) t O Qle(t) — = (D]} dt
<o [ a i) d ©)
Zm(Z(t))[Cﬂ(t)] + () where ’
y(t) = =L 7 w(t) = [v(t),w_(t),r(t)]T for all reference inpuv(t),_
Z“i " e?t)ernal disturbances(t) and measurement noise
v(t);
I ty terminal time of control;
_ th(v( N[Ciz(®)] + v(t) A3) Q positive definite weighting matrix;

i=1 P

prescribed attenuation level.
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The physical meaning of (8) or (9) is that the effect of air(y) fuzzy approach [17], [18]. If the premise variables of

on tracking errot: (t)—x,.(t) must be attenuated below a desired the fuzzy observer depend on the estimated state vari-

level p from the viewpoint of energy, no matter what) is, i.e., ables, i.e.2(t) instead o&(¢) in the fuzzy observer, the

the Lo gain fromw(¢) to z(t) — =z-(¢t) must be equal to or less situation becomes more complicated. In this case, it is

than a prescribed valye. difficult to directly find control gainsk’; and observer
Suppose the following fuzzy observer is proposed to deal with gainsL;. The problem has been discussed in [18].

the state estimation of nonlinear system (1). 2) The problem of constructing T-S fuzzy model for non-

linear systems can be found in [28]-[31]. [ |
After manipulation, the augmented system can be expressed
as the following form:

Observer Rule 7.
If z1(¢) is F;; and- - - andz,(¢) is F;,,
thenit) = A;#(t) + Byu(t) + Li(y(t) — 4(t))  (20)

L L
whereL; is the observer gain for thiéh observer rule anii(t) = #(t) = Z hi(z(t)) Z hi(z(0)[Aiz&(t) + Eiw(t)].  (16)
iy hi2()Cid (). = =
The overall fuzzy observer is represented as follows: Let us denote
L } A, — L;,C; 0 0
bt = D2 M O)A () + Bru®) + Lilu(®) — 5(1)] S e
=1 L T
(11) [ e(t) o(t)
Let us denote the estimation errors as gt)= | z@t) |, @)= |w)
t) = x(t) — &(t 12 (1) "
e(t) = a(t) — &(t). (12) o [-Li I 0
By differentiating (12), we get E, = 0 I 0]. a7
&t) = i(t) — i(t) L 0 0 1
L T Therefore, the augmented system defined in (16) can be ex-
=33 hilz(0)h;(2()[Aix(t) + Biu(t) + w(t)] pressed as the following form:
i=1 j=1 ] L L N N
— [Ai2(t) + Biu(t) + LiC;(w(t) — &(t)) + Liv(t)] B(t) = hi(2()) D hi(z(D))[AiE(t) + Evb(t)]. (18)
L L =1 j=1
= Z Z hi(2(8)h; (z(E)[(Ai — LiCy)e(t) — Liv(t)] Hence, thef{, tracking performance in (9) can be modified
i=1 j=1 as follows, if the initial condition is also considered
+ w(t). (13) t
. . |46 -~ ane) " Qatt) - w0}
Suppose the following fuzzy controller is employed to deal 0
. . tr -
with the above control system design. _ / ST (H0E) dt
Control Rulej. 0 ,
. . - I
If 21(¢) is Fy, and. - - andz, (¢) is Fj,, < #7(0)P(0) + 42 / BT dt (19)
thenu(t) = K;[#(t) — =,.(t)], forj=1,2,---,L.(14) By 0
L whereP is a symmetric positive definite weighting matrix and
Hence, the overall fuzzy controller is given by 0 o 0
L ~
. Q=10 Q@ —-QJ.
2O — 2 O] o -0 0
u(t) = T The purpose of this study is to determine a fuzzy controller in
Zﬂ*(z(t)) (15) for the augmented system in (18) with the guaraniégd
= ! tracking performance in (1) for ali(¢). Thereafter, the atten-
I uation levelp? can also be minimized so that ti#&,, tracking
- Zh,»(;«(t))[K,»(i(t) — z,.(1))] (15) Pperformance in (19) is reduced as small as possible. Further-
J < J T .
i1 more, the closed-loop system
Remark 1: . L L .
1) The premise variables(t) can be measurable state () = ;hi(z(t));m(z(t)) i (?) (20)

variables, outputs or combination of measurable state
variables. For T-S type fuzzy model, using state varts

ables as premise variables are common, but not aIwayI L F o B T c D
[10]-[13], [15]-[19]. The limitation of this approachis ' - U4 UBSERVERBASED TRACKING LONTROL DESIGN

quadratically stable.

that some state variables must be measurable to conThe design purpose in this study is to specify the fuzzy control
struct the fuzzy observer and fuzzy controller. This ig (15) to achieve thé{, tracking control performance in (19).
a common limitation for control system design of T-S'hen, we obtain the following result:
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Theorem 1: In the nonlinear system (18),/# = P > 0is

the common solution of the following matrix inequalities:

e 1 e oo
AZZ;P—l—PAij—l-FPEiEiTP—i—Q <0 (1)

for h;(2(t))h;(=(t)) # 0andi,j = 1,2,---, L, then theH,
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By (21), we obtain
/ Y00 dt
0

< #1(0)Pz(0) + p? / v o) w(t)dt.  (22)
0

Therefore, theH ., tracking control performance is achieved

with a prescribeg?. This completes the proof. ]

tracking control performance in (19) is guaranteed for a pre-Remark 2: The adaptive fuzzy tracking design in [3], [4] lies

scribedp?.
Proof: From (19), we obtain

+{< ”
T ($)PEui(t) — pw(t) i)

1 N .
—p—2$ (t)PEZE7 Paj(t):|

—i—pi?i:T(t)PEiE;f Pi(t) + pQw(t)Tw(t)]} dt

in tuning a fuzzy logic system by an adaptive law to approxi-
mate the feedback linearization controller and udifyg control
scheme to attenuate the effect of external disturbance. Further-
more, the system must be minimum phase. In this study, based
on T-S fuzzy model, théi, tracking performance is guaran-
teed for all bounded reference inputs without complex update
law. Furthermore, the stability of closed loop system is guaran-
teed and the attenuation leyel is minimized. [ ]

To obtain better tracking performance, the tracking control
problem can be formulated as the following minimization
problem:

min p?
P
subject toP > 0 and (21). (23)

To prove the closed-loop system in (20) is quadratically
stable, let us define a Lyapunov function for the system of (20)
as

V(t) = & (1) Pi(t) (24)

where the weighting matri® is the same as that in (19).
By differentiating (24), we obtain

L) Patt) + T ()P
L
Z z(t))

T( ALL + PAyla(t). (25)

Il
B

V()

[l
az i Mh

Then, we obtain the following result:

Theorem 2: Inthe nonlinear closed-loop system (20), if there
exists the common solutiaR = PT > 0 for the minimization
problem in (23), then the closed-loop system in (20) is quadrat-

ically stable.
Proof: From (25), we obtain
L L
=D > hilz())hi(=(1))
i=1 j=1

T (O)[AEP + PA1a(). (26)

By (21), we get
V(t) < 0. (27)
This completes the proof. [ |

From the analysis above, the mostimportant task of the fuzzy
observer-based state feedback tracking control problem is how
to solve the common solutiofR = PT > 0 from the mini-
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mization problem (23). In general, it is not easy to analytically With Was = 2_21 andY; = KJWQQ, (30) is equivalent to
determine the common solutidh = PT > 0 for (23). Fortu- T - T

nately, (23) can be transferred into a minimization problem sub- Wa2 4] Jlr AiWar + BiYj + (BiY))

ject to some linear matrix inequalities (LMIs). The LMIP can + =1+ W22QWae < 0. (31)

be solved in a computationally efficient manner using a convex

optimization technique such as the interior point method [23], By the Schur complements, (31) is equivalent to the following

[24]. LMls:
For the convenience of design, we assume =
. Hu o W 1 (32)
R P; 0 0 Wy —Q7F
P=|10 Py 0. (28)
0 0 ]533 whereH;; = WQQA + A; W22 + B; Y +(B; Y) (1/p )

The parameterW22 andY; (thusP22 = W22 and K; =

By substituting (28) into (21), we obtain Y;W,') can be obtained by solvmg the LMIP in (32) for a pre-

S11 S22 0 scribed attenuation levef. In the second step, by substituting
So1 Saa Saz| < 0O Py and K into (29), (29) becomes standard LMIs. Similarly,
0 Sso Sag we can eaS|Iy solvé 1, P33 andZ; (thusL; = Pan ) from
(29).
where Recall that the attenuation level can be minimized so that
S = (A; — LiC)T Py + Pyi(A; — LiC)) the H,, tracking performance in (19) is reduced as small as
1 - . possible
+ —2P11(L1‘LZT + D P, _
P min p2

{f’n 7f)227f)33}

. 1 . -
Sio=58L = —PyB,K; + =P, P _ N _ .
e T subjecttoP;; > 0, P > 0, P33 > 0and (29).

— . . . T D D . . .
S22 = (4 1+ BiK;)" P + Pa(Ai + BiK;) According to the analysis above, the tracking control via
+ _2P22P22 +Q fuzzy observer-based state feedback is summarized as follows.
P Design Procedures:

- N
Sa3 =83y = —PuBiK; - Q 1) Select membership functions and construct fuzzy plant

S33 = A?Pg?, + P33 A, + —2P33P33 + Q. ru_les n (1) ) )
P 2) Given an initial attenuation IevgaF
With Z; = P, L;, we obtain 3) Solvethe LMIPin (32) to obtaif» andY; (thusPy, =

Wyt andK; = Y;W,,* can also be obtamed)

sk D * T
M7, P121 Zi Mg 0 0 4) Subsntuteng angK into (29) and then solve the LMIP
Pl% —p1 02 0 0 0 in (29) to obtainP;1, Ps; andZ; (thusL; = P;;'Z; can
Z; 0 —pif 0 0 0 0 (29 also be obtained).
M; 0 0 Mi, M; o | <0 @9 W0, P z

41 i 45 ! 5) Decreasg? and repeat Steps 3-5 uritts;, P, andPss

0 0 0 My M3 Ps can not be found.

0 0 0 0 ng —pQI

6) Construct the fuzzy observer (11).
where 7) Construct the fuzzy controller (15).
- - Remark 3: Software packages such as LMI optimization
* AT 70— (7.0)NT
My = A7 Puu+ Pudi = 2,05 = (4:)) toolbox in Matlab [25] have been developed for easily solving

- 1~ -
M} = —(B;K;) Py + — Py Pry the LMIP. ]
P
Mj, = (4 + B;K;)" Py 4+ Pp(A; + BK;) IV. SIMULATION EXAMPLE
1~ - . . A
+ 5 ParPa2 +Q Consider a two-link robot system as shown in Fig. 1. The dy-
. r namic equation of the two-link robot system is given as follows
Mz = =P BiK; - Q [33]:
M3y = Af Pys + Pi3 A, + Q. . N
o . M(¢)i+C(¢,9)q+G(g) =7 (33)
Since five parameteiB,; , P»», P33, K, andL; should be de-
termined from (29), there are no effectlve algorithms for solvinghere
them simultaneously, until now. However, we can solve them by M) = [ (my +m)l? malila(s152 + c1e2)
the following two-step procedures. (9) = malila(s152 + cre2) mal3

In the first step, note that (29) implies thaff, < 0
(A; + BiK;)" Poy + Poz(A; + BiK;)
L b, [ —(my +m2)ligs
+ ?Pmpzz +Q < 0. (30) Glq) = (my 2)l1g 1}

—malagsa

} 0 —
C(q, §) = malila(crsa — s162) [_ . ()qﬂ
q1
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Fig. 1. The configuration of two-link robot systems.

andq = [q1,¢]%, q1, ¢ are generalized coordinate&!(q)

is the moment of inertiaC’(q, ¢) includes coriolis, centripetal
forces, and7(q) is the gravitational force. Other quantities are:
link massmy, mo(kg), link lengthly, I;(m), angular position
q1, g2(rad), applied torques = [r1,72]* (N — m), the accel-
eration due to gravity = 9.8(m/s?), and short-hand notation
s1 = sin(qy), s2 = sin(qz), ¢1 = cos(qy), andez = cos(qz).
Letx; = q1, T2 = (21: T3 = (2, anda:4 = QQ, then (33) can
be written as the following state-space form including external
disturbances and measurement noises:

T1 = T2 + wy
&g = fi(x) + g11(x)71 + gr272 + w2
T3 = T4+ w3
&g = fo(x) + go1(x)71 + g2om2 + wy
n=zr1+mun

Y2 = T3+ v2 (34)

wherew,, w», w3, andw, denote external disturbances and
andwv, denote measurement noises and

(5162 — c152)
Iils[(my +ma) — ma(s152 + c162)?]
X [mglllg(slsg + clcg)xg
1
+ Lilo[(my + ma) — ma(s1s2 + c102)?]
X [(my + ma)lags) — malagsa(sis2 + cre2)]
(8102 - 0182)
Iilz[(my +ma) — ma(s1s2 + c1e2)?]
X [—(ml —+ mg)l%l’g —+ mglllg(slsg —+ clcg)xi]
1
* Lila[(my + mo) — ma(s182 + c162)?]
X [=(m1 +ma)ligsi(s182 + ci1c2)
+ (my1 + ma)ligsa),
mglg
) m2(8182 + 0102)2]
—malila(s182 + c1c2)
mﬂ%l%[(ml + mg) (8182 + 0102)2]
(
) —

filz) =

— mal3a3]

() = mal3l3[(my + my

gi2(x) =

—malila(s182 + 6162)
mal213[(m1 + ma) — ma(s182 + c1¢2)?
(ma + ma)l}
mal213[(m1 + ma) — ma(s152 + c1e2)?].

ga(x) =

g22(x) =

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 3, JUNE 2001

Following the design procedures in the above section, the

Step 1:

Rule 1)

Rule 2)

Rule 3)

Rule 4)

Rule 5)

Rule 6)

Rule 7)

Rule 8)

Rule 9)

fuzzy tracking control design is given by the following steps:

To use the fuzzy control approach, we must
have a fuzzy model that represents the dy-
namics of the nonlinear plant. Assume that
x; and z3 are measurable through the op-
tical encoder attached on the robot. In this
example, link massw; = 1(kg), m2 = 1(kg),
and link lengthly = 1(m), lo = 1(m) are
given, angular positiory;, ¢ are constrained
within [—(7/2),(n/2)] and external distur-
bancesw; = 0.1sin(2t), wo = 0.1cos(2¢),

wg = 0.lcos(2t), andws = 0.1sin(2t) are
given and measurement noises and v, are
assumed to be zero mean white noise with
variance equals to 0.1%. To minimize the design
effort and complexity, we try to use as few rules
as possible. The T-S fuzzy model for the system
in (34) is given by the following nine-rule fuzzy
model:

Ifzyis about—g andzxs is aboutg,
then z=Az+Biu+w
y=Cix +w.
Ifz;is about—g andzs is abouto,
then T = AQ.’E + B'u, +w
y = Cox 4 v.
Ifzyis about—g andzxs is aboutg,
then & = Asz + Bsu+w
y = Csx +v.
If 71 is about0 andzs is about—g,
then ¢ = A+ B+ w
y = Cyx + v.
If z; is aboutd andzx3 is abouto,
then = = Azx + Bsu+w
y=Csz+wv.
If z1 is about0 andzxs is aboutg,
then ¢ = Agx + Bgu +w
y = Cgx +v.
. w . aw
Ifzq is about§ andzxs is about—§,
then 7 = Arx+ Byu+w
y = Crzx +v.
Ifzyis aboutg andzs is aboutd,
then ¢ = Agx + Bsu+w
y = Csx +v.
. w . w
Ifzq is about§ andzxs is about§,
then ¢ = Agx + Bou +w
y = Cox +v
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Ay

Ao

As

Ay

Ag

Az

As

Ag

B,

Where.’l’ = [-T17$27‘T37‘T4]T1 U = [7_177_2]T1
w = [w17w27w37w4]T1 v = [Ulva]T

-0 1 0 0
5927 —0.001 —0.315 —8.4x 1076
0 0 0 1

L —6.859 0.002 3.155 6.2x 107

r0 1 0 0
3.0428 —0.0011 0.1791  —0.0002
0 0 0 1

13.5436  0.0313 2.5611 1.14 x 10~°

r 0 1 0 0
6.2728 0.0030 0.4339 —0.0001
0 0 0 1

19.1041 0.0158 —1.0574 —3.2x10°

r0 1 0 0
6.4535  0.0017 1.2427 0.0002
0 0 0 1

L —3.1873 —0.0306 5.1911 —1.8x10~?

r0 1 0 0
11.1336 0.0 —1.8145 0.0
0 0 0 1

[ —9.0918 0.0 9.1638 0.0

r0 1 0 0 .
6.1702 —0.0010 1.6870  —0.0002
0 0 0 1

[ —2.3559  0.0314 4.5298 1.1 x 107 |

r0 1 0 0 .
6.1206 —0.0041 0.6205 0.0001
0 0 0 1

18.8794 —0.0193 —1.0119 4.4 x 10>

r 0 1 0 0 7
3.6421 0.0018 0.0721 0.0002
0 0 0 1

12.4290 —0.0305 2.9832 —1.9 x 10>

r0 1 0 0
6.2933 —0.0009 —0.2188 —1.2x10~°
0 0 0 1

| —7.4649 0.0024  3.2693 9.2x 1076

ro 0 0 0
| 05 0
0 o0 Ba=179 o

-1 2 0 1

r0 0 0 0
11 0.5 0
I

L1 2 0 1

ro 0 0 0
| 0.5 0
0 0 Be=17% o
-1 2 0 1

Steps 2—

o RO

O = O

(1
0

-1

5:

W22 =

P33:

Step 6:

Ly
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0 0 0
1 0.5 0
ol =10 o

2 0 1

0

-1

0

2
0 0 0 .
01 0 fori=1,---,9.

The reference model is given as

0 1

-6 -5
=19 o

0 0
and

r(t) = [0, 8sin(t),

For the conven

0 0

0 0

0 1

-6 -5
0,8cos()]*.

ience of design, triangle type

membership functions are adopted for Rule 1

through Rule 9.

Solve LMIP using the LMI optimization toolbox
in Matlab. In this case

1.5097 x 10°
—5.6709 x 10~*
1.6095 x 10!
—9.1080 x 102
1.6095 x 101
—6.2016 x 102
4.3109 x 101
—1.4470 x 1071

7.9577 x 103
—2.1030 x 10°
—3.8664 x 10?

9.4840 x 103

—3.8664 x 107

8.7428 x 10°
9.0528 x 10°

—2.8448 x 10°

2.6701 x 10°

8.9051 x 1071
—1.8708 x 1073
—8.3602 x 10~*

—1.8708 x 1073

—8.5026 x 10~*

2.6730 x 10°
8.9170 x 101

—5.6709 x 10~*
2.1365 x 101
—6.2016 x 102
3.4924 x 102
—9.1080 x 102
3.4924 x 1072
—1.4470 x 101
5.0333 x 1072
—2.1030 x 10°
6.6342 x 10°
8.7428 x 103
—2.2568 x 10°
9.4840 x 10°
—2.2568 x 10°
—2.8448 x 10°
1.0629 x 107
8.9051 x 10~1
7.6799 x 101
—8.5026 x 1074
1.7538 x 107°
—8.3602 x 10~*
1.7538 x 107°
8.9170 x 101!
7.6790 x 101

The observer parameters are found to be

4.5110 x 10?
1.2168 x 10°
—7.5851 x 10t
—2.4621 x 10?

—4.4693 x 10!
—1.7120 x 102
2.5735 x 102
7.7910 x 102
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20

Fig. 2. The trajectories of the state variable (the proposed fuzzy control: solid line), reference state variable(dotted line), state variable, (the linear
control: dashed line) and external disturbamge(dashdot line).

[ 4.6963 x 102 —8.1664 x 10; 1 Step 7: The control parameters are found to be
1.2667 x 10° —2.7067 x 10
Ly = —8.0699 x 10*  2.6313 x 10? —1.1409 x 10* —3.9188 x 10?2
| —2.6021 x 10?  7.9779 x 10% | —2.5707 x 10° —8.1172 x 10!
r 4.0385 x 102 —1.1052 x 10?7 —3.3955 x 10° —9.0411 x 10!
1.0888 x 10> —3.5054 x 102 —8.1895 x 10° —2.3703 x 102
—6.4433 x 101 2.7854 x 102
| —2.0810 x 107  8.4484 x 10% | _1.1162 x 10* —3.9108 x 102
r 4.3523 x 102 —5.5508 x 10 1 —7.6060 x 102 —2.2040 x 10!
1.1773 x 10°  —1.9855 x 107 ~1.0318 x 10° —2.6501 x 10
—-8.8939 x 100 2.5128 x 107 ~8.1335 x 103 —2.3977 x 102
| —2.8464 x 10>  7.6144 x 10%
r3.7229 x 102 —4.1800 x 10! 1 —1.0428 x 10* —3.6347 x 102
1.0041 x 10° —1.6094 x 102 —1.3571 x 10> —1.3056 x 10°
—5.7890 x 101 2.4382 x 102 —1.2792 x 102 —1.5470 x 100
L —1.8940 x 102 7.3892 x 102 i —7.6424 % 103 —92.2424 % 102
r 4.3828 x 102 —5.9589 x 10! T
1.1861 x 10®  —2.0975 x 102 11163 x 10 —3.9114 x 102
::12(')2‘;21 Xlt‘; 7i6§§710>< 1f02: ~1.0279 x 103 —2.6391 x 10!
oot z L0? _3'4”4 z 102 —8.1345 x 103 —2.3981 x 102
. —J.499
_ 1 2
_g-‘j?gé i 182 z'ggg i 182 —1.1853 x 10* —4.1892 x 10?
~ ('32?73OX (2 68T 100 —5.8800 x 10  —1.6314 x 10!
12481 X 103 _25757 X 102 —7.7869 x 102 —1.9598 x 101
79199 x 101 2.6137 x 102 —8.5878 x 103 —2.5501 x 10?
L —2.5558 x 10> 7.9235 x 102 . )
1.2059 x 103 —1.6560 x 102 —7.6159 x 102 —2.2062 x 101
—7.6254 x 101 2.5663 x 102 —1.0290 x 10° —2.6424 x 10!
| —2.4734 x 10> 7.7684 x 102 | —8.1337 x 103 —2.3978 x 102
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Fig. 3. The trajectories of the state variable (the proposed fuzzy control: solid line), reference state variable(dotted line), state variable, (the linear
control: dashed line) and external disturbamge(dashdot line).

3 T T T T T T T T T

Fig. 4. The trajectories of the state variable (the proposed fuzzy control: solid line), reference state variabie(dotted line), state variable; (the linear
control: dashed line) and external disturbamge(dashdot line).

Jo _ | ~10430x 10 —3.6353 x 10° Fo _ | ~11409x 10*  —3.9188 x 10°
7T | -1.3574 x 102 —1.2959 x 10° 97| —2.5697 x 10 —8.1138 x 10
—1.2540 x 102 —1.4751 x 10° ] —3.3969 x 10> —9.0449 x 10!
—7.6436 x 10°  —2.2428 x 10 | —8.1900 x 10°  —2.3705 x 10?
Ko — [~11164 % 101 ~3.9113 x 107
5T [ 76024 x 107 —2.2023 x 10! Figs. 2-5 present the simulation results for the proposed
—1.0308 x 10> —2.6470 x 10! ] fuzzy tracking control. The initial condition is assumed to be
—8.1344 x 10> —2.3980 x 10? | (21(0), £2(0), 23(0), £4(0), £,1(0), £,2(0), 2,3(0), 2,4(0),
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Fig. 5. The trajectories of the state variable (the proposed fuzzy control: solidline), reference state variahle(dotted line), state variable, (the linear
control: dashed line) and external disturbamee(dashdot line).

21(0), £2(0), £3(0), #4(0))* = (0.5, 0,-0.5, 0, 0, 0, O, O, APPENDIX
0, 0, 0, OY in the simulations. Fig. 2 (Figs. 3-5) show the
trajectories of the states (z2, x3, andz,) including reference
state x,1 (z,2, z,3, and z,4). For comparison, the control
results obtained with a simple linear output feedback control Control Ruley.

designed by linearization around origin and pole placement |f z(¢)is Fj; and- - - andz,(t) is Fj,,

located at {5, -6, —1_5,—16) for both cont_roller gnd observer thenu(t) = K;[x(t) — a,(t)] forj =1,2,---,L.  (35)
are also shown in Figs. 2-5. From the simulation results, the
performance of the proposed fuzzy controller is obviously Hence, the overall fuzzy controller is given by
better than that of the linear controller.

If all state variables are available, the following fuzzy con-
troller is employed to deal with the above control system design.

L

ult) =Y hy(2(O) K () — 2 (8)]- (36)

V. CONCLUSION j=1
In this study, a fuzzyH .., model reference tracking control After manipulation, the augmented system can be expressed

scheme has been proposed. Based on the T-S fuzzy modd@s &he following form:
fuzzy observer based fuzzy controller is developed to reduce the L
tracking error as small as possible by minimizing the attenua- #(t) = Z hi(z Z hi(2(4) Az () + w(t) 37)
tion level p?. Furthermore, the stability of the closed loop non- = j=1
linear systems is discussed in this study. If all state variables @jgere

available, a state feedbadk,, tracking control design is also (t) wl?)
developed. Z(t) = [w ) } [ }
The advantage of proposed tracking control design is that "
only a simple fuzzy controller is used in our approach without Ay = [A + BiK; BiK; } (38)
feedback linearization technique and complicated adaptive 0 Ar

scheme. In the proposed fuzzy control method, the outcomeSimilarly, let us consider théf., tracking performance re-
of the fuzzy H ., tracking control problem is parameterized ifated to tracking errog(t) — x..(¢) as follows:
terms of a LMIP. The LMIP can be solved very efficiently by

LMI optimization toolbox in Matlab [25] to complete the fuzzy / {[z(t) — 2.(D] Qe (t) — 2. (t)]} dt
tracking control design. A simple and systematic algorithm

based on LMI optimization techniques is developed to solve :/ 7L (1) Qx(t) dt

the fuzzyH.,, tracking control problem. A simulation example 0

is given to illustrate the design procedures and tracking perfor- —
mance of the proposed method.
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wherew(t) = [w(t),7(¢)]*, P is a symmetric positive definite where
weighting matrix - o
Hiy = (A + B;K;)Y' Py + P11(A; + BK;)

=_| @ -Q 1
Q= {—Q Q | (40) +FP11P11+Q
The purpose of this study is to determine a fuzzy controller in Hi; = Hj, = -P11BK; - Q
(36) for the augmented system in (37) with the guaranidgd Hay = ATPyy + Py A, + Q.
tracking performance in (39) for aii(¢) and the closed-loop
system _ By the same argument as above section, we can g8jye
I I P, and K by the following two-step procedures.
#(t) = Z Z hy (2(£)) AT (t) (41) In the first step, note that (46) implies that
=1 j=1 — —_
! (Ai + B;iK;)" Piy + Pui(4; + BiK;)
is quadratically stable. 1 —
Then, we obtain the following results. + ﬁpllpll +Q <0 (47)
Theorem 3: In the nonlinear system (37),/# = P > 0is
the common solution of the following matrix inequalities: With W, = Fl_ll andY; = Klel, (47) is equivalent to
e 1 — _
ALP+PAjj+ PP+Q <0 (42) WA + AW+ BY; + (BY))"
P 1 _ _
. —I+W 1 0W < 0. 48
fori, 5 = 1,2,---, L, then theH, tracking control perfor- + P> TWLeWL (48)

mance in (39) is guaranteed for a prescrilpéd ) _ )
Proof: The proof is similar to that of Theorem 1. = By the Schur complements, (48) is equivalent to the following
Theorem 4: In the nonlinear closed-loop system (41), if ther&MIs.
elxistsdt?e common §ol(uti(;f_f = PdT > (l)I for (ﬁIZ), then the Wi AT + AW, + B)Y; o
closed-loop system in (41) is quadratically stable. r 1 W11
Proof. The proof is similar to that of Theorem2. = +HB:Y;)" + EI < 0. (49)
Similarly, to obtain better tracking performance, the tracking Wit —Q !
control problem can be formulated as the following minimiza- o . o
tion problem so that théf,,, tracking performance in (39) is The parameters/,; andY; (thusPy; = Wi andK; =

reduced as small as possible Yijll) can be obtained by solving the LMIP. (49).
., In the second step, by substitutifiy; andk; into (46), (46)
IT%HP becomes standard linear matrix inequalities (LMI's). Similarly,

we can easily solv&,, from (46). If there exist positive definite
solutionsPy; andP.. in (46), the closed loop system is stable
and theH ., tracking performance in (39) can be achieved for a
prescribed attenuation levgf.

subject toP > 0 and (42). (43)

For the convenience of design, we assume

o Py 0 44 Recall that the attenuation level can be minimized so that
10 Pyl (44) the H., tracking performance in (39) is reduced as small as
o ) _ possible
By substituting (44) into (42), we obtain
2
min p
[11::11 11::12} <0 (45) {P11, P2z}
2 b2z subjectto P;; = P} > 0, Pyy = P3, > 0and (46).
where (50)
Fiy = (A + BK;) P11 + P11 (A + BiK) This minimization problem can be solved by decreasifg

until solutionsPy; = PY, > 0andPyy; = PL, > 0in (46)

1
— PP
+ p? nPu+@ can not be found.

Fio=Ff =-PuBK; —Q
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