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Fuzzy Tracking Control Design for Nonlinear
Dynamic Systems via T–S Fuzzy Model

Chung-Shi Tseng, Member, IEEE, Bor-Sen Chen, Senior Member, IEEE, and Huey-Jian Uang

Abstract—This study introduces a fuzzy control design method
for nonlinear systems with a guaranteed model reference
tracking performance. First, the Takagi and Sugeno (TS) fuzzy
model is employed to represent a nonlinear system. Next, based
on the fuzzy model, a fuzzy observer-based fuzzy controller
is developed to reduce the tracking error as small as possible
for all bounded reference inputs. The advantage of proposed
tracking control design is that only a simple fuzzy controller is
used in our approach without feedback linearization technique
and complicated adaptive scheme. By the proposed method, the
fuzzy tracking control design problem is parameterized in terms
of a linear matrix inequality problem (LMIP). The LMIP can be
solved very efficiently using the convex optimization techniques.
Simulation example is given to illustrate the design procedures
and tracking performance of the proposed method.

Index Terms—Fuzzy tracking control, LMIP.

I. INTRODUCTION

T HE tasks of stabilization and tracking are two typical
control problems. In general, tracking problems are

more difficult than stabilization problems especially for non-
linear systems. For nonlinear system design, various control
schemes are introduced including exact feedback linearization,
sliding mode control and adaptive control. The technique
of exact feedback linearization needs perfect knowledge of
the nonlinear system and uses that knowledge to cancel the
nonlinearities of the system. Since perfect knowledge of the
system is almost impossible, the technique of exact feedback
linearization seems impractical for nonlinear system design
[1], [32]. Recently, based on feedback linearization technique,

adaptive fuzzy control schemes have been introduced to
deal with nonlinear systems [3], [4]. However, the complicated
parameter update law and control algorithm make this control
scheme impractical, especially in the case of considering the
projection algorithm for the parameter update law to avoid
the singularity of feedback linearization control [26], [27].
An advantage of sliding mode control is its robustness to
uncertainties [5]. However, chattering phenomenon that results
in low control accuracy and high heat loss in electrical power
circuits is inevitable in the sliding mode control. It may also
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excite unmodeled high-frequency dynamics, which degrades
the performance of the system and may even lead to instability.

Recently, Takagi–Sugeno (T–S) type fuzzy controllers have
been successfully applied to the stabilization control design of
nonlinear systems [9]–[13]. In most of these applications, the
fuzzy systems were thought of as universal approximators for
nonlinear systems. The T–S fuzzy model [9] has been proved
to be a very good representation for a certain class of nonlinear
dynamic systems. In their studies, a nonlinear plant was repre-
sented by a set of linear models interpolated by membership
functions (T–S) fuzzy model) and then a model-based fuzzy
controller was developed to stabilize the T–S fuzzy model. On
the other hand, tracking control designs are also important is-
sues for practical applications; for example, in robotic tracking
control, missile tracking control and attitude tracking control of
aircraft. However, there are very few studies concerning with
tracking control design based on the T–S fuzzy model, espe-
cially for continuous-time systems.

In general, tracking control design is more general and more
difficult than the stabilization control design. In [14], feedback
linearization technique is proposed to systematically design a
fuzzy tracking controller for discrete-time systems. As pointed
out in [15], the controller derived by feedback linearization may
not be bounded, i.e., the fuzzy controller is not guaranteed to
be stable for nonminimum phase system. In this work, tracking
control design based on the T–S fuzzy model is studied. First,
the T–S fuzzy model is used to represent a nonlinear system.
An tracking performance, which is related to tracking error
for all bounded reference inputs, is formulated, then a fuzzy ob-
server-based fuzzy controller is developed to reduce tracking
error as small as possible. Conventionally, the robust per-
formance design problems for nonlinear systems have to solve
the Hamilton–Jacobi equation, which is a nonlinear partial dif-
ferential equation. Only some very special nonlinear systems
have a closed form solution [34]. To avoid solving nonlinear
partial differential equation, the T–S fuzzy model is employed
to represent a nonlinear system.

Based on the T–S fuzzy model, the outcome of the fuzzy
tracking control problem is parameterized in terms of a linear
matrix inequality problem (LMIP) [23]. The LMIP can be
solved very efficiently by a convex optimization techniques
[24], [25] to complete the fuzzy tracking control design. The
difference between our approach and those in [14], [15] is that
only a simple fuzzy controller is used in our approach without
feedback linearization technique and complicated adaptive
scheme. Furthermore, the stability of the proposed fuzzy con-
troller is guaranteed for a general class of T–S fuzzy systems.
As a special case when all state variables are available, the
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fuzzy tracking control using state feedback is also introduced
in the Appendix.

The main contribution of this paper is as follows. Based on
the proposed fuzzy approach, a simple algorithm based on linear
matrix inequality (LMI) optimization techniques is developed
systematically to solve the fuzzy tracking control design for
nonlinear systems. Therefore, the proposed tracking control de-
sign is suitable for practical applications.

The paper is organized as follows. Section II presents the
problem formulation. In Section III, a fuzzy observer-based
tracking control is considered. In Section IV, simulation
example is provided to demonstrate the design effectiveness.
Finally, concluding remarks are made in Section V. As a
special case, the fuzzy tracking control using state feedback is
introduced in the Appendix.

II. PROBLEM FORMULATION

A fuzzy dynamic model has been proposed by Takagi and
Sugeno [9] to represent a nonlinear system. The T–S fuzzy
model is a piecewise interpolation of several linear models
through membership functions. The fuzzy model is described
by fuzzy If-Thenrules and will be employed here to deal with
the control design problem for the nonlinear system. Theth
rule of the fuzzy model for the nonlinear system is of the
following form [9], [10], [12], [15]:

If is and and is

then

for

(1)

where denotes the
state vector, de-
notes the control input;

denotes bounded external disturbance; denotes
output of the system; denotes the measurement noise;
is the fuzzy set, , ; is the number
of If-Then rules; and , are the premise
variables.

The fuzzy system is inferred as follows [9], [10], [12]:

(2)

(3)

where

(4)

and where is the grade of membership of in .
We assume

and

for

for all .
Therefore, we get [6]–[8], [10]

for (5)

and

(6)

The TS fuzzy model in (2) is a general nonlinear time-varying
equation and has been used to model the behaviors of complex
nonlinear dynamic systems [15].

Consider a reference model as follows [20]–[22]:

(7)

where
reference state;
specific asymptotically stable matrix;
bounded reference input.

It is assumed that , for all , represents a desired
trajectory for to follow.

Let us consider the tracking performance related to
tracking error as follows [2], [3]

(8)

or

(9)

where
for all reference input ,

external disturbance and measurement noise
;

terminal time of control;
positive definite weighting matrix;
prescribed attenuation level.
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The physical meaning of (8) or (9) is that the effect of any
on tracking error must be attenuated below a desired
level from the viewpoint of energy, no matter what is, i.e.,
the gain from to must be equal to or less
than a prescribed value .

Suppose the following fuzzy observer is proposed to deal with
the state estimation of nonlinear system (1).

If is and and is

then (10)

where is the observer gain for theth observer rule and

The overall fuzzy observer is represented as follows:

(11)

Let us denote the estimation errors as

(12)

By differentiating (12), we get

(13)

Suppose the following fuzzy controller is employed to deal
with the above control system design.

Control Rule

If is and and is

then for (14)

Hence, the overall fuzzy controller is given by

(15)

Remark 1:

1) The premise variables can be measurable state
variables, outputs or combination of measurable state
variables. For T–S type fuzzy model, using state vari-
ables as premise variables are common, but not always
[10]–[13], [15]–[19]. The limitation of this approach is
that some state variables must be measurable to con-
struct the fuzzy observer and fuzzy controller. This is
a common limitation for control system design of T–S

fuzzy approach [17], [18]. If the premise variables of
the fuzzy observer depend on the estimated state vari-
ables, i.e., instead of in the fuzzy observer, the
situation becomes more complicated. In this case, it is
difficult to directly find control gains and observer
gains . The problem has been discussed in [18].

2) The problem of constructing T–S fuzzy model for non-
linear systems can be found in [28]–[31].

After manipulation, the augmented system can be expressed
as the following form:

(16)

Let us denote

(17)

Therefore, the augmented system defined in (16) can be ex-
pressed as the following form:

(18)

Hence, the tracking performance in (9) can be modified
as follows, if the initial condition is also considered

(19)

where is a symmetric positive definite weighting matrix and

The purpose of this study is to determine a fuzzy controller in
(15) for the augmented system in (18) with the guaranteed
tracking performance in (1) for all . Thereafter, the atten-
uation level can also be minimized so that the tracking
performance in (19) is reduced as small as possible. Further-
more, the closed-loop system

(20)

is quadratically stable.

III. FUZZY OBSERVER-BASED TRACKING CONTROL DESIGN

The design purpose in this study is to specify the fuzzy control
in (15) to achieve the tracking control performance in (19).
Then, we obtain the following result:
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Theorem 1: In the nonlinear system (18), if is
the common solution of the following matrix inequalities:

(21)

for and , then the
tracking control performance in (19) is guaranteed for a pre-
scribed .

Proof: From (19), we obtain

By (21), we obtain

(22)

Therefore, the tracking control performance is achieved
with a prescribed . This completes the proof.

Remark 2: The adaptive fuzzy tracking design in [3], [4] lies
in tuning a fuzzy logic system by an adaptive law to approxi-
mate the feedback linearization controller and usingcontrol
scheme to attenuate the effect of external disturbance. Further-
more, the system must be minimum phase. In this study, based
on T–S fuzzy model, the tracking performance is guaran-
teed for all bounded reference inputs without complex update
law. Furthermore, the stability of closed loop system is guaran-
teed and the attenuation level is minimized.

To obtain better tracking performance, the tracking control
problem can be formulated as the following minimization
problem:

subject to and (21). (23)

To prove the closed-loop system in (20) is quadratically
stable, let us define a Lyapunov function for the system of (20)
as

(24)

where the weighting matrix is the same as that in (19).
By differentiating (24), we obtain

(25)

Then, we obtain the following result:
Theorem 2: In the nonlinear closed-loop system (20), if there

exists the common solution for the minimization
problem in (23), then the closed-loop system in (20) is quadrat-
ically stable.

Proof: From (25), we obtain

(26)

By (21), we get

(27)

This completes the proof.
From the analysis above, the most important task of the fuzzy

observer-based state feedback tracking control problem is how
to solve the common solution from the mini-
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mization problem (23). In general, it is not easy to analytically
determine the common solution for (23). Fortu-
nately, (23) can be transferred into a minimization problem sub-
ject to some linear matrix inequalities (LMIs). The LMIP can
be solved in a computationally efficient manner using a convex
optimization technique such as the interior point method [23],
[24].

For the convenience of design, we assume

(28)

By substituting (28) into (21), we obtain

where

With , we obtain

(29)

where

Since five parameters , , , , and should be de-
termined from (29), there are no effective algorithms for solving
them simultaneously, until now. However, we can solve them by
the following two-step procedures.

In the first step, note that (29) implies that

(30)

With and , (30) is equivalent to

(31)

By the Schur complements, (31) is equivalent to the following
LMIs:

(32)

where .
The parameters and (thus and

) can be obtained by solving the LMIP in (32) for a pre-
scribed attenuation level . In the second step, by substituting

and into (29), (29) becomes standard LMIs. Similarly,
we can easily solve , and (thus ) from
(29).

Recall that the attenuation level can be minimized so that
the tracking performance in (19) is reduced as small as
possible

subject to and (29).

According to the analysis above, the tracking control via
fuzzy observer-based state feedback is summarized as follows.

Design Procedures:
1) Select membership functions and construct fuzzy plant

rules in (1).
2) Given an initial attenuation level .
3) Solve the LMIP in (32) to obtain and (thus

and can also be obtained).
4) Substitute and into (29) and then solve the LMIP

in (29) to obtain , and (thus can
also be obtained).

5) Decrease and repeat Steps 3–5 until , and
can not be found.

6) Construct the fuzzy observer (11).
7) Construct the fuzzy controller (15).
Remark 3: Software packages such as LMI optimization

toolbox in Matlab [25] have been developed for easily solving
the LMIP.

IV. SIMULATION EXAMPLE

Consider a two-link robot system as shown in Fig. 1. The dy-
namic equation of the two-link robot system is given as follows
[33]:

(33)

where
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Fig. 1. The configuration of two-link robot systems.

and , , are generalized coordinates,
is the moment of inertia, includes coriolis, centripetal
forces, and is the gravitational force. Other quantities are:
link mass , , link length , , angular position

, , applied torques ), the accel-
eration due to gravity , and short-hand notation

, , , and .
Let , , , and , then (33) can
be written as the following state-space form including external
disturbances and measurement noises:

(34)

where , , , and denote external disturbances and
and denote measurement noises and

Following the design procedures in the above section, the
fuzzy tracking control design is given by the following steps:

Step 1: To use the fuzzy control approach, we must
have a fuzzy model that represents the dy-
namics of the nonlinear plant. Assume that

and are measurable through the op-
tical encoder attached on the robot. In this
example, link mass , ,
and link length , are
given, angular position , are constrained
within and external distur-
bances , ,

, and are
given and measurement noises and are
assumed to be zero mean white noise with
variance equals to 0.1%. To minimize the design
effort and complexity, we try to use as few rules
as possible. The T–S fuzzy model for the system
in (34) is given by the following nine-rule fuzzy
model:

Rule 1) If is about and is about

then

Rule 2) If is about and is about

then

Rule 3) If is about and is about

then

Rule 4) If is about and is about

then

Rule 5) If is about and is about

then

Rule 6) If is about and is about

then

Rule 7) If is about and is about

then

Rule 8) If is about and is about

then

Rule 9) If is about and is about

then
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where , ,
,

for

The reference model is given as

and

For the convenience of design, triangle type
membership functions are adopted for Rule 1
through Rule 9.

Steps 2–5: Solve LMIP using the LMI optimization toolbox
in Matlab. In this case

Step 6: The observer parameters are found to be
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Fig. 2. The trajectories of the state variablex (the proposed fuzzy control: solid line), reference state variablex (dotted line), state variablex (the linear
control: dashed line) and external disturbancew (dashdot line).

Step 7: The control parameters are found to be
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Fig. 3. The trajectories of the state variablex (the proposed fuzzy control: solid line), reference state variablex (dotted line), state variablex (the linear
control: dashed line) and external disturbancew (dashdot line).

Fig. 4. The trajectories of the state variablex (the proposed fuzzy control: solid line), reference state variablex (dotted line), state variablex (the linear
control: dashed line) and external disturbancew (dashdot line).

Figs. 2–5 present the simulation results for the proposed
fuzzy tracking control. The initial condition is assumed to be

, , , , , , , ,
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Fig. 5. The trajectories of the state variablex (the proposed fuzzy control: solidline), reference state variablex (dotted line), state variablex (the linear
control: dashed line) and external disturbancew (dashdot line).

, , , = (0.5, 0, 0.5, 0, 0, 0, 0, 0,
0, 0, 0, 0) in the simulations. Fig. 2 (Figs. 3–5) show the
trajectories of the states ( , , and ) including reference
state ( , , and ). For comparison, the control
results obtained with a simple linear output feedback control
designed by linearization around origin and pole placement
located at ( 5, 6, 15, 16) for both controller and observer
are also shown in Figs. 2–5. From the simulation results, the
performance of the proposed fuzzy controller is obviously
better than that of the linear controller.

V. CONCLUSION

In this study, a fuzzy model reference tracking control
scheme has been proposed. Based on the T–S fuzzy model, a
fuzzy observer based fuzzy controller is developed to reduce the
tracking error as small as possible by minimizing the attenua-
tion level . Furthermore, the stability of the closed loop non-
linear systems is discussed in this study. If all state variables are
available, a state feedback tracking control design is also
developed.

The advantage of proposed tracking control design is that
only a simple fuzzy controller is used in our approach without
feedback linearization technique and complicated adaptive
scheme. In the proposed fuzzy control method, the outcome
of the fuzzy tracking control problem is parameterized in
terms of a LMIP. The LMIP can be solved very efficiently by
LMI optimization toolbox in Matlab [25] to complete the fuzzy
tracking control design. A simple and systematic algorithm
based on LMI optimization techniques is developed to solve
the fuzzy tracking control problem. A simulation example
is given to illustrate the design procedures and tracking perfor-
mance of the proposed method.

APPENDIX

If all state variables are available, the following fuzzy con-
troller is employed to deal with the above control system design.

Control Rule

If is and and is

then for (35)

Hence, the overall fuzzy controller is given by

(36)

After manipulation, the augmented system can be expressed
as the following form:

(37)

where

(38)

Similarly, let us consider the tracking performance re-
lated to tracking error as follows:

(39)
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where , is a symmetric positive definite
weighting matrix

(40)

The purpose of this study is to determine a fuzzy controller in
(36) for the augmented system in (37) with the guaranteed
tracking performance in (39) for all and the closed-loop
system

(41)

is quadratically stable.
Then, we obtain the following results.
Theorem 3: In the nonlinear system (37), if is

the common solution of the following matrix inequalities:

(42)

for , , then the tracking control perfor-
mance in (39) is guaranteed for a prescribed.

Proof: The proof is similar to that of Theorem 1.
Theorem 4: In the nonlinear closed-loop system (41), if there

exists the common solution for (42), then the
closed-loop system in (41) is quadratically stable.

Proof: The proof is similar to that of Theorem 2.
Similarly, to obtain better tracking performance, the tracking

control problem can be formulated as the following minimiza-
tion problem so that the tracking performance in (39) is
reduced as small as possible

subject to and (42). (43)

For the convenience of design, we assume

(44)

By substituting (44) into (42), we obtain

(45)

where

By the Schur complement [23], (45) is equivalent to

(46)

where

By the same argument as above section, we can solve,
and by the following two-step procedures.

In the first step, note that (46) implies that

(47)

With and , (47) is equivalent to

(48)

By the Schur complements, (48) is equivalent to the following
LMIs.

(49)

The parameters and (thus and
) can be obtained by solving the LMIP. (49).

In the second step, by substituting and into (46), (46)
becomes standard linear matrix inequalities (LMI’s). Similarly,
we can easily solve from (46). If there exist positive definite
solutions and in (46), the closed loop system is stable
and the tracking performance in (39) can be achieved for a
prescribed attenuation level .

Recall that the attenuation level can be minimized so that
the tracking performance in (39) is reduced as small as
possible

subject to and (46).

(50)

This minimization problem can be solved by decreasing
until solutions and in (46)
can not be found.
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