
260 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 2, APRIL 2009

Fuzzy-UCS: A Michigan-Style Learning
Fuzzy-Classifier System for Supervised Learning

Albert Orriols-Puig, Jorge Casillas, and Ester Bernadó-Mansilla

Abstract—This paper presents Fuzzy-UCS, a Michigan-style
Learning Fuzzy-Classifier System specifically designed for su-
pervised learning tasks. Fuzzy-UCS is inspired by UCS, an
on-line accuracy-based Learning Classifier System. Fuzzy-UCS
introduces a linguistic representation of the rules with the aim
of evolving more readable rule sets, while maintaining similar
performance and generalization capabilities to those presented
by UCS. The behavior of Fuzzy-UCS is analyzed in detail from
several perspectives. The granularity of the linguistic fuzzy rep-
resentation to define complex decision boundaries is illustrated
graphically, and the test performance obtained with different
inference schemes is studied. Fuzzy-UCS is also compared with a
large set of other fuzzy and nonfuzzy learners, demonstrating the
competitiveness of its on-line architecture in terms of performance
and interpretability. Finally, the paper shows the advantages
obtained when Fuzzy-UCS is applied to learn fuzzy models from
large volumes of data.

Index Terms—Genetic fuzzy systems, Michigan-style learning
classifier systems, pattern classification, supervised learning.

I. INTRODUCTION

M
ICHIGAN-STYLE Evolutionary Learning Systems (in-

troduced by Holland in the 1970s [1], [2]), also referred

to as Learning Classifier Systems (LCSs), are machine learning

techniques that solve problems on-line by evolving a set of rules

by means of an Evolutionary Algorithm (EA). Initially designed

based on animal behavior, new developments in research on

Michigan-style LCSs—mostly due to the presentation of XCS

(originally proposed in [3] and further improved in [4]), the first

accuracy-based LCS—have led to the application of the on-line

learning architecture to solve pattern classification tasks [5], re-

inforcement learning problems [6], and function approximation

problems [7].

In the pattern recognition field, several studies and compar-

isons demonstrate the competitiveness of the performance of

LCSs with respect to other widely-used machine learning tech-

niques [5], [8]–[10], such as the decision tree C4.5 [11], the

Manuscript received July 31, 2007; revised November 30, 2007 and January
31, 2008. First published August 08, 2008; current version published April 01,
2009. This work was supported by the Ministerio de Educación y Ciencia under
Projects TIN2005-08386-C05-01 and TIN2005-08386-C05-04 and by the Gen-
eralitat de Catalunya under Grants 2005FI-00252 and 2005SGR-00302.

A. Orriols-Puig and E. Bernadó-Mansilla are with the Grup de Recerca en
Sistemes Intel�ligents, Enginyeria i Arquitectura La Salle, Universitat Ramon
Llull, 08022 Barcelona, Catalonia, Spain (e-mail: aorriols@salle.url.edu;
esterb@salle.url.edu).

J. Casillas is with the Department of Computer Science and Artifi-
cial Intelligence, Universidad de Granada, 18071 Granada, Spain (e-mail:
casillas@decsai.ugr.es).

Digital Object Identifier 10.1109/TEVC.2008.925144

support vector machine SMO [12], and the instance based algo-

rithm IBk [13]. LCS’s success is due to three main factors: the

rule-based representation, the generalization capabilities, and

the on-line learning scheme. That is to say, starting from a set

of rules approximately created from the first input examples, the

system estimates the quality of these rules on-line and the ge-

netic search incrementally evolves this rule set with the aim of

obtaining a set of maximally general and accurate rules which

together cover all the input space. Besides, the population-based

architecture of LCSs permits their parallelization for use on su-

percomputing resources [14], making them also competitive for

mining large data sets.

The high competence of LCSs to perform pattern recognition

tasks has been impaired to some extent by the large number of

semantic-free rules that are evolved. LCSs represent continuous

variables by means of interval-based rules; i.e., each rule rep-

resents a codification of a hyper rectangle in the feature space

which is usually coded by using real numbers. This results in

large sets of overlapped rules which together define the decision

boundaries [15]. Thus, this knowledge representation is barely

legible to human experts. Some authors have tried to solve this

problem by designing rule set reduction algorithms [16]–[18].

Although some of these algorithms allow for a considerable re-

duction of the rule sets, slightly degrading the test performance,

the semantic-free descriptive representation may continue ham-

pering the readability of the rule set.

In recent years, there has been an increasing interest in

Genetic Fuzzy Rule-Based Systems (GFRBSs) [19]—which

mainly involve the use of evolutionary algorithms to learn

fuzzy rules—since they provide a robust, flexible, and pow-

erful methodology to deal with a highly legible knowl-

edge representation. As a result, the first Michigan-style

Learning Fuzzy-Classifier Systems (LFCSs) have been pro-

posed [20]–[26], most of them applied to solve reinforcement

learning and process control tasks. However, while most of the

current nonfuzzy Michigan-style LCSs are accuracy-based, the

fuzzy approaches usually follow a strength-based model, in

which classifiers are strengthened during the learning process.

In this paper, we address the interpretability problem in LCSs

and propose Fuzzy-UCS, an accuracy-based Michigan-style

LFCS that works under a supervised learning paradigm. For

this purpose, we use UCS [5] as starting point. UCS is an

LCS derived from XCS and specialized for pattern recognition

tasks, which has shown to be highly competitive with respect

to other machine learning techniques. Fuzzy-UCS replaces the

interval-based representation with a linguistic representation

of the rules, and redefines the majority of UCSs’ components

to deal with fuzzy rules. The system learns incrementally from

1089-778X/$25.00 © 2008 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 08:01 from IEEE Xplore. Restrictions apply.

ORRIOLS-PUIG et al.: MICHIGAN-STYLE LEARNING FUZZY-CLASSIFIER SYSTEM FOR SUPERVISED LEARNING 261

a stream of examples, which are used to adjust the quality

estimate of the fuzzy rules. Also, a steady-state niched genetic

algorithm [27], [28] is applied periodically to create promising

new rules. At the end of the learning, the system provides a set

of maximally general and accurate rules which may present

overlapping conditions.

The remainder of this paper is organized as follows. Section II

briefly presents the Rule-Based Evolutionary Algorithms, dis-

cusses the main characteristics of Michigan and Pittsburgh-style

LCSs, introduces accuracy-based LCSs (focusing on UCS) and

reviews some of the Michigan-style LFCS proposed in the lit-

erature. Section III gives a detailed description of the proposed

Fuzzy-UCS algorithm. The Section II analyzes the limitations

that a linguistic representation may impose, and compares three

inference schemes proposed in Fuzzy-UCS. Section V makes

an extensive comparison of the Fuzzy-UCS representation

with a set of GFRBS and general-purpose machine learning

techniques, analyzing the differences between the learners in

terms of test performance and interpretability of the models.

Section VI exploits the on-line architecture of Fuzzy-UCS to

mine a large data set, the 1999 KDD Cup intrusion detection

data set. Finally, Section VII gives a summary of the work and

future lines of research.

II. FRAMEWORK: ON-LINE ACCURACY-BASED LCSs

This section introduces the different rule-based evolutionary

learning models, i.e., machine learning techniques that use Evo-

lutionary Algorithms (EAs) to evolve the rule-based knowledge.

We briefly describe the different strategies proposed in the lit-

erature, and focus on the accuracy-based Michigan-style LCSs.

In this context, we introduce UCS [5], an LCS designed for su-

pervised learning by which Fuzzy-UCS is inspired. Finally, we

review the related work on Learning Fuzzy-Classifier Systems.

A. Rule-Based Evolutionary Learning Systems

Since Holland presented the first architecture of Learning

Classifier Systems in 1976 [1], later implemented in 1978 [2],

research on LCSs has been conducted from two different per-

spectives: the Pittsburgh-style LCSs [29], and the Michigan-

style LCSs [1], [2]. Both types of algorithms are briefly de-

scribed as follows:

1) Pittsburgh-style LCSs follow the essence of evolutionary

algorithms. Every individual is a set of production rules

that represent a solution for the given problem. The quality

of each individual is estimated according to the number of

examples correctly predicted and the rule’s generalization.

All the solutions compete in the population. The genetic

search is usually driven by a generational genetic algorithm

[27], [28], whose operators are adapted to deal with rule

sets. At the end of the run, the fittest individual is selected

for classifying new test examples.

2) Michigan-style LCSs are cognitive systems that combine

a credit-apportionment algorithm, usually based on re-

inforcement learning [30], with evolutionary algorithms

[27]. Every individual is a single production rule, whose

quality is evaluated on-line by the cognitive system. An

evolutionary algorithm is applied periodically to the pop-

ulation to discover promising new rules. At the end of the

run, all the rules in the population are grouped together to

classify new test instances.

The two strategies mainly differ in a) the individual represen-

tation, b) the evaluation of the individuals, and c) the application

of the EA.

Pittsburgh-style LCSs represent each individual as a set

of rules; thus, the genetic operators evolve individuals that

classify all the input space. On the other hand, Michigan-style

LCSs codify each individual as a single production rule. Con-

sequently, each rule (also referred to as classifier), is an expert

classifier in the region of the search space that it covers. Thus,

since all the evolved classifiers collaborate to cover all the

feature space, a methodology for combining classifiers with

overlapping conditions is required.

To evaluate an individual, Pittsburgh-style LCSs classify all

the input examples in the training data set. Thus, the computa-

tional resources needed to evaluate all the rule set increase lin-

early with the number of instances in the training data set. This is

one of the main problems detected for Pittsburgh-style LCSs, es-

pecially when used to mine big amounts of data. On the contrary,

Michigan-style LCSs evaluate the population on-line by inter-

acting with an environment which provides an example at each

learning iteration. Consequently, the number of instances in the

data set does not influence the cost of performing a learning it-

eration.

The application of the evolutionary algorithm also differs in

both approaches. Typically, in Pittsburgh-style LCSs, a gener-

ational EA is applied at the rule set level: selection, crossover,

and mutation are adapted to deal with individuals codified as

rule sets. In Michigan-style LCSs, a steady-state EA works at

the rule level, since individuals codify a single rule. The con-

sequence of the latter approach is that the EA must co-evolve a

diverse set of individuals which together provide a solution to

the problem.

Recently, new proposals that hybridize Michigan- and Pitts-

burgh-style LCSs have been proposed. For example, in [31] a

hybrid of both LCSs styles is presented to extract rule sets for

classification problems.

B. UCS: An Accuracy-Based Michigan-Style LCS

In recent years, many implementations of Michigan-style

LCSs have been proposed. Most of them use a reinforcement

learning procedure to evaluate the rule set on-line. These ap-

proaches can be grouped in two categories, depending on how

they compute the rule’s fitness: a) strength-based LCSs and

b) accuracy-based LCSs. The first practical implementations of

LCSs corresponded to strength-based LCSs. In these systems,

rules’ fitness was based on the strength, i.e., an estimate of the

reward that the system would receive if the action of the rule

was performed. However, several limitations were identified in

this approach such as the presence of over-general classifiers,

due to the difficulty of distinguishing them from accurate

classifiers [32].

During this period of increasing research on LCSs, Wilson

presented XCS [3], [4] which came to solve the typical prob-

lems of strength-based LCSs with the idea of basing fitness on

the accuracy of the reward prediction instead of on the reward

itself. This means that the evolutionary algorithm searches

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 08:01 from IEEE Xplore. Restrictions apply.

262 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 2, APRIL 2009

for rules that are accurate in their prediction, regardless of

the expected reward of each rule. This new architecture also

brought another view of the kind of rules that need to be

evolved. Whilst strength-based LCSs only need to maintain all

the highly-rewarded rules (i.e., rules that receive a high payoff),

accuracy-based LCSs such as XCS need to create all possible

classifiers with minimum prediction error, regardless of the

payoff they receive.

Since the introduction of XCS, a great amount of research

has been conducted on accuracy-based LCSs, resulting in dif-

ferent LCSs with a core architecture inherited from XCS. One

of the most prominent proposals is UCS [5], which inherits

the main components of XCS, but specifies them for super-

vised learning tasks. In [5] and [33], UCS was able to overcome

the fitness dilemma [9] detected in XCS and to achieve accu-

rate models quicker than XCS; moreover, UCS reached higher

accuracy rates in imbalanced problems and multi-class prob-

lems. The on-line architecture enabled learning from a stream

of examples, without going through the whole data set in each

learning iteration. This feature is really useful for learning in-

crementally from large data sets, as shown later in this paper.

UCS works as a model-free on-line learner. For each input

example with its associated output , UCS forms the match

set [M], which consists of all the classifiers in the population

[P] with their matching condition . The next steps depend on

whether the system is on exploration (or training) mode or ex-

ploitation (or test) mode. Under exploration mode, the system

creates the correct set [C] with all classifiers in [M] that ad-

vocate . If [C] is empty, the covering operator is triggered. It

creates a new rule whose condition is generalized from and

which predicts the class . Then, the parameters of the all rules

in [M] are updated depending on whether they predicted cor-

rectly. Eventually, a genetic algorithm is triggered on the cor-

rect set [C], creating two new classifiers by means of crossover

and mutation. The offspring are introduced in the population,

and other classifiers are removed from the population if there

is no room for the new rules. The combination of niched-based

selection and population-based replacement is mainly respon-

sible for the generalization pressure in UCS. Under exploitation

mode, each classifier in [M] emits a vote weighted by the fitness

of the rule for the class it predicts. The most voted class is se-

lected as output.

C. Related Work on Learning Fuzzy-Classifier Systems

Several authors have proposed strength-based Michigan style

LFCS, which have basically been applied to solve reinforcement

learning and control tasks. Valenzuela-Rendón [20] introduced

the first Michigan-style LFCS, which consisted of a fixed-size

fuzzy-rule set and a fuzzy message list. The system was applied

to solve function approximation tasks. The quality of the fuzzy

rules was given according to the accuracy in which the output

was estimated. Thus, the initial approach was not a pure rein-

forcement learning architecture. The system was later enhanced

with true reinforcement learning [21].

Several strength-based Michigan-style LFCS have been pro-

posed since [21]. Parodi and Bonelli [22] presented an LFCS

that automatically learned fuzzy relations, fuzzy membership

functions, and fuzzy weights. The fitness (strength) of each rule

was used for a double purpose. First, it served to compute the

selection and replacement probability of the rule. Second, it per-

mitted stronger rules to participate more soundly in the infer-

ence process.

Furuhashi et al. [23] designed an LFCS that used multiple

stimulus-response fuzzy rules operating in tandem. The system

was applied to a control task in which a simulated ship had to

reach a target without moving the obstacles found on its way.

The same problem was addressed by Nakaoka et al. by using a

single rule list [34].

Velasco [24] defined a new LFCS architecture designed for

fuzzy process control. The system introduced the so-called

limbos, i.e., a special workspace where new rules were gener-

ated and evaluated before being used in the real process plant.

In this way, the system avoided using poorly-evaluated rules in

the control system.

Ishibuchi et al. [25] designed one of the first proposals of

LFCS for pattern classification. They used a fixed-size rule set

where don’t care symbols were defined to permit generalization

in the fuzzy rules. A certainty factor, derived from a heuristic

procedure prior to fitness evaluation, together with the predicted

class formed the consequent of the rule. An evolutionary algo-

rithm, which operated only on the rule antecedent, was respon-

sible for creating promising new rules. Recently, a hybridiza-

tion of Pittsburgh-style and Michigan-style LCSs has been pre-

sented by two of the aforementioned authors [35], in which a

single iteration of a Michigan-style LCS—i.e., rule selection,

generation, and replacement— is applied to each individual of

a Pittsburgh-style rule set.

Finally, the classic “competition versus cooperation” problem

in genetic fuzzy systems was addressed in Bonarini’s work

[36], [37]. Bonarini proposed a Michigan-style LCS called

ELF, which faced the dilemma between the desired cooper-

ation among fuzzy rules that match a given input state and

the competition of these rules in the evolutionary algorithm.

In ELF, the rule set was divided into several subpopulations,

each one with the same antecedent. Then, the rules of different

subpopulations cooperated to produce the control action, whilst

the members of each subpopulation competed with each other.

Moreover, ELF controlled the instability of general rules that

participated in different subpopulations by providing each

rule a reinforcement normalized on the difference between

the maximum and the minimum reinforcement obtained by

the subpopulation to which the rule belongs. In this way, ELF

overcame some of the problems of strength-based LCSs. ELF

was applied to several reinforcement learning problems, such

as the coordination of autonomous agents.

All the LFCS described through this section are strength-

based systems. In reinforcement learning, the first successful

accuracy-based fuzzy rule-based system with generalization ca-

pability was proposed in [26]. To the best of our knowledge,

no accuracy-based LFCS specifically designed for classification

has been proposed.

In our system, we take an accuracy-based approach to benefit

from the advantages that these types of systems have introduced

to LCSs, which are summarized as follows.

• Accuracy-based LCSs can distinguish over-general from

accurate rules [38].

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 08:01 from IEEE Xplore. Restrictions apply.

ORRIOLS-PUIG et al.: MICHIGAN-STYLE LEARNING FUZZY-CLASSIFIER SYSTEM FOR SUPERVISED LEARNING 263

Fig. 1. Schematic illustration of Fuzzy-UCS. The run cycle depends on the type of run: exploration (training) or exploitation (test).

• There are theoretical analyses that support the theory that,

for binary representation, LCSs such as XCS will evolve a

rule set with maximally-general and highly accurate rules

if certain conditions are met [9], [39], [40]. Although sim-

ilar analyses in the continuous space are lacking, the pos-

itive conclusions extracted for the binary representation

promote the use of Michigan-style LCSs.

Moreover, we have designed our system to solve classifica-

tion tasks. For this purpose, our system is inspired by UCS,

one of the most significant LCSs for supervised learning. In

Section III we introduce the system, which is addressed as

Fuzzy-UCS.

III. DESCRIPTION OF FUZZY-UCS

Fig. 1 schematically illustrates Fuzzy-UCS. The system

works in two different modes: exploration or training and ex-

ploitation or test. In the exploration mode, Fuzzy-UCS seeks to

evolve a maximally general rule set that minimizes the training

error. In the exploitation mode, Fuzzy-UCS uses the evolved

knowledge to infer the class of unlabeled examples. A concise

description of the system is provided below.

A. Knowledge Representation

Fuzzy-UCS evolves a population [P] of classifiers which

jointly represent the solution to a problem. Each classifier con-

sists of a rule whose condition is in conjunctive normal form

and a set of parameters. The fuzzy rule follows the structure

(1)

where each input variable is represented by a disjunction of

linguistic terms or labels . In our exper-

iments, all input variables share the same semantics, which are

defined by means of triangular-shaped fuzzy membership func-

tions. Note that this representation intrinsically permits general-

ization since each variable can take an arbitrary number of lin-

guistic terms. The consequent of the rule indicates the class

which the rule itself predicts. is a weight that

denotes the soundness with which the rule predicts the class .

These types of rules with a weight in the consequent are known

as fuzzy rules of type II [19].

The matching degree of an example with a classi-

fier is computed as follows. For each variable , we com-

pute the membership degree for each of its linguistic terms, and

aggregate them by means of a T-conorm (disjunction). We en-

able the system to deal with missing values by considering that

if the value for the input variable is not

known. Then, the matching degree of the rule is determined

by the T-norm (conjunction) of the matching degree of all the

input variables. In our implementation, we used a bounded sum

as T-conorm and the product as T-norm.

Note that, if the fuzzy partition guarantees that the addition of all

membership degrees is greater than or equal to 1—the member-

ship functions used in our experiments satisfy this condition—,

the selected T-norm and T-conorm allow for a maximum gen-

eralization. Therefore, an input variable consisting of two

consecutive linguistic terms will result in a matching degree of

if the matching of with both linguistic terms is

greater than zero; thus, this choice supports the absence of the

variable .

Each classifier has four main parameters: 1) the fitness ,

which estimates the accuracy of the rule; 2) the correct set size

cs, which averages the sizes of the correct sets in which the

classifier has participated (see Section III-B); 3) the experience

exp, which computes the contributions of the rule to classify the

input instances; and 4) the numerosity num, which counts the

number of copies of the rule in the population.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 08:01 from IEEE Xplore. Restrictions apply.

264 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 2, APRIL 2009

B. Learning Interaction

The learning interaction is inherited from UCS (see

Section II-B) and adapted to deal with fuzzy rules. For

this purpose, three main differences with respect to UCS need

to be considered: the matching calculation, the rule structure,

and the inference methodology.

1) Matching calculation. In UCS, the attributes are repre-

sented by intervals , and thus, a rule matches an input

example if . Therefore, the matching

function returns a binary output indicating whether the

classifier matches the example or not. In Fuzzy-UCS, a

rule matches the input example with a matching degree

, where . High values of

indicate that the prediction of rule is fairly accurate.

2) Rule structure. In UCS, a rule predicts a single class with

a certain fitness or quality. Consequently, the population

may contain two rules with the same antecedent advo-

cating different classes. To avoid this situation, rules in

Fuzzy-UCS maintain a weight for each class that indi-

cates the soundness in which this class is predicted. The

class advocated by the rule is the class with the maximum

weight.

3) Inference methodology. In UCS, all the classifiers in [M]

emit a fitness-weighted vote for the class they advocate,

and the most voted class is chosen as the predicted output.

In Fuzzy-UCS, different fuzzy-logic inference methods

can be used to infer the class from the final fuzzy rule set

[41]. Section III-E presents the three types of inference

used.

The learning interaction of Fuzzy-UCS was redesigned con-

sidering these differences. First, the match set [M] is created

with all the classifiers in [P] that have a matching degree

greater than zero.1 Next, in exploration mode, the classifiers in

[M] that advocate the class form the correct set [C]. In exploit

mode, the class is inferred using one of the three methodologies

detailed in Section III-E, and no further action is taken.

If none of the classifiers in [C] match with the maximum

matching degree, the covering operator is triggered, which cre-

ates the classifier that maximally matches the input example.

That is to say, for each attribute of the condition, we aggregate

the linguistic term that maximizes the matching with the

input value . If is not known, we randomly select a lin-

guistic term and aggregate it to the attribute. Moreover, we intro-

duce generalization by permitting the addition of other linguistic

terms with probability . The initial values of the new classi-

fiers are initialized according to the information provided by the

current examples. Specifically, the fitness, the numerosity, and

the experience are set to 1. The fitness of a new rule is set to 1

to give it opportunities to take over. Nonetheless, two important

1We do not require that rules have a matching degree greater than a certain
threshold to be in [M], as sometimes done in regression [26]. In regression, the
output is formed by means of aggregating rules with different actions. Thus, a
minimum matching degree with the input may be required to participate in this
process. However, in Fuzzy-UCS, the rules in [C] advocate the same class. In
this way, Fuzzy-UCS avoids aggregating rules of different classes in the learning
process, and so, a matching threshold appears to be less necessary.

aspects should be noted. First, as the new classifiers participate

in new match sets, their fitness and other parameters are quickly

updated to their average values, and so, the initial value is not

crucial. Second, as specified in Sections III-CF, the system pre-

vents young classifiers from having a strong presence in the ge-

netic selection, and protects them from an early deletion. At the

end of the covering process, the new classifier is inserted in the

population, deleting another one if there is not room for it.

C. Parameters Update

At the end of each learning iteration, Fuzzy-UCS updates the

parameters of the rules in [M]. First, the experience of the rule

is incremented according to the current matching degree:

(2)

Next, the fitness is updated. For this purpose, each classifier

internally maintains a vector of classes , each of

them with an associated weight . Each weight

indicates the soundness with which rule predicts class for an

example that fully matches this rule. These weights are incre-

mentally updated during learning as explained as follows. The

class advocated by the rule is the class with the maximum

weight . Thus, given that the weights may change due to suc-

cessive updates, the class that a rule predicts may also vary.

To update the weights, we first compute the sum of correct

matchings for each class :

(3)

where

if

otherwise.
(4)

Then, is used to compute the weights :

(5)

For example, if a rule only matches examples of class , the

weight will be 1 and the remaining weights 0. Rules that

match instances of both classes will have weights ranging from

0 to 1. Note that the sum of all the weights is 1.

The fitness is then computed from the weights with the aim

of favoring classifiers that match examples of a single class. To

carry this out, we use the following formula [42]:

(6)

where we subtract the values of the other weights from the

weight with maximum value . The fitness is the value

used as the weight of the rule [see (1)]. Note that this for-

mula can result in classifiers with zero or negative fitness (for

example, if the number of classes is greater than 2 and the class

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 08:01 from IEEE Xplore. Restrictions apply.

ORRIOLS-PUIG et al.: MICHIGAN-STYLE LEARNING FUZZY-CLASSIFIER SYSTEM FOR SUPERVISED LEARNING 265

weights are equal). Finally, the correct set size of all the classi-

fiers in [C] is calculated as the arithmetic average of the sizes of

all the correct sets in which the classifier has participated.

Finally, the rule predicts the class with the highest weight

associated . Thus, the class predicted is not fixed when the

rule is created, and can change as the parameters of the rule are

updated (especially during the first parameters updates).

D. Discovery Component

Fuzzy-UCS uses a steady-state niched genetic algorithm

(GA) [43] to discover new promising rules. The GA is applied

to the classifiers that belong to [C]. Thus, the niching is intrin-

sically provided since the GA is applied to rules that match the

same input with a degree greater than zero and advocate the

same class.

The GA is triggered when the average time from its last ap-

plication upon the classifiers in [C] exceeds the threshold .

It selects two parents and from [C] using proportionate

selection [28], where the probability of selecting a classifier

is

(7)

where is a constant that fixes the pressure toward maxi-

mally accurate rules (in our experiments, we set). Rules

with negative fitness are not considered for selection. The two

parents are copied into offspring and , which undergo

crossover and mutation with probabilities and respectively.

The crossover operator crosses the antecedents of the rules by

two points. The mutation operator checks whether each variable

has to be mutated with probability . If so, three types of muta-

tion can be applied: expansion, contraction, or shift. Expansion

chooses a linguistic term not represented in the corresponding

variable and adds it to this variable; thus, it can be applied only

to variables that do not have all the linguistic terms. Contraction

selects a linguistic term represented in the variable and removes

it; so, it can be applied only to variables that have more than one

linguistic term. By doing so, we avoid generating rules that do

not match any example. Shift changes a linguistic term for its

immediate inferior or superior.

The new offspring are introduced into the population. First,

each classifier is checked for subsumption [4] with their par-

ents. Subsumption is a mechanism that prevents the creation

of classifiers with specific conditions if there are more general

and accurate classifiers in the population that cover the same re-

gion of the feature space. The process works as follows. If any

parent’s condition subsumes the condition of the offspring (i.e.,

the parent has, at least, the same linguistic terms per variable

than the child), and this parent is highly accurate

and sufficiently experienced , the offspring is not

inserted and the numerosity of the parent is increased by one.

Otherwise, we check [C] for the most general rule that can sub-

sume the offspring. If no subsumer can be found, the classifier

is inserted in the population.

If the population is full, excess classifiers are deleted from

[P] with probability proportional to the correct set size esti-

mate . Moreover, if the classifier is sufficiently experienced

and the power of its fitness is signifi-

cantly lower than the average fitness of the classifiers in [P]

(where), its dele-

tion probability is further increased. That is, each classifier has

a deletion probability of

(8)

where

if and

otherwise.
(9)

Thus, the deletion algorithm balances the classifier’s allocation

in the different correct sets by pushing toward deletion of rules

belonging to large correct sets. At the same time, it favors the

search toward highly fit classifiers, since the deletion probability

of rules whose fitness is much smaller than the average fitness

is increased.

E. Fuzzy-UCS in Test Mode

The aim of Fuzzy-UCS is to evolve a minimum set of

maximally accurate rules that cooperate to cover all the input

space. To achieve high classification accuracy, we need to

define effective reasoning methods that use the information

of the rule set to infer the class of new input examples. As

these reasoning methodologies may not use all the rules in the

inference process, rule set reduction techniques can be applied

to remove the rules that are not considered for the reasoning

technique. Herein, we discuss two different inference schemes.

Furthermore, we present a reduction method for each one of

these inference techniques that permits to reduce the number

of rules in the final population without decreasing training

accuracy. Finally, we also introduce a third rule set reduction

mechanism which allows for higher reductions but does not

guarantee that the reduced rule set results in the same training

performance as the original.

1) Class Inference: Once Fuzzy-UCS has evolved a popu-

lation of highly general and accurate rules, this population is

used to infer the class of new examples. Given a new unla-

beled instance , several rules predicting different classes can

match (with different degrees) this instance. Thus, the knowl-

edge contained in the set of matching classifiers has to be com-

bined to decide the most likely output. For this purpose, sev-

eral reasoning methodologies have been analyzed in for fuzzy-

rule based systems [41], [44]. Here, we adapt two inference

approaches to Fuzzy-UCS. In both cases, only experimented

rules are considered in the inference, where

is a user-set parameter that indicates the minimum ex-

perience that a rule must have to participate in the inference

process.

Weighted average inference. In this approach, all the expe-

rienced rules vote to infer the output. Each rule emits a vote

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 08:01 from IEEE Xplore. Restrictions apply.

266 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 2, APRIL 2009

for class it advocates, where . The votes

for each class are added:

(10)

and the most-voted class is returned as the output.

Action winner inference. This approach selects the rule

that maximizes , and chooses the class of the rule

as output [25]. Thus, the knowledge of overlapping rules is not

considered in this inference scheme.

2) Rule Set Reduction: At the end of the learning process,

the population is reduced to obtain a minimum set of rules. We

designed three types of reduction, which use one of the inference

schemes presented above.

Reduction based on weighted average. Under the weighted

average scheme, we reduce the final population by removing all

the rules that a) are not experienced enough or

b) have zero or negative fitness.

Reduction based on action winner. If action winner infer-

ence is used, only rules that maximize the prediction vote for a

training example are necessary. Thus, after training, this reduc-

tion scheme infers the output for each training example. The

rule that maximizes the vote for each example is copied to

the final population.

Reduction based on the most numerous and fittest rules.

This reduction tries to minimize the rule set size by selecting

the most numerous and accurate rules for the final population.

The methodology is a hybrid of the previous approaches. The

reduction process is analogous to the reduction based on action

winner, but now, the rule that maximizes

for each input example is copied to the final population. By in-

cluding the numerosity in the vote, we favor the most numerous

and accurate rules. As this reduction may copy overlapping rules

into the final population, weighted average is used to infer the

class of a new example.

In Section III-F, we will analyze the differences between

these inference and reduction techniques. To facilitate the

notation, these schemes will be addressed as: weighted average

inference (wavg), action winner inference (awin), and most

numerous and fittest rules inference (nfit).

F. Interpretability of Weighted Fuzzy Classification Rules

The inclusion of weights to express the importance degree of

fuzzy classification rules, as Fuzzy-UCS does, has been studied

from different points of view. In general, the inclusion of addi-

tional parameters in the fuzzy rules, such as weights, results in

a decrease of the interpretability degree of the learned knowl-

edge. However, it is interesting to discuss to which degree inter-

pretability is lost, and to what extend accuracy can be improved.

Nauck and Kruse [45] analyze the effect of rule weights in

fuzzy rule-based systems for regression problems. They argue

that rule weights may hinder the interpretability of such sys-

tems, showing that rule weights could be replaced by the modi-

fication of the membership functions of fuzzy rules. In fact, the

use of rules with different importance degrees could hinder the

Fig. 2. (a) Domain of the tao problem and (b) decision boundaries obtained by
UCS. UCS achieved 99.80% training accuracy and evolved 1230 rules.

interpolative reasoning made by the inference engine when con-

tinuous outputs are returned in regression problems.

In data classification tasks, however, other analyses empha-

size the benefit of using rule weights as a mechanism to improve

the accuracy while preserving good interpretability. Indeed,

Ishibuchi and Nakashima [46] discuss the importance of rule

weights (certainty degrees) from a completely different point of

view. They point out that the use of weights allows the system

to reach a high degree of accuracy with fixed membership

functions since these certainty degrees effectively modify the

decision areas. Therefore, they advocate the use of weights to

improve accuracy instead of modifying the membership func-

tions of the given linguistic terms. They also show that weights

play an important role when the fuzzy rule-based classification

system collects rules of different generality degrees, as in the

case of our Fuzzy-UCS algorithm.

Finally, it is worth mentioning that the use of weighted fuzzy

rules in classification is a common practice frequently referred

to in specialized literature [41], [42], [46]–[48].

IV. KNOWLEDGE REPRESENTATION AND DECISION

BOUNDARIES

So far, we have described the Fuzzy-UCS classifier system

with a descriptive or linguistic representation of fuzzy rules.

Linguistic rules are highly interpretable since they share

common semantics; however, as this representation implies the

discretization of the feature space, a single rule may not have

the required granularity to define the class boundary of a given

domain accurately. Thus, Fuzzy-UCS evolves a set of overlap-

ping fuzzy-rules around the decision boundaries which match

examples of different classes, and the output depends on how

the reasoning mechanism combines these overlapping rules.

Fuzzy-UCS includes three inference and reduction schemes

which lead to a trade-off between the amount of information

used for the inference process (i.e., the precision of the predic-

tion) and the size of the rule set. Consequently, not only the

linguistic representation but also the inference and reduction

schemes chosen may impose a maximum limit on the accuracy

rate that the system can reach.

This section studies the interpretability-performance

trade-off in Fuzzy-UCS. We illustrate how the three infer-

ence schemes approximate the decision boundaries of an

artificial problem and compare their differences in terms of ac-

curacy and interpretability. Moreover, we empirically analyze

the sensitivity of Fuzzy-UCS to different configurations, high-

lighting its robustness to most of the configuration parameters.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 08:01 from IEEE Xplore. Restrictions apply.

ORRIOLS-PUIG et al.: MICHIGAN-STYLE LEARNING FUZZY-CLASSIFIER SYSTEM FOR SUPERVISED LEARNING 267

Fig. 3. Decision boundaries obtained with weighted average inference and (a) 5, (b) 10, (c) 15, and (d) 20 linguistic terms per variable. Fuzzy-UCS achieved
{82.95%, 91.85%, 96.68%, 97.15%} training accuracy and evolved {112, 441, 618, 763} rules, respectively.

Fig. 4. Decision boundaries obtained with action winner inference and (a) 5, (b) 10, (c) 15, and (d) 20 linguistic terms per variable. Fuzzy-UCS achieved {83.24%,
91.19%, 94.74%, 95.57%} training accuracy and evolved {17, 78, 144, 200} rules, respectively.

Fig. 5. Decision boundaries obtained with most numerous and fittest rules inference and (a) 5, (b) 10, (c) 15, and (d) 20 linguistic terms per variable. Fuzzy-UCS
achieved {88.31%, 91.85%, 96.68%, 97.15%} training accuracy and evolved {15, 30, 52, 65} rules, respectively.

A. Decision Boundaries: Study on an Artificial Domain

We first analyzed the three inference schemes of Fuzzy-UCS

on a case study. We also included UCS with interval-based rep-

resentation [5], [33] in the analysis. We graphically studied how

the three inference schemes approximated the decision bound-

aries of an artificially designed domain with respect to interval-

based UCS. We chose a two-dimensional problem to facilitate

the visualization: the tao problem [49] [see Fig. 2(a)]. The input

range of the two variables of the tao problem is . This

problem presents curved-shaped boundaries, whose approxima-

tion poses a challenge to the linguistic fuzzy representation.

Moreover, we compared the training accuracies, as well as the

size of the evolved rule set. This analysis was restricted to the

features of the tested problem, and only estimated the training

error; thus, our aim was not to extract general conclusions, but to

provide an intuitive visualization of the decision boundaries de-

fined by each inference scheme. This analysis is complemented

in Section IV-B, where the three inference schemes are com-

pared in a set of real-world problems.

We configured UCS as: , ,

, , , ,

, , . Similar parameters were

used for Fuzzy-UCS: , , ,

, , , ,

, and , We initialized the population with

quite specific rules since the problem has only two dimensions

and a high density of instances. Fig. 2(b) depicts the boundaries

evolved by interval-based UCS. Figs. 3–5 report the decision

boundaries for Fuzzy-UCS with weighted average inference

(wavg), action winner inference (awin), and most numerous

and fittest rules inference respectively (nfit). In each case, we

experimented with 5, 10, 15, and 20 linguistic terms per vari-

able; the grid in the plots indicates the partitions in the feature

space made by the cross-points of the triangular membership

functions associated to the different fuzzy sets. The training

accuracies achieved and the sizes of the populations evolved

are summarized in the captions of the figures. The results are

averages over ten runs with different seeds.

Several observations can be drawn from the evolved decision

boundaries. First, the results show the generalization capabili-

ties of all learners. The rules tend to expand as much as pos-

sible while they are accurate, covering regions in the feature

space where there are no examples. This generalization pressure

is mostly due to subsumption, which replaces the offspring for

more general and accurate rules when possible. Thus, this oper-

ator gives more strength to highly general and accurate rules.

Interval-based UCS reached the maximum accuracy

among all learners. It evolved a population consisting of

1230 rules which accurately defined the decision boundaries

[see Fig. 2(b)], with 99.8% training accuracy. The accuracy

obtained by Fuzzy-UCS depended on the number of linguistic

terms per variable (see the models built in Figs. 3–5). With

5 linguistic labels per variable, Fuzzy-UCS could not discover

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 08:01 from IEEE Xplore. Restrictions apply.

268 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 2, APRIL 2009

TABLE I
PROPERTIES OF THE DATASETS. THE COLUMNS DESCRIBE: THE IDENTIFIER OF THE DATASET (ID.) THE NAME OF THE DATASET (DATASET), THE NUMBER OF

INSTANCES (#INST), THE TOTAL NUMBER OF FEATURES (#FEA), THE NUMBER OF REAL FEATURES (#RE), THE NUMBER OF INTEGER FEATURES (#IN), THE

NUMBER OF NOMINAL FEATURES (#NO), THE NUMBER OF CLASSES (#CL), THE PROPORTION OF INSTANCES OF THE MINORITY CLASS (%MIN), THE PROPORTION

OF INSTANCES OF THE MAJORITY CLASS (%MAJ), THE PROPORTION OF INSTANCES WITH MISSING VALUES (%MISINST), AND THE PROPORTION OF FEATURES

WITH MISSING VALUES (%MISATT)

the two inner concepts of the tao problem regardless of the

inference method used. The models only defined one linear

class boundary that did not fit the curved boundary of the do-

main accurately. As the number of linguistic terms per variable

increased, the boundaries were defined more accurately. With

20 linguistic terms per variable, the three types of inference

achieved high training performances.

The models evolved by Fuzzy-UCS with the three types of in-

ference differed in the shape of the decision boundaries and the

rule set size. Weighted average inference defined smooth bound-

aries which resulted from the vote of several overlapping rules

(see Fig. 3). However, it maintained a high number of rules in

the final population. Action winner inference created more re-

duced rule sets, but the boundaries defined were more abrupt.

Note that the decision boundaries followed the partitions pro-

duced by the fuzzy membership functions, especially when 15

and 20 linguistic terms were used. This is because only the rules

that maximized the product of were kept in the final

population. Most numerous and fittest rules inference evolved

the most compact rule sets. Furthermore, the boundaries were

smoother than those obtained with action winner scheme. This

type of inference maintained the most numerous and accurate

rules in the final population. As this process could insert over-

lapping rules into the final population, the weighted average in-

ference was used to infer the class, thus forwarding the inter-

polative reasoning. For this reason the decision boundaries were

not as abrupt as those evolved by the action winner inference.

B. Comparison Among the Three Inference Schemes

This section furthers the study on the three types of inference

of Fuzzy-UCS. Specifically, we examine the trade-off between

precision and rule set size already pointed out in the previous

section for the three types of inference methodologies of Fuzzy-

UCS.

1) Methodology: We selected a collection of 20 real-world

data sets whose characteristics are summarized in Table I. All

the data sets were obtained from the UCI Repository [50], ex-

cept for tao, which was selected from a local repository [49].

The performance of the methods was measured by the test

accuracy rate, i.e., the proportion of correct predictions on pre-

viously unseen instances. We collected the evolved rule set sizes

to compare the interpretability of the three configurations of

Fuzzy-UCS. To obtain reliable estimates of these metrics, we

used a ten-fold cross validation procedure [51].

The results were statistically analyzed following the recom-

mendations pointed out in [52]. In all the analysis we used non-

parametric statistical tests to compare the results obtained by

the different learning algorithms. Parametric tests require that

the input data (in our case, the tables of results) satisfy strong

conditions, and the tests to check these conditions need large

amounts of data (i.e., large number of data sets) to be effec-

tive [53]. For this reason, nonparametric tests are recommended

[52], since they relax the requirements on the input data.

We applied multiple-comparison statistical procedures to test

the null hypothesis that all the learning algorithms performed

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 08:01 from IEEE Xplore. Restrictions apply.

ORRIOLS-PUIG et al.: MICHIGAN-STYLE LEARNING FUZZY-CLASSIFIER SYSTEM FOR SUPERVISED LEARNING 269

equivalently on average. Specifically, we used Friedman’s test

[54], [55], a nonparametric equivalent of the repeated-measures

ANOVA [56]. If Friedman’s test rejected the null hypothesis,

we used the nonparametric Nemenyi test [57] to compare all

learners to each other. The Nemenyi test defines that two results

are significantly different if the corresponding average rank dif-

fers by at least a critical difference CD computed as

(11)

where and are the number of learners and the number of

data sets respectively, and is the critical value based on the

Studentized range statistic [53]. The Nemenyi test is said to be

quite conservative, especially when a large number of learners

are compared, so that it might not detect some existent differ-

ences between learners. Therefore, we complemented the sta-

tistical analysis by comparing the performance of each pair of

learners by means of the nonparametric Wilcoxon signed-ranks

test [58]. The approximate p-values resulting from the pairwise

analysis, calculated as indicated in [53], were provided in the

analysis.

The configuration used for Fuzzy-UCS was the same as in

Section IV-A, but we set to initialize the popula-

tion with more general rules. In the remainder of this paper, we

refer to this configuration as the default configuration, since it

uses equivalent parameter values to those usually set for XCS

and UCS. Moreover, we fixed the number of linguistic terms

to 5. We did not consider a larger number of linguistic terms

since it could hinder the interpretability desired in a linguistic

representation.

2) Results: Table II shows the test accuracy and the number

of rules of the models evolved by Fuzzy-UCS with each infer-

ence scheme. The two last rows supply the average rank and

the position of each algorithm in the ranking. The ranks were

calculated as follows. For each data set, we ranked the learning

algorithms according to their performance; the learner with

highest accuracy held the first position, whilst the learner with

the lowest accuracy held the last position of the ranking. If a

group of learners had the same performance, we assigned the

average rank of the group to each of the learners in the group.

The same process was followed with the number of rules, but

in this case, the model with the lowest number of rules held the

first position of the ranking.

The multiple-comparison test rejected the hypothesis that all

learners performed the same on average at a significance level

of 0.0001. The post-hoc Nemenyi test, at a significance level

of 0.10, identified two inference schemes that performed equiv-

alently: action winner and most numerous and fittest rules in-

ferences. The weighted average inference resulted in the most

accurate models. The same significant differences were found

with the pairwise statistical analysis.

Friedman’s test also rejected the hypothesis that the popu-

lation sizes were equivalent on average at a significance level

of 0.0001 (see Table II). The post-hoc Nemenyi test, at a sig-

nificance level of 0.10, supported the hypothesis that the four

learners evolved populations with significantly different sizes.

TABLE II
COMPARISON OF THE TEST ACCURACY AND THE NUMBER OF RULES OF THE

MODELS CREATED BY FUZZY-UCS WITH WEIGHTED AVERAGE INFERENCE

(WAVG), FUZZY-UCS WITH ACTION WINNER INFERENCE (AWIN), AND

FUZZY-UCS WITH MOST NUMEROUS AND FITTEST RULES INFERENCE (NFIT)

The pairwise comparisons yielded the same conclusions. In

fact, a simple quantitative analysis highlighted the differences

in the population sizes. Fuzzy-UCS with weighted average

inference built populations that consisted of thousands of rules.

Consequently, although using a linguistic representation, this

high number of rules hampered the interpretability of the rule

set. The other two types of inference of Linguistic Fuzzy-UCS,

especially the most numerous and fittest rules inference,

resulted in populations with a moderate number of rules.

Fuzzy-UCS with most numerous and fittest rules inference built

populations that ranged from tens of to few hundreds of rules.

These results showed the performance-interpretability

trade-off in Fuzzy-UCS already pointed out in the previous sec-

tion. Weighted average inference significantly outperformed the

other two inference schemes since it combined the knowledge

of all experienced rules in the final population. As shown in the

case study of the previous section, this allowed Fuzzy-UCS to

fit complex boundaries even though the fuzzy representation

made a discretization of the feature space. Fuzzy-UCS could

approximate these boundaries by means of evolving a set of

partially overlapping fuzzy rules. However, the interpretability

of the rule set was degraded by the high number of rules.

The other two inference schemes considerably improved the

readability, since they produced large reductions of the rule

set. Nonetheless, this went against the test performance, which

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 08:01 from IEEE Xplore. Restrictions apply.

270 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 2, APRIL 2009

TABLE III
CONFIGURATIONS USED TO TEST THE SENSITIVITY OF FUZZY-UCS TO CONFIGURATION PARAMETERS

was significantly surpassed by the weighted average inference

scheme.

C. Sensitivity of Fuzzy-UCS to Configuration Parameters

In common with many competitive Michigan-style LCSs,

Fuzzy-UCS has several configuration parameters, which en-

able it to adjust the behavior of the system to evolve models

of maximal quality for particular problems. At first glance,

choosing a correct configuration may seem a crucial task only

suitable for expert users. Nonetheless, several analyses iden-

tified the robustness of Michigan-style LCSs to the majority

of configuration parameters. Actually, most of the applications

of Michigan-style LCSs used the same default parameters to

solve pattern recognition problems [5], [9], [10], [49], [59].

We consider that this robustness is also present in Fuzzy-UCS.

Therefore, we used the same default configuration to solve

the collection of real-world problems. In this section, we

empirically show the behavior of Fuzzy-UCS with different

configurations and relate this analysis to theoretical and empir-

ical studies of the sensitivity of LCSs—particularly XCS and

UCS—to configuration parameters. Theoretical and empirical

analyses of the sensitivity of LCSs2 to configuration parameters

detected two crucial parameters: (i) population initialization

[60], and (ii) fitness pressure [61]. Moreover, facetwise models

were derived to explain how the genetic algorithm could

maintain the different niches of the system [40]. The other pa-

rameters became nearly constant. Herein, we empirically show

this behavior for Fuzzy-UCS. For this purpose, we analyzed the

accuracy and size of the models evolved by Fuzzy-UCS related

to the changes of four parameters or groups of parameters:

(1) rules generalization in initialization, i.e., ; (2) fitness

pressure, i.e., ; (3) setting of the genetic algorithm, i.e., ,

, and ; and (4) deletion pressure, i.e., . We compared

different configuration settings to the default configuration

. Given the large number of configurations tested, we used

a reduced collection of data sets: bal, bpa, gls, h-s, irs, pim, tao,

thy, veh, wbcd, wdbc, and wne.

2These analyses refer to XCS and UCS, but could be easily extended to other
Michigan-style LCSs.

Table III summarizes the different configurations and the

changes that they introduced with respect to the default con-

figuration. Table IV provides the average rank of the model’s

accuracy and size for each configuration and inference scheme.

We divided the configuration settings into four groups, and

each group was compared to the default configuration. The best

ranked configurations for each comparison are marked in bold.

The symbol indicates that the corresponding configuration

significantly degraded the results obtained with the best config-

uration according to a Bonferroni-Dunn test at [62].

The results show that the generalization in the initial popu-

lation is essential to the success of Fuzzy-UCS, supporting the

theoretical analyses in the literature [60]. For all the inference

schemes, configurations and (i.e.,)

were statistically equivalent, on average, and significantly better

than (i.e.,) in terms of accuracy. In terms of model

size, the following significant differences were found: (i) for

weighted average inference, and evolved the smallest

rule sets; (ii) for action winner and most numerous and fittest

rules inference, created significantly larger rule sets than

and . The last point can be easily explained as follows.

As used a low value of , final populations contained

more specific classifiers than populations created with and

. Action winner and most numerous and fittest rules schemes

kept in the final populations only the classifiers that maximized

the product of fitness and matching degree with a training in-

stance. As classifiers were more specific, a larger number of

them were placed in the final population. With weighted av-

erage, the biggest population sizes were obtained with . This

could be due to the existence of slightly general classifiers that

were all maintained in the final population.

The second comparison shows the negative influence of

having low fitness pressure. In terms of accuracy, better results

were obtained as the fitness pressure increased (i.e., took

higher values). Population sizes varied with the fitness pressure

depending on the inference scheme. For weighted average

inference, led to the significantly smaller rule sets. This

is because the fitness pressure drove toward a highly general

and accurate set of rules. For the other two inference schemes,

configuration resulted in the significantly smaller rule sets.

That is, as the fitness pressure was low, populations were full

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 08:01 from IEEE Xplore. Restrictions apply.

ORRIOLS-PUIG et al.: MICHIGAN-STYLE LEARNING FUZZY-CLASSIFIER SYSTEM FOR SUPERVISED LEARNING 271

TABLE IV
COMPARISON OF THE SENSITIVITY OF FUZZY-UCS TO CONFIGURATION PARAMETERS. EACH CELL SHOWS THE AVERAGE RANK OF EACH CONFIGURATION FOR

A GIVEN INFERENCE SCHEME. THE BEST RANKED METHOD IS IN BOLD. THE SYMBOL � INDICATES THAT THE CORRESPONDING METHOD

SIGNIFICANTLY DEGRADES THE RESULTS OBTAINED WITH THE BEST RANKED METHOD

of over-general rules, which were kept in the final populations

in detriment to fitter and more specific classifiers.

The third comparison shows the influence of the parameters

related to the genetic algorithm, i.e., , , and . Initial

intuition indicates that, if all niches receive the same number

of genetic opportunities, the quality of the final models should

remain the same. To test this, configurations and set

and increased

respectively. In this way, all niches received

approximately the same number of genetic events. Configura-

tions and fixed but

maintained the same number of iterations as . So, we ex-

pected that the quality of the models evolved by and

was significantly lower than the quality of the models created

by the three other configurations. This hypothesis was clearly

supported by the experimental analysis, which showed that ,

, and resulted in the most accurate models. Moreover,

significant differences on the population sizes were only found

for the weighted average inference. The multiple comparison

test detected that the smaller models were created with config-

urations and , the two configurations in which the period

of application of the GA was higher.

Finally, the fourth comparison highlights the robustness of

Fuzzy-UCS to the deletion pressure toward unfit classifiers, that

is, the parameter . The pairwise analysis indicated that the hy-

pothesis that configurations and are equivalent could

not be rejected, according to a Wilcoxon signed-ranks test at

.

The study conducted in this section empirically showed that

there are two crucial parameters to guarantee the success of

Fuzzy-UCS: generalization in initialization and fitness pres-

sure . Changing the setting of the other parameters had little

effect on Fuzzy-UCS behavior. We acknowledge that better re-

sults could be individually obtained if we tuned Fuzzy-UCS for

each particular problem. Nonetheless, as we are interested in

robust systems that perform well on average, we use the default

configuration for all the experiments in Section V.

V. COMPARISON OF FUZZY-UCS TO SEVERAL MACHINE

LEARNING TECHNIQUES

In this section, we study whether the behavior of Fuzzy-UCS

is comparable to some of the most-used machine learning tech-

niques. For this purpose, we compared Fuzzy-UCS to two sets

of learners: fuzzy rule-based learners and “nonfuzzy” (crisp)

learners. With the former comparison, we analyzed the behavior

of Fuzzy-UCS with respect to other techniques that use the same

representation, which may limit the maximum performance that

can be achieved in certain domains. With the latter comparison,

we study whether, even with the limitations that may impose

the fuzzy representation, Fuzzy-UCS is competitive with a large

number of the most representative learners, regardless of the

knowledge representation they use. Below, we first present the

experimental methodology, and then compare Fuzzy-UCS to the

other learners.

A. Experimental Methodology

The methodology followed is similar to the one presented

in the previous section. We selected the same collection of 20

real-world problems, whose characteristics are summarized in

Table I. The experiments ran on a ten-fold cross validation, and

the test accuracy rate was used to measure the performance

of the different learners. The performance of Fuzzy-UCS was

compared with a large variety of learning algorithms, which

we organized in two groups. The first group consisted of the

following fuzzy rule-based classification systems: Fuzzy GP,

Fuzzy GAP, Fuzzy SAP, Fuzzy AdaBoost, Fuzzy LogitBoost,

and Fuzzy MaxLogitBoost. Fuzzy GP [63]–[65] is a genetic pro-

gramming algorithm that builds a fuzzy classifier for each class

of the domain by searching for a tree that relates the input and

the output variables as accurately as possible. Fuzzy GAP [63],

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 08:01 from IEEE Xplore. Restrictions apply.

272 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 2, APRIL 2009

[64] works similarly to Fuzzy GP, but the optimization system

is a hybrid between genetic algorithms and genetic program-

ming. Fuzzy SAP [65] combines genetic operators with simu-

lated annealing [66] to create data models similar to those built

by Fuzzy GP and Fuzzy GAP. Fuzzy AdaBoost [47] is a mod-

ification of the boosting algorithm AdaBoost [67] to deal with

fuzzy rules. Fuzzy LogitBoost [48] and Fuzzy MaxLogitBoost

[68] are boosting algorithms that iteratively invoke a genetic al-

gorithm to extract simple fuzzy rules that are combined to de-

cide the output of new examples. The basic difference between

both algorithms is that Fuzzy MaxLogitBoost may reject a new

rule provided by the genetic algorithm if it does not improve

the expected global performance. All these methods were run

using KEEL [69]. We followed the recommended parameter

values given in the KEEL platform to configure the methods

[69], which also corresponded to the settings used in the bibli-

ography of these methods. We only changed the maximum pop-

ulation size of AdaBoost, LogitBoost, and MaxLogitBoost. We

tried population sizes of for all the data

sets, and selected the results of since they generally

allowed us to achieve higher performance ratios than

and , and did not significantly differ from .

For all the methods, we used 5 linguistic terms per variable.

Fuzzy-UCS was configured as detailed in Section IV-B.

The second group gathered a large number of learners with

different knowledge representations: ZeroR, C4.5, IBk, Naïve

Bayes, Part, SMO, GAssist, and UCS. ZeroR is a simple classi-

fier system that always predicts the majority class in the training

data set. We use this algorithm to provide a baseline result. C4.5

[11] is one of the most used decision trees, which derives from

ID3 and introduces methods to deal with continuous variables

and missing values. IBk [13] is a nearest neighbor algorithm; it

decides the output of a new example as the most numerous class

of the k nearest neighbors. Naïve Bayes [70] is a probabilistic

classifier that estimates the parameters of a Bayesian model. Part

[71] is a learning architecture that combines the creation of rules

from partial decision trees and the separate-and-conquer rule

learning technique to create a classifier without using global

optimization. SMO [12] is a support vector machine that im-

plements the Sequential Minimization Algorithm. GAssist [72]

is a recent Pittsburgh-style LCS. UCS [5] is a Michigan-style

LCS derived from XCS [3], [4] and specialized for supervised

learning tasks. All the methods except for GAssist and UCS

were run using Weka [73]. For GAssist, we used the open source

code provided in [74]. For UCS, we used our own code. If not

stated differently, all open source methods were configured with

the parameters values recommended by default. For UCS we

set (see [4], [5], [75] for notation details): ,

, , , ,

, , , . Fuzzy-UCS was config-

ured with standard values as indicated in the previous section.

We applied the following statistical analysis to the results.

We used the nonparametric Friedman’s test [54], [55] to check

whether all the learning algorithms performed the same on

average. If significant differences were found, two procedures

were applied to detect differences between methods. We first

aimed at comparing the performance obtained by each of the

inference types of Fuzzy-UCS to all other learners (instead of

comparing all learners with the others as done in Section IV).

To achieve this, we applied the nonparametric Bonferroni-Dunn

[62] test. We computed this test as proposed in [52], where

the critical value is calculated using the same equation as for

the Nemenyi test [see (11)] but adjusting the critical values

according to the number of comparisons made (i.e.,).

Moreover, the analysis is complemented by performing pair-

wise comparisons among learners by means of a Wilcoxon

signed-ranks test [58].

B. Comparison to Fuzzy Rule-Based Classification Systems

In the following, we compare the test performance and the

interpretability of Fuzzy-UCS with the three types of inference

to the aforementioned set of fuzzy rule-based learners.

Comparison of the performance. Table V details the test ac-

curacies obtained with selected fuzzy learners and fuzzy UCS

with the three inference schemes. The average performance of

AdaBoost and MaxLogitBoost for the problems ann and aud is

not provided since neither system was able to extract competent

fuzzy rules from the two domains, leaving nearly all the fea-

ture space uncovered. The authors confirmed that this behavior

could be due to high number of nominal attributes that these

two problems have. The last two rows of the table provide the

average rank and the absolute position in the ranking of each

learner.

The experimental results show that the three configurations of

Fuzzy-UCS were the best ranked in the comparison. The next

methods in the ranking were the boosting algorithm Fuzzy Log-

itBoost, the genetic programming-based systems Fuzzy-GP and

Fuzzy-SAP, and Fuzzy AdaBoost. Finally, we have Fuzzy GAP,

and Fuzzy MaxLogitBoost.

Friedman’s test rejected the hypothesis that all the methods

performed the same on average at a significance level of 0.0001.

Thence, we compared Fuzzy-UCS with each inference type

with all the other learners to detect significant differences. Fig. 6

graphically represents the rank of each learner and groups the

classifiers that perform equivalently to (1) Fuzzy-UCS with

weighted average inference, (2) Fuzzy-UCS with action winner

inference, and (3) Fuzzy-UCS with most numerous and fittest

rules inference according to a Bonferroni-Dunn test at a sig-

nificance level of 0.1. The statistical procedure supported the

following hypotheses:

• Using Fuzzy-UCS with weighted average inference as the

control learner, the statistical test supported the hypothesis

that the performance of the control learner was equivalent

to the performance of Fuzzy-UCS with the other two infer-

ence types. Moreover, Fuzzy-UCS with weighted average

outperformed all the other learners.

• Using Fuzzy-UCS with action winner inference as the con-

trol learner, the test indicated that this learner performed

equivalently to Fuzzy-UCS with the other two types of in-

ference and Fuzzy LogitBoost.

• With respect to Fuzzy-UCS with most numerous and fittest

rules inference, the test did not reject the hypothesis that

all the fuzzy learners except for Fuzzy MaxLogitBoost and

Fuzzy GAP performed equivalently on average.

We complemented the statistical study by comparing each

pair of learners. Table VI shows the approximate p-values for

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 08:01 from IEEE Xplore. Restrictions apply.

ORRIOLS-PUIG et al.: MICHIGAN-STYLE LEARNING FUZZY-CLASSIFIER SYSTEM FOR SUPERVISED LEARNING 273

TABLE V
COMPARISON OF THE PERFORMANCE OF FUZZY-UCS WITH WEIGHTED AVERAGE (WAVG), ACTION WINNER (AWIN),

AND MOST NUMEROUS AND FITTEST RULES (NFIT) WITH THE PERFORMANCE OF THE FUZZY LEARNERS

Fig. 6. Comparisons of one learner against the others with the Bonferroni-
Dunn test at a significance level of 0.1. All the learners are compared to three
different control groups: (1) Fuzzy-UCS with weighted average inference, (2)
Fuzzy-UCS with action winner inference, and (3) Fuzzy-UCS with most nu-
merous and fittest rules inference. The learners connected are those that perform
equivalently to the control learner.

the pairwise comparison according to a Wilcoxon signed-ranks

test. The symbols and indicate that the method in the row

significantly improves/degrades the performance obtained with

the method in the column. Similarly, the symbols and

denote a nonsignificant improvement/degradation. The symbol

indicates that each method outperforms and degrades the

other in the same number of data sets. At a significance level of

0.05, the test indicated that Fuzzy-UCS with weighted average

inference significantly outperformed all the other learners, in-

cluding the two other types of inference of Fuzzy-UCS. More-

over, Fuzzy-UCS with action winner and most numerous and

fittest inference schemes significantly improved all the other

fuzzy learners.

Comparison of the interpretability. The study conducted in

Section IV-B showed the interpretability-performance trade-off

among the different inference schemes in Fuzzy-UCS. As

shown, the excellent results of Fuzzy-UCS with weighted av-

erage with respect to all the other learners were hampered by the

large number of fuzzy rules evolved by the method. The other

two types of inference appeared as a positive alternative since

they resulted in a moderate number of rules. Although they

sightly degraded the accuracy rate with respect to the former

approach, they were still valuable since they outperformed all

the other fuzzy learners. The comparison made above con-

firmed the suitability of Fuzzy-UCS with action winner and

most numerous and fittest rules inferences, since both systems

significantly outperformed all the other fuzzy learners. In this

section, we qualitatively analyze if the rule set evolved by these

two methods is competitive in terms of readability.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 08:01 from IEEE Xplore. Restrictions apply.

274 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 2, APRIL 2009

TABLE VI
PAIRWISE COMPARISON OF THE PERFORMANCE OF FUZZY LEARNERS BY MEANS OF A WILCOXON SIGNED-RANKS TEST

Fig. 7. Examples of part of the models evolved by (a) the GP-based methods, i.e., Fuzzy GP, Fuzzy GAP, and Fuzzy SAP; (b) the boosting learners, i.e., Fuzzy
AdaBoost, Fuzzy LogitBoost, and Fuzzy MaxLogitBoost; and (c) Fuzzy-UCS for the two-dimensional tao problem. In the fuzzy learners, we used the following
five linguistic terms per variable: ���� ���������. All fuzzy learners use triangular-shaped membership functions. Moreover, GP-based learners also use
trapezoid-shaped membership functions.

As the type of rules evolved by the systems differ, we qual-
itatively evaluated the size of the models by extracting some
characteristics. Fig. 7 shows examples of partial models evolved
by the fuzzy learners for the tao problem. The models built by
Fuzzy GP, Fuzzy GAP, and Fuzzy SAP consisted of a rule for
each class of the domain. Each rule was directly extracted from
an expression codified in a tree. The rules were represented by
an arbitrary number of conjunctions (AND) and disjunctions
(OR) of conditions over the variables of the domain. One ex-
ample of these types of rules for a two-dimensional problem is

(12)

where each variable was represented by a linguistic term

. All variables shared the same semantics
which were defined by the combination of triangular-shaped and
trapezoidal-shaped fuzzy membership functions [see Fig. 7(a)].

The fuzzy rule-based boosting algorithms created a set of lin-

guistic fuzzy rules that take the following form:

(13)

where each variable was represented by a linguistic term

. All variables shared the same

semantics, which was defined by means of triangular-shaped

fuzzy membership functions [see Fig. 7(b)]. These boosting

algorithms supported the absence of a variable by not assigning

any linguistic term to the variable. The maximum population

size was a configuration parameter. In our experiments, the

set .

To compare these two types of representations to the rule sets

evolved by Fuzzy-UCS, we evaluated the size of the models as

follows:

• We calculated the size of the models built by Fuzzy GP,

Fuzzy GAP, and Fuzzy SAP by counting the number of

AND, OR, and IS of the model. This gives us an idea of

the average size of the rule. However, note that, due to the

flexibility of these types of rules, it was not possible to di-

rectly compare them with the rules evolved by the three

boosting algorithms and Fuzzy UCS. The rules evolved by

Fuzzy GP, Fuzzy GAP, and Fuzzy SAP permit the com-

bination of different logic operators, whose associativity

and priority is given by the position of the operators in the

tree. An equivalent conjunctive normal form for these rules

could be found by applying De Morgan’s laws. However,

this transformation is not in the scope of this paper, and so,

we only qualitatively evaluated the model sizes.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 08:01 from IEEE Xplore. Restrictions apply.

ORRIOLS-PUIG et al.: MICHIGAN-STYLE LEARNING FUZZY-CLASSIFIER SYSTEM FOR SUPERVISED LEARNING 275

TABLE VII
SIZE OF THE MODELS EVOLVED BY THE FUZZY LEARNERS

• The size of the rule sets created by the boosting algorithms

and Fuzzy-UCS were computed as:

(14)

where is the number of rules in the population, the

number of variables, and the number of lin-

guistic labels (in our experiments,). This

formula reckons the total number of variables in the model

that have, at least, one linguistic term assigned. It also ben-

efits general variables that have more than one linguistic

label. To achieve a totally fair comparison, we also re-

ferred to the number of rules evolved by Fuzzy-UCS (see

Table II).

Table VII shows the size of the models created by each fuzzy

learner. Table VIII illustrates the approximate p-values resulting

from the pairwise comparison between the learners according

to a Wilcoxon signed-ranks test. For the three methods based

on genetic programming, we considered the average number of

variables for each rule (i.e., column divided by the number

of classes of the problems). The comparison shows that Fuzzy

SAP, followed by Fuzzy GP, Fuzzy GAP, and Fuzzy MaxLog-

itBoost, were the methods that created the smallest models ac-

cording to a Wilcoxon signed-ranks test at a significance level

of 0.05. We have already discussed how the representation of

Fuzzy GP, Fuzzy GAP, and Fuzzy SAP was much more flex-

ible and by far less interpretable than the representation of the

other learners (see the number of conjunctions and disjunctions

with different associativity and priority in the rules). Thus, al-

though the number of attributes per rule was smaller, the inter-

pretability of the model was poor due to the flexibility of the

rule [see the partial example provided for the tao problem in

Fig. 7(a)]. Fuzzy-UCS with weighted average and with action

winner created the biggest and the second biggest populations

of the comparison. On the other hand, Fuzzy-UCS with most nu-

merous and fittest rules created rule sets that, on average, were

not significantly bigger than the rule sets built by Fuzzy-GP,

Fuzzy AdaBoost, and Fuzzy LogitBoost; thus, disregarding the

three learners based on genetic programming, whose rule sets

were poorly readable due to the rule form, only Fuzzy MaxLog-

itBoost created more reduced populations.

The results provided in this section highlighted the high com-

petitiveness of Fuzzy-UCS in terms of performance and inter-

pretability with respect to other fuzzy learners. In Section V-C,

we broaden the analysis and compare Fuzzy-UCS to a set of

general purpose nonfuzzy learners.

C. Comparison With Nonfuzzy Learners

Now we compare Fuzzy-UCS to a set of general-purpose

learners that use different knowledge representations: ZeroR,

C4.5, IBk, Part, Naïve Bayes, SMO with polynomial kernels of

order 3, SMO with Gaussian kernels, GAssist, and UCS. The

systems were configured as recommended in the open source

implementation, with exception of the following aspects. We ran

IBk with . We ranked the performance obtained by

the three configurations, and we only provide the results with the

settings that maximized the average rank, that is, (IB5).

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 08:01 from IEEE Xplore. Restrictions apply.

276 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 2, APRIL 2009

TABLE VIII
PAIRWISE COMPARISONS OF THE SIZES OF THE FUZZY LEARNERS BY MEANS OF A WILCOXON SIGNED-RANKS TEST

TABLE IX
COMPARISON OF THE PERFORMANCE OF FUZZY-UCS WITH WEIGHTED AVERAGE (WAVG), ACTION WINNER (AWIN), AND

MOST NUMEROUS AND FITTEST RULES INFERENCE (NFIT) WITH THE PERFORMANCE OF THE NON-FUZZY LEARNERS

The analogous process was carried out for SMO with polyno-

mial kernels. We experimented with polynomial kernels of order

1 and 3, and supplied the results obtained with polynomial ker-

nels of order 3 since they maximized the average rank. We did

not introduce the same system with different configurations in

the comparison to avoid biasing the statistical analysis of the

results.
Comparison of the performance. Table IX shows the accu-

racy of the learners on the same collection of real-world prob-
lems. The two last rows of the table provide the average rank
and the position in the ranking of each learner.

Several observations can be drawn from the results. First, let

us highlight the good performance presented by Fuzzy-UCS

with weighted average inference. This learner is the third best

method in the ranking. Its average rank is really close to UCS, by

which Fuzzy-UCS was inspired. Thus, the fuzzy representation

does seem not to limit the capabilities of Fuzzy-UCS if all the

evolved rules are used to infer the class of new examples. More-

over, the average rank is also close to the best ranked method:

SMO with polynomial kernels. The other two inference schemes

presented higher average ranks. Fuzzy-UCS with action winner

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 08:01 from IEEE Xplore. Restrictions apply.

ORRIOLS-PUIG et al.: MICHIGAN-STYLE LEARNING FUZZY-CLASSIFIER SYSTEM FOR SUPERVISED LEARNING 277

TABLE X
PAIRWISE COMPARISON OF THE PERFORMANCE OF NON-FUZZY LEARNERS BY MEANS OF A WILCOXON SIGNED-RANKS TEST

Fig. 8. Illustration of the significant differences (at � � ����) of performance among non-fuzzy methods and Fuzzy-UCS. An edge � ������ indicates
that the learner � outperforms the learner � with the corresponding � . To facilitate the visualization, ZeroR and SMO with Gaussian kernels, the two most
outperformed algorithms, were not included in the graph.

inference and most numerous and fittest rules inference occupy

the seventh and ninth position in the ranking.

Multiple-comparison Friedman’s test rejected the hypoth-

esis that all the learners performed the same on average at a

significance level of 0.0001. Post-hoc Bonferroni-Dunn test

only permitted to reject the hypothesis that the best ranked

learners performed equivalently to Fuzzy-UCS with the most

numerous and fittest rules inference, SMO with Gaussian

kernel, and Zero-R. However, the test has a low discrimina-

tory power for large numbers of learners [52]. Thus, we also

compared the performance of each pair of learners by means

of a Wilcoxon signed-ranks test (see Table X). Fig. 8 uses a

graph to illustrate the significant differences between learners.

The test confirmed that Fuzzy-UCS with weighted average

inference was one of the best learners in the comparison. It

significantly outperformed Naïve Bayes, SMO with Gaussian

kernels, ZeroR, and Fuzzy-UCS with the other two types of

inference. Moreover, Fuzzy-UCS with weighted average in-

ference did not significantly degrade the results obtained with

any other learner. Fuzzy-UCS with action winner inference

was only significantly outperformed by SMO with polynomial

kernels, and Fuzzy-UCS with weighted average inference.

Besides, it significantly improved SMO with Gaussian kernel

and ZeroR. Fuzzy-UCS with most numerous and fittest rules

inference presented the poorest results among the three con-

figurations of Fuzzy-UCS. It significantly degraded the results

obtained by SMO with polynomial kernels, UCS, IB5, Part,

and Fuzzy-UCS with weighted average inference. However,

note that it performed equivalently to well-known algorithms

such as C4.5, Naïve Bayes, and GAssist.

Comparison of the interpretability. Here, we qualitatively

compare the readability of the models created by the different

learners. We do not consider IBk, SMO, and Naïve Bayes

since their knowledge representation can hardly be compared

to the other learners. IBk is a lazy classifier that does not

use any knowledge representation; to predict the output of a

new input example, IBk returns the majority class among its

nearest neighbors. SMO represents the knowledge by

support vector machines (where is the number of classes),

each one consisting of a set of real-valued weights. Therefore,

the models created by these two learners are very difficult to

interpret. On the other hand, Naïve Bayes builds interpretable

models formed by a set of parameters which estimate the

independent probability functions and the so-called class-prior

of a Bayesian model. In [76], a close connection between Naïve

Bayes and Neuro-Fuzzy Classifier Systems was identified,

providing a framework that maps a Naïve Bayes classifier into

a Neuro-Fuzzy Classifier with the aim of improving its capa-

bilities. The discussion on the difference in the interpretability

of Naïve Bayes and their similarity to Neuro-Fuzzy Classifier

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 08:01 from IEEE Xplore. Restrictions apply.

278 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 2, APRIL 2009

Fig. 9. Examples of part of the models evolved by (a) SMO, (b) C4.5, (c) Part, (d) GAssist, (e) UCS, and (f) Fuzzy-UCS for the two-dimensional tao problem.

Systems or Fuzzy Rule-Based Systems is out of the scope of

this paper. The reader is referred to [76] for further details.

Thus, in the remainder of this analysis we focus on the com-

parison of the rule-based and tree-based learners, i.e., C4.5,

Part, GAssist, UCS, and Fuzzy-UCS. Fig. 9 plots examples of

the models evolved by these learners for the two-dimensional

tao problem; besides, an example of the weights created by

SMO is also depicted. C4.5 evolves trees in which the nodes

represent a decision over one variable [see Fig. 9(b)]. We eval-

uated the model size by counting the number of leaves of the

tree. Part and GAssist create a set of rules which are defined

by conjunction of conditions over their variables, and are in-

terpreted as an ordered activation list [see Fig. 9(c) and (d)].

Moreover, GAssist uses a default rule. UCS evolves a rule set

similar to Fuzzy-UCS, but replacing linguistic rules with in-

terval-based rules [see Fig. 9(e)]. Each rule can be regarded as

an expert classifier in the region of the feature space it covers.

We used the number of rules evolved as the metric of inter-

pretability for Part, GAssist, UCS, and Fuzzy-UCS, although

we acknowledge that the measure is not directly comparable

as we later discuss. Note that we did not use (14) to compute

the model size because some of the learners are represented by

an ordered activation list.

Table XI shows the model sizes of the rule-based and tree-

based systems. Qualitatively, it is worth mentioning the fol-

lowing aspects.

• Fuzzy-UCS with weighted average, jointly with UCS, were

the two methods in the ranking with higher performance

from those that use a rule-based representation. Thus, when

performance prevails over interpretability, Fuzzy-UCS is a

good approach to face new problems.

• Fuzzy-UCS with weighted average inference, as well as the

other two inference schemes, significantly created smaller

populations than UCS according to a Wilcoxon signed-

ranks test (at). Thus, Fuzzy-UCS achieved one of

the main objectives of this work: to create smaller models

than those evolved by UCS.

TABLE XI
AVERAGE SIZES OF THE MODELS BUILD BY C4.5, PART, GASSIST, UCS, AND

FUZZY-UCS WITH WEIGHTED AVERAGE (WAVG), ACTION WINNER (AWIN),
AND MOST NUMEROUS AND FITTEST RULES INFERENCE (NFIT)

• Fuzzy-UCS was the only method in the comparison in

which the same semantics (adapted to the universe of dis-

course of each variable) is shared among all variables,

and only 5 linguistic terms were specified. Consequently,

Fuzzy-UCS rules were more readable.

The results also indicate that, even the moderate-sized popula-

tions provided by Fuzzy-UCS with action winner inference and

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 08:01 from IEEE Xplore. Restrictions apply.

ORRIOLS-PUIG et al.: MICHIGAN-STYLE LEARNING FUZZY-CLASSIFIER SYSTEM FOR SUPERVISED LEARNING 279

most numerous and fittest rules, these techniques still are not

competitive (in number of rules) to Part and C4.5 (if we consider

the number of leaves as a comparative measure to the number of

rules), and especially to GAssist. However, two important dis-

tinctions need to be considered to justify these differences.

• Fuzzy-UCS and, in general, Michigan-style LCSs evolve

rules that, by themselves, are experts on the region of the

feature space that they cover and collaborate to classify all

the input space. Thus, each rule can be regarded as an ex-

pert classifier; if the human expert is only interested in a

region of the feature space, only the rules involved in this

region need to be considered. On the other hand, the rules

evolved by Part and GAssist form an ordered activation list.

That is, to classify a new example, rules are checked in

order and the first rule that matches determines the output.

In the case of GAssist, a default rule is used to classify all

the examples not matched by any rule in the activation list.

This implies that all the previous rules need to be consid-

ered to understand why the system is giving this prediction.

• Fuzzy-UCS evolves the rule set incrementally, whilst the

other learners go through the data several times to extract

the classification model. Incremental learning gives a big

advantage to Fuzzy-UCS when learning from large data

sets.

The analysis supplied in this section showed that Fuzzy-UCS

is highly competitive with respect to a large set of general-pur-

pose machine learning techniques. The proposed weighted av-

erage version of Fuzzy-UCS was one of the best performers.

Thus, a fuzzy rule-based system could achieve accuracy rates

as good as—or even better than—other machine learning tech-

niques with knowledge representations that have poor meaning

for human experts such as support vector machines or instance

based algorithms. Moreover, Fuzzy-UCS with the two other in-

ference schemes appeared also to be competitive. Fuzzy-UCS

with action winner inference evolved substantially reduced rule

sets, although not as much as the ones evolved by GAssist and

Part, and it was only statistically surpassed by SMO with poly-

nomial kernels, and our Fuzzy-UCS with weighed average in-

ference. Section VI explores the capabilities of Fuzzy-UCS to

learn from large volumes of data.

VI. FUZZY-UCS FOR MINING LARGE DATA SETS

The two essential differences between Fuzzy-UCS and other

rule-based learners are that Fuzzy-UCS a) does not perform any

form of global optimization, and b) incrementally evolves the

rule-based knowledge. Based on a rule set roughly initialized in

the first learning iterations by the covering operator, the system

is responsible for incrementally evaluating the parameters of the

rules and refining the rule-based knowledge by creating more

general and more accurate rules. This process provides two main

advantages with respect to other learners.

• Fuzzy-UCS learns from a stream of examples. This en-

ables the system to learn from changing environments.

This differs from other machine learning methods, such as

C4.5, IBk, SMO, and Pittsburgh-style LCSs, which need

to process all the training data set in order to produce the

final model.

• The learning can be stalled whenever required, and the

evolved rule set can be used for predicting the class of

new input examples. The more learning iterations the

system has performed, the more general and accurate the

rules should be. Consequently, the cost of the algorithm

increases linearly with the maximum population size ,

the number of variables per rule , and the number of

learning iterations

- (15)

but it does not depend directly on the number of examples.

In static data sets, it is recommended that be, at least,

the number of examples in the training data set.

In this section, we exploit the benefits of on-line learning in

Fuzzy-UCS and apply the system to mine very large data sets.

Specifically, we test the performance of Fuzzy-UCS on the 1999

KDD Cup intrusion detection data set [77]. In the following, we

describe the data set and present the experimental results.

A. Data Set Description

The 1999 KDD Cup intrusion detection data set gathers

a large collection of examples of a wide variety of network

intrusions simulated in a military environment. We used the

subset of 494 022 examples provided in [77] that advocate

23 different classes. Examples consist of 35 continuous at-

tributes and 6 nominal attributes, which usually characterize

network traffic behavior. We used a ten-fold cross validation

procedure to estimate test accuracy.

B. Results

We ran Fuzzy-UCS on the KDD’99 domain with the default

configuration as in the previous section except for

and . We increased the period of GA application

to permit the classifiers to receive more parameter

updates before undergoing a genetic event. We also diminished

the probability of generalization in covering since

the dispersion of the examples was very low. We ran the exper-

iment for 2 000 000 learning iterations, so that Fuzzy-UCS only

received each learning instance an average of 5 times.

Fig. 10 plots the evolution of the test performance and the

population size of Fuzzy-UCS with action winner inference

in the first 150 000 learning iterations. Note that the system

quickly evolved a highly accurate population. After seeing the

first 35 000 examples, that is, a 7% of the whole training data

set, the test performance was already about 99%. Increasing the

number of learning iterations did not significantly improve the

average performance, but it did create more general and equally

accurate classifiers. This behavior can be observed in Table XII,

which depicts the test accuracy and the rule set size obtained

by Fuzzy-UCS with weighted average inference (first column),

action winner inference (second column), and most numerous

and fittest rules inference (third column) at different learning

iterations. That is, every 500 000 learning iterations, we used

the corresponding test set to calculate the accuracy with the

three types of inference. While sampling the test examples, all

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 08:01 from IEEE Xplore. Restrictions apply.

280 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 2, APRIL 2009

Fig. 10. Evolution of test accuracies and the population size of Fuzzy-UCS
with action winner inference in the first 150 000 learning iterations of the 1999
KDD Cup data set.

TABLE XII
TEST PERFORMANCE AND NUMBER OF RULES EVOLVED BY FUZZY-UCS IN

THE 1999 KDD CUP INTRUSION DETECTION DATASET AT

DIFFERENT NUMBERS OF LEARNING ITERATIONS

the learning mechanisms of Fuzzy-UCS were disabled, so that

rule set was not modified.

The results show that the number of rules in the final popu-

lation for the action winner and the most numerous and fittest

rules inference decreased as the number of learning iterations

increased. Thus, the system was pushing the population to ob-

tain maximally general and accurate rules. This behavior was

not so clear with the weighted average inference since this in-

ference scheme used all the experienced rules in the final popu-

lation that have positive fitness, regardless of their generality.

Finally, let us highlight the differences of Fuzzy-UCS with

respect to a Pittsburgh-style LCS. In the last section, we con-

figured GAssist with a population of 400 individuals. At the

initialization phase, these 400 individuals needed to be evalu-

ated. Thus, the condition of all the rules of each classifier was

matched with each of the training instances. This means that,

in the population initialization, a Pittsburgh-style LCSs would

go through all the data set 400 times, seeing about 180 000 000

instances. The use of windowing mechanisms, as the ones im-

plemented in GAssist, would permit us to reduce the number

of instances that each individual matches to be evaluated by a

constant value; nevertheless, note that, in any case, the number

of evaluations would increase linearly with the number of input

examples. After that, the system would have only the first ap-

proximation, and the evolutionary pressures would create new

individuals that needed to be evaluated. This makes these types

of systems computationally expensive for large data sets. On

the other hand, note that Fuzzy-UCS only needed to see 35 000

examples to extract a highly accurate model, and that further

iterations were to create a more general rule set. These results

emphasize the advantages of on-line learning.

VII. SUMMARY, SELF-ANALYSIS, AND FURTHER WORK

A. Summary

In this paper, we proposed a Michigan-style on-line Learning

Fuzzy-Classifier System for supervised learning which itera-

tively evolves a set of linguistic fuzzy rules which collaborate to

cover all the input space. Three schemes of inference and reduc-

tion algorithms were designed to infer the output of unknown

examples from reduced rule sets. These three mechanisms were

proposed to offer different levels of rule set reduction and con-

sequently lead to different accuracy rates.

We performed a detailed analysis of the performance and

interpretability of the rule sets evolved by Fuzzy-UCS. First,

we carefully analyzed the three inference and reduction mech-

anisms in Fuzzy-UCS. Second, we also compared Fuzzy-UCS

with six fuzzy-rule-based learners and nine general-purpose

learners with different types of representation. The analysis

showed that Fuzzy-UCS was highly competitive to both groups

of learners. The many benefits of the on-line fuzzy-rule-based

architecture, as well as some drawbacks detected in this study,

are detailed in the SWOT analysis of Section VII-B.

In the final step of the analysis, we exploited the incremental

learning architecture of Fuzzy-UCS to extract a model from a

large data set: the 1999 KDD Cup intrusion detection data set. It

was found that Fuzzy-UCS could quickly evolve a highly accu-

rate model, having only seen the ten percent of the total number

of examples in the domain. Incremental learning enabled us to

have a rough approximation of the model after a few thousand

learning iterations, further refining the rule set as the system re-

ceived more examples.

B. SWOT Analysis

All the evidence provided through the experimentations is

summarized in the SWOT analysis presented in Table XIII,

where strengths represent the main advantages of Fuzzy-UCS,

weaknesses show its drawbacks, opportunities outline some

suggested further lines of investigation, and threats include

some optional approaches considered by other methods that

could compete with our proposal.

Fuzzy-UCS has four main strengths. First, the system

presented a high performance, which supports the use of

Fuzzy-UCS in complex problems. Second, it uses linguistic

fuzzy rules, which are much more readable than interval-based

rules since all the variables share the same semantics and only

a small number of linguistic terms per variable are defined

(specifically, in our experiments we only used five linguistic

terms per variable). This is really important for domains with

high dimensionality where each variable presents different

ranges. Third, Fuzzy-UCS is an on-line process that performs

incremental learning, and so, the system neither has knowledge

about the data set nor does any kind of global optimization.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 08:01 from IEEE Xplore. Restrictions apply.

ORRIOLS-PUIG et al.: MICHIGAN-STYLE LEARNING FUZZY-CLASSIFIER SYSTEM FOR SUPERVISED LEARNING 281

TABLE XIII
SWOT ANALYSIS OF FUZZY-UCS

And fourth, since the run-time complexity of Fuzzy-UCS does

not depend on the number of instances in the data set, our

system is very useful for mining large amounts of data as we

showed with the KDD’99 problem, which consists of about

half a million instances, 41 features, and 23 classes.

The main weakness of the system is that, despite the appli-

cation of reduction schemes, it evolves slightly larger rule sets

than those created by other machine learning techniques such

as GAssist. Consequently, the number of rules may hinder the

interpretability of the evolved knowledge. However, it is worth

highlighting the comments made in Section V-C about the type

of rules evolved by GAssist and Fuzzy-UCS, which may ap-

proach their readability capacities. GAssist does not share any

semantics between variables, makes the rules available in an or-

dered activation list, and uses a default rule. A less important

feature of our system is that, although it can work with categor-

ical input variables, fuzzy rules are especially useful for real or

integer-valued variables, since in the former case the rule would

be equivalent to a classical crisp (or nonfuzzy) one.

We also want to honestly mention some possible threats to

Fuzzy-UCS. On the one hand, an expert might find a small

number of interval-based rules more legible than many lin-

guistic fuzzy rules (in fact, the degree of interpretability of a

system is very difficult to assess when different knowledge

representations are compared). On the other hand, there are

hybrid learning approaches to deal with problems with large

data sets, such as the inclusion of preprocessing algorithms to

reduce the data set size, which would allow some of the systems

compared in this paper to address these problems.

Finally, the proposed Fuzzy-UCS algorithm shows some in-

teresting opportunities which will be developed in future work.

First, because of its incremental learning capability, the system

can be applied to extract information from data streams, which

is currently a topic of increasing interest [78]. Second, the use of

fuzzy logic allows the system to be adapted for managing vague

and uncertain data, very common in many real-world problems

[79]. Furthermore, as future work we can consider the inclu-

sion of some of the techniques proposed by other systems (such

as inference based on an activation list with default rule as in

GAssist) and the design of new techniques to achieve greater

reductions of the fuzzy rule set without a significant loss of test

performance, as well as a more detailed research of other fuzzy

knowledge representations.

REFERENCES

[1] J. H. Holland, “Adaptation,” in Progress in Theoretical Biology, R.
Rosen and F. Snell, Eds. New York: Academic, 1976, vol. 4, pp.
263–293.

[2] J. Holland and J. Reitman, “Cognitive systems based on adaptive al-
gorithms,” in Pattern-Directed Inference Systems, D. Waterman and F.
Hayes-Roth, Eds. San Diego, CA: Academic, 1978, pp. 313–329.

[3] S. W. Wilson, “Classifier fitness based on accuracy,” Evol. Comput.,
vol. 3, no. 2, pp. 149–175, 1995.

[4] S. W. Wilson, “Generalization in the XCS classifier system,” in Proc.

3rd Annu. Conf. Genetic Programming, 1998, pp. 665–674.
[5] E. Bernadó-Mansilla and J. M. Garrell, “Accuracy-Based learning

classifier systems: Models, analysis and applications to classification
tasks,” Evol. Comput., vol. 11, no. 3, pp. 209–238, Sep. 2003.

[6] M. V. Butz, D. E. Goldberg, and P. L. Lanzi, “Gradient descent
methods in learning classifier systems: Improving XCS performance
in multistep problems,” IEEE Trans. Evol. Comput., vol. 9, no. 5, pp.
452–473, Oct. 2005.

[7] M. V. Butz, P. L. Lanzi, and S. W. Wilson, “Function approximation
with XCS: Hyperellipsoidal conditions, recursive least squares, and
compaction,” IEEE Trans. Evol. Comput., vol. 12, no. 3, pp. 355–376,
Jun. 2008.

[8] J. Bacardit and M. V. Butz, “Data mining in learning classifier systems:
Comparing XCS with gassist,” in Proc. 7th Int. Workshop Learning

Classifier Syst., 2004.
[9] M. V. Butz, Rule-Based Evolutionary Online Learning Systems: A

Principled Approach to LCS Analysis and Design, ser. Studies in
Fuzziness and Soft Computing. New York: Springer, 2006, vol. 109.

[10] A. Orriols-Puig and E. Bernadó-Mansilla, “Evolutionary rule-based
systems for imbalanced datasets,” Soft Comput. J., 2008, 10.1007/
s00500-008-0319-7.

[11] J. R. Quinlan, C4.5: Programs For Machine Learning. San Mateo,
CA: Morgan Kaufmann, 1995.

[12] J. Platt, “Fast training of support vector machines using sequential min-
imal optimization,” in Advances in Kernel Methods—Support Vector

Learning. Cambridge, MA: MIT Press, 1998.
[13] D. W. Aha, D. F. Kibler, and M. K. Albert, “Instance-based learning

algorithms,” Mach. Learn., vol. 6, no. 1, pp. 37–66, 1991.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 08:01 from IEEE Xplore. Restrictions apply.

282 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 2, APRIL 2009

[14] L. Bull, M. Studley, A. Bagnall, and I. Whittley, “Learning classifier
system ensembles with rule-sharing,” IEEE Trans. Evol. Comput., vol.
11, no. 4, pp. 496–502, Aug. 2007.

[15] E. Bernadó-Mansilla and T. K. Ho, “Domain of competence of XCS
classifier system in complexity measurement space,” IEEE Trans. Evol.

Comput., vol. 9, no. 1, pp. 1–23, Feb. 2005.
[16] S. W. Wilson, “Compact rulesets from XCSI,” in Advances in Learning

Classifier Systems. New York: Springer, 2002, pp. 197–210.
[17] C. Fu and L. Davis, “A modified classifier system compaction algo-

rithm,” in GECCO’02: Proc. 2002 Genetic Evol. Comput. Conf., San
Francisco, CA, 2002, pp. 920–925.

[18] P. W. Dixon, D. W. Corne, and M. J. Oates, “A ruleset reduction algo-
rithm for the XCSI learning classifier system,” in Learning Classifier

Systems. New York: Springer, 2004, vol. 2661/2003, pp. 20–29.
[19] O. Cordón, F. Herrera, F. Hoffmann, and L. Magdalena, Genetic

Fuzzy Systems: Evolutionary Tuning and Learning of Fuzzy Knowl-

edge Bases, ser. Advances in Fuzzy Systems—Aplications and
Theory. Singapore: World Scientific, 2001, vol. 19.

[20] M. Valenzuela-Radón, “The fuzzy classifier system: A classifier system
for continuously varying variables,” in Proc. 4th ICGA. San Mateo,
CA: Morgan Kaufmann, 1991, pp. 346–353.

[21] M. Valenzuela-Radón, “Reinforcement learning in the fuzzy classifier
system,” Expert Syst. Appl., vol. 14, pp. 237–247, 1998.

[22] A. Parodi and P. Bonelli, “A new approach to fuzzy classifier systems,”
in Proc. 5th Int. Conf. Genetic Algorithms, 1993, pp. 223–230.

[23] T. Furuhashi, K. Nakaoka, and Y. Uchikawa, “Suppression of excess
fuzziness using multiple fuzzy classifier systems,” in Proc. 3th IEEE

Int. Conf. Fuzzy Syst., 1994, pp. 411–414.
[24] J. Velasco, “Genetic-based on-line learning for fuzzy process control,”

Int. J. Intell. Syst., vol. 13, pp. 891–903, 1998.
[25] H. Ishibuchi, T. Nakashima, and T. Murata, “Performance evaluation

of fuzzy classifier systems for multidimensional pattern classification
problems,” IEEE Trans. Syst. Man Cybern. B, Cybern., vol. 29, no. 5,
pp. 601–618, Oct. 1999.

[26] J. Casillas, B. Carse, and L. Bull, “Fuzzy-XCS: A michigan genetic
fuzzy system,” IEEE Trans. Fuzzy Syst., vol. 15, no. 4, pp. 536–550,
Aug. 2007.

[27] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann
Arbor, MI: Univ. Michigan Press, 1975.

[28] D. E. Goldberg, Genetic Algorithms in Search, Optimization & Ma-

chine Learning, 1st ed. New York: Addison-Wesley, 1989.
[29] S. F. Smith, “A learning system based on genetic adaptive algorithms,”

Ph.D., Univ. Pittsburgh, Pittsburgh, PA, 1980.
[30] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-

tion. Cambridge, MA: MIT Press, 1998.
[31] J. S. Aguilar-Ruiz, R. Giraldez, and J. C. Riquelme, “Natural encoding

for evolutionary supervised learning,” IEEE Trans. Evol. Comput., vol.
11, no. 4, pp. 466–479, Aug. 2007.

[32] T. Kovacs, “Towards a theory of strong overgeneral classifiers,” in
Foundations of Genetic Algorithms, Volume 6. San Mateo, CA:
Morgan Kaufmann, 2000, pp. 165–184.

[33] A. Orriols-Puig and E. Bernadó-Mansilla, “Revisiting UCS: Descrip-
tion, Fitness Sharing and Comparison With XCS,” in Advances at the

Frontier of LCSs. New York: Springer.
[34] K. Nakaoka, T. Furuhashi, and Y. Uchikawa, “A study on apportion-

ment of credits of fuzzy classifier system for knowledge acquisition in
large scale systems,” in Proc. 3th IEEE Int. Conf. Fuzzy Syst., 1994,
pp. 1797–1800.

[35] H. Ishibuchi, T. Yamamoto, and T. Murata, “Hybridization of fuzzy
gbml approaches for pattern classification problems,” IEEE Trans. Syst.

Man Cybern. B, Cybern., vol. 35, no. 2, pp. 359–365, Apr. 2005.
[36] A. Bonarini, “Evolutionary learning of fuzzy rules: Competition and

cooperation,” in Fuzzy Modelling: Paradigms and Practice. Norwell,
MA: Kluwer, 1996, pp. 265–284.

[37] A. Bonarini and V. Trianni, “Learning fuzzy classifier systems for
multi-agent coordination,” Inf. Sci. Int. J., vol. 136, no. 1-4, pp.
215–239, 2001.

[38] L. Bull and J. Hurst, “ZCS redux,” Evol. Comput., vol. 10, no. 2, pp.
185–205, 2002.

[39] M. Butz, T. Kovacs, P. L. Lanzi, and S. W. Wilson, “Toward a theory
of generalization and learning in XCS,” IEEE Trans. Evol. Comput.,
vol. 8, no. 1, pp. 28–46, Feb. 2004.

[40] M. V. Butz, D. E. Goldberg, P. L. Lanzi, and K. Sastry, “Problem so-
lution sustenance in XCS: Markov chain analysis of niche support dis-
tributions and the impact on computational complexity,” Genet. Progr.

Evolv. Mach., vol. 8, no. 1, pp. 5–37, 2007.

[41] O. Cordón, M. J. d. Jesús, and F. Herrera, “A proposal on reasoning
methods in fuzzy rule-based classification systems,” Int. J. Approx.

Reason., vol. 20, no. 1, pp. 21–45, 1999.
[42] H. Ishibuchi and T. Yamamoto, “Rule weight specification in fuzzy

rule-based classification systems,” IEEE Trans. Fuzzy Syst., vol. 13,
no. 4, pp. 428–435, Aug. 2005.

[43] D. E. Goldberg, The Design of Innovation: Lessons from and For Com-

petent Genetic Algorithms. Norwell, MA: Kluwer, 2002.
[44] H. Ishibuchi, T. Nakashima, and T. Morisawa, “Voting in fuzzy rule-

based systems for pattern classification problems,” Fuzzy Sets Syst.,
vol. 103, no. 2, pp. 223–238, 1999.

[45] D. Nauck and R. Kurse, “How the learning of rule weights affects the
interpretability of fuzzy systems,” in Proc. 1998 IEEE Int. Conf. Fuzzy

Syst., Anchorage, AK, 1998, vol. 2, pp. 1235–1240.
[46] H. Ishibuchi and T. Nakashima, “Effect of rule weights in fuzzy rule-

based classification systems,” IEEE Trans. Fuzzy Syst., vol. 9, no. 4,
pp. 506–515, Aug. 2001.

[47] M. J. d. Jesus, F. Hoffmann, L. J. Navascués, and L. Sánchez, “In-
duction of fuzzy-rule-based classifiers with evolutionary boosting al-
gorithms,” IEEE Trans. Fuzzy Syst., vol. 12, no. 3, pp. 296–308, Jun.
2004.

[48] J. Otero and L. Sánchez, “Induction of descriptive fuzzy classifiers with
the logitboost algorithm,” Soft Comput., vol. 10, no. 9, pp. 825–835,
2006.

[49] E. Bernadó-Mansilla, X. Llorà, and J. M. Garrell, “XCS and gale: A
comparative study of two learning classifier systems on data mining,”
in Advances in Learning Classifier Systems, ser. LNAI. New York:
Springer, 2002, vol. 2321, pp. 115–132.

[50] A. Asuncion and D. J. Newman, UCI machine learning repository
2007 [Online]. Available: http://www.ics.uci.edu/~mlearn/MLReposi-
tory.html

[51] T. G. Dietterich, “Approximate statistical tests for comparing super-
vised classification learning algorithms,” Neural. Comput., vol. 10, no.
7, pp. 1895–1924, 1998.

[52] J. Demsar, “Statistical comparisons of classifiers over multiple data
sets,” J. Mach. Learn. Res., vol. 7, pp. 1–30, 2006.

[53] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical

Procedures. London, U.K.: Chapman & Hall, 2000.
[54] M. Friedman, “The use of ranks to avoid the assumption of normality

implicit in the analysis of variance,” J. Amer. Statist. Assoc., vol. 32,
pp. 675–701, 1937.

[55] M. Friedman, “A comparison of alternative tests of significance for the
problem of m rankings,” Ann. Math. Statist., vol. 11, pp. 86–92, 1940.

[56] R. A. Fisher, Statistical Methods and Scientific Inference, 2nd ed.
New York: Hafner, 1959.

[57] P. B. Nemenyi, “Distribution-Free multiple comparisons,” Ph.D.,
Princeton Univ., Princeton, NJ, 1963.

[58] F. Wilcoxon, “Individual comparisons by ranking methods,” Biomet-

rics, vol. 1, pp. 80–83, 1945.
[59] S. W. Wilson, “Get real! XCS with continuous-valued inputs,” in

Learning Classifier Systems. from Foundations to Applications, ser.
LNAI. Berlin, Germany: Springer-Verlag, 2000, pp. 209–219.

[60] M. V. Butz, T. Kovacs, P. L. Lanzi, and S. W. Wilson, “How XCS
evolves accurate classifiers,” in Proc. 2001 Genetic Evol. Comput.

Conf., San Francisco, CA, 2001, pp. 927–934.
[61] G. Brown, T. Kovacs, and J. A. R. Marshall, “UCSpv: Principled voting

in UCS rule populations,” in Proc. 2007 Conf. Genetic Evol. Comput.,
New York, 2007, pp. 1774–1781.

[62] O. J. Dunn, “Multiple comparisons among means,” J. Amer. Statist.

Assoc., vol. 56, pp. 52–64, 1961.
[63] L. Sánchez and I. Couso, “Learning with imprecise examples with

GA-P algorithms,” Soft Comput., vol. 5, no. 1–4, pp. 305–319,
1998.

[64] L. Sánchez and I. Couso, Fuzzy Random Variables-Based Mod-

eling with GA-P Algorithms. Norwell, MA: Kluwer, 2000, pp.
245–256.

[65] L. Sánchez, I. Couso, and J. A. Corrales, “Combining GP operators
with SA search to evolve fuzzy rule based classifiers,” Inform. Sci.,
vol. 136, no. 1–4, pp. 175–191, 2001.

[66] J. Korst and E. Aarts, Simulated Annealing and Boltzmann Ma-

chines. New York: Wiley, 1997.
[67] Y. Freund and R. E. Schapire, “Experiments with a new boosting algo-

rithm,” in Int. Conf. Mach. Learn., 1996, pp. 148–156.
[68] L. Sánchez and J. Otero, “Boosting fuzzy rules in classification prob-

lems under single-winner inference: Research articles,” Int. J. Intell.

Syst., vol. 22, no. 9, pp. 1021–1034, 2007.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 08:01 from IEEE Xplore. Restrictions apply.

ORRIOLS-PUIG et al.: MICHIGAN-STYLE LEARNING FUZZY-CLASSIFIER SYSTEM FOR SUPERVISED LEARNING 283

[69] J. Alcalá-Fdez, L. Sánchez, S. García, M. J. d. Jesus, S. Ventura, J.
M. Garrell, J. Otero, C. Romero, J. Bacardit, V. M. Rivas, J. C. Fer-
nández, and F. Herrera, “Keel: A software tool to assess evolutionary
algorithms to data mining problems,” Soft Comput., to be published.

[70] G. H. John and P. Langley, “Estimating continuous distributions in
Bayesian classifiers,” in Proc. 11th Conf. Uncertainty Artificial Intell.,
1995, pp. 338–345.

[71] E. Frank and I. H. Witten, “Generating accurate rule sets without global
optimization,” in Proc. 15th Int. Conf. Mach. Learning, San Francisco,
CA, 1998, pp. 144–151.

[72] J. Bacardit, “Pittsburgh genetic-based machine learning in the data
mining ERA: Representations, generalization and run-time,” Ph.D.
dissertation, Ramon Llull Univ., Barcelona, Spain, 2004.

[73] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning

Tools and Techniques, 2nd ed. San Francisco, CA: Morgan Kauf-
mann, 2005.

[74] J. Bacardit, GAssist source code [Online]. Available: http://www.
asap.cs.nott.ac.uk/jqb/PSP/GAssist-Java.tar.gz, 2007

[75] M. V. Butz and S. W. Wilson, “An algorithmic description of XCS,” in
Adv. Learning Classifier Systems: Proc. 3rd Int. Workshop, 2001, vol.
1996, pp. 253–272.

[76] A. Nurnberger, C. Borgelt, and A. Klose, “Improving naive bayes clas-
sifiers using neuro-fuzzy learning,” in Proc. 1999 Conf. Neural Inf.

Process., Perth, Australia, 1999, vol. 1, pp. 154–159.
[77] S. Hettich and S. D. Bay, The UCI KDD archive University of Cali-

fornia, Department of Information and Computer Science, Irvine, CA,
1999 [Online]. Available: http://kdd.ics.uci.edu

[78] C. Aggarwal, Data Streams: Models and Algorithms, C. Aggarwal,
Ed. New York: Springer, 2007.

[79] L. Sánchez and I. Couso, “Advocating the use of imprecisely observed
data in genetic fuzzy systems,” IEEE Trans. Fuzzy Syst., vol. 15, no. 4,
pp. 551–562, Aug. 2007.

Albert Orriols-Puig received the M.Sc. graduate de-
gree in computer science in 2004 from the Univer-
sitat Ramon Llull, Barcelona, Spain. He is currently
pursuing the Ph.D. degree at the Universitat Ramon
Llull and is a member of the research group “Grup
de Recerca en Sistemes Intel�ligents.” His disserta-
tion focuses on a detailed analysis and enhancement
of learning classifier systems to further apply these
learning techniques to challenging real-life problems.

In 2006, he was a Visiting Researcher at the Illinois
Genetic Algorithm Laboratory (IlliGAL), University

of Illinois at Urbana-Champaign. Since 2007, he has been collaborating and vis-
iting the Soft Computing and Intelligent Information Systems Research Group,
University of Granada, Spain, where he has been working on the integration
of fuzzy logic into learning classifier systems. His research interests include
on-line evolutionary learning, fuzzy modeling, learning from rarities, data com-
plexity, and machine learning in general.

Jorge Casillas received the M.Sc. and Ph.D. degrees
in computer science in 1998 and 2001, respectively,
from the University of Granada, Spain.

He is an Associate Professor with the Department
of Computer Science and Artificial Intelligence, Uni-
versity of Granada, where he is a member of the Soft
Computing and Intelligent Information Systems Re-
search Group. He has been Visiting Research Fellow
at the University of the West of England, Bristol, U.K.
He has edited two international books, edited two in-
ternational journal special issues, and organized four

special sessions in international conferences on the topics “interpretability-ac-
curacy trade-off in fuzzy modeling,” “genetic fuzzy systems,” and “intelligent
robotics.” He is author of more than 20 journal papers, 10 book chapters, and
40 conference papers. He is on the editorial board of the journal Evolutionary

Intelligence. His research interests include fuzzy modeling, intelligent robotics,
marketing intelligent systems, knowledge discovery, and metaheuristics.

Dr. Casillas is the treasurer of the European Society for Fuzzy Logic and
Technologies (EUSFLAT) and coordinator of the working group on Genetic
Fuzzy Systems.

Ester Bernadó-Mansilla received the B.Sc. degree
in telecommunications engineering, the M.Sc. degree
in electronic engineering, and the Ph.D. degree in
computer science from the Enginyeria i Arquitectura
La Salle, Universitat Ramon Llull, Barcelona, Spain,
in 1992, 1995, and 2002, respectively.

During 2002, she was a Visiting Researcher at
the Computing Sciences Research Center, Bell
Laboratories, Lucent Technologies, Murray Hill, NJ.
She is currently an Assistant Professor in the School
of Computer Science and Engineering, Enginyeria i

Arquitectura La Salle, Ramon Llull University, and the Director of the research
group “Grup de Recerca en Sistemes Intel�ligents.” Her research interests
include genetic algorithms, machine learning, pattern recognition, and data
mining.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 08:01 from IEEE Xplore. Restrictions apply.

