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FuzzyShell: A Large-Scale Expert System Shell
Using Fuzzy Logic for Uncertainty Reasoning

Juiyao Pan, Guilherme N. DeSouza, and Avinash C. Kak

Abstract—There exist in the literature today many contri- ~system shells. We believe that one of the better known of
butions dealing with the incorporation of fuzzy logic in expert such shells is the FuzzyCLIPS system, developed recently
systems. However, unfortunately, much of what has been pro- 1, the National Research Council, Canada [17]. In addition

osed can only be applied to small-scale expert systems; that is, . .
\F/)vhen the num{)er ofeﬂles is in the dozens aps opgosed to in the O the shells, there also now exist in the literature numerous

hundreds. The more traditional (nonfuzzy) expert systems are reports on fuzzy expert systems for specific applications, such
able to cope with large numbers of rules by using Rete networks as CADIAG-2 [1], [2], FRIL [3], RUM [5], FLOPS [7], FESS

for maintaining matches of all the rules and all the facts. (A Rete || [8], REVEAL [19], SYSTEMZ-II [21], FLISP [25], FESP
network obviates the need to match the rules with the facts on [26], and Fault [27].

every cycle of the inference engine.) In this paper, we present B f chall . tof " tem desi
a more general Rete network that is particularly suitable for ecause or challenges unique fo fuzzy expert system aesign,

reasoning with fuzzy logic. The generalized Rete network consists €Specially when multiple levels of inferericare involved,
of a cascade of three networks: the pattern network, the join there is always the question of whether the developers of a

network, and the evidence aggregation network. The first two shell or an expert system took any liberty with the logic itself
layers are modified versions of similar layers for the traditional in order to get the entire software system to work. The special

Rete networks and the last, the aggregation layer, is a new concept ... . . . e
that allows fuzzy evidence to be aggregated when fuzzy inferencesdifficulties that fuzzy reasoning presents—difficulties that do

are made about the same fuzzy variable by different rules. not exist for the case of crisp reasoning—are twofold.

1) All the rules that contain the same linguistic variable
on the consequent side must be fired and evidence
aggregated for that linguistic variable in accordance with

. INTRODUCTION the method of inference chosen before a fact asserted
URING the last decade, fuzzy expert systems have been by one such rule is allowed to trigger another rule. Said
proposed as a viable and user-friendly approach for ~another way, an asserted fact about a linguistic variable
reasoning and control in the presence of uncertainty for a cannot be allowed to trigger another rule if there are
variety of problem domains. It can no longer be disputed that ~ other rules yet to be fired that would assert further facts
fuzzy logic allows humans to interface with machines in a  about the same linguistic variable.

language that at the human end consists of expressions no?) Since fuzzy terms often have overlapping membership

unlike those we use in our everyday discourse and that at functions, a fact such as (robot speed fast) should be

the machine end possesses numerical attributes necessary for able to match with a rule antecedent such as (robot
quantification. That fuzzy logic should be able to simultane-  speed medium) if there exists an overlap between the
ously fulfill the needs of both the humans and the machines membership functions for the fuzzy ternfast and

is made possible through the association of fuzzy membership medium

functions with symbolic or conceptual variables, the reasoningWhile it is clear that all the fuzzy expert system shells,

itself consisting of inferring the membership functions foFuzzyCLIPS being a case in point, are able to handle the sec-

some of the variables as evidence becomes available for samnd difficulty, the same cannot be said for the first difficulty.
others. In fact, we are not aware of any fuzzy expert system shell that
While the use of fuzzy logic for control has mushroometiandles cleanly the first difficults.
over the years—there are now thousands of papers on th&/e must hasten to add that if the goal was to design a shell
subject—its use in expert systems, especially when long chafos a small-scale expert system (one containing a dozen or
of inference are involved, has lagged. Some researchers waostdrules), it would be trivial to write a computer program
even go so far as to claim that fuzzy logic has not worked outtiitat would handle both the above difficulties cleanly. The
all for expert systems [11], [12]. The claim is made despite ttieference engine of such a program would consist of a simple
fact that there now exist organizations offering fuzzy expedo-loop that for each cycle would match all the facts with

Index Terms—Expert system, fuzzy logic, Rete network.

L«“Multiple levels of inference” is synonymous with the notion of “chaining
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all the rules; for each cycle, a list of all the rules that can benable them to carry out Mamdani-type inference for our new
triggered by the facts currently available would be constructegasoning architecture named FuzzyShell. Finally, we will use
the rules would then be batched so that all the rules with tha example to illustrate the workings of FuzzyShell.
same linguistic variable on the consequent side would be in
the same batch and, finally, all the rules in the same batch
would be fired one after another before any other activity of
the inference engine, save for the incremental aggregation of
the membership function for the consequent linguistic variable
as each rule is firedunfortunately, such do-loops cannot be A fundamental problem with practically all the currently
used for large expert systems available shells for fuzzy reasoning is that they are surface-
As years of experience with traditional expert systems halgvel modifications of existing rule-based programming shells.
demonstrated, a simple-minded approach that entails that &I Us, trying to modify an expert system shell intended for
the facts be matched with all the rule antecedents in each cy€fiSP reasoning so that it can carry out fuzzy reasoning is
of the inference engine results in computational complexify Perfect example of fitting a square peg into a round hole.
that is exponential in the number of rules. It is for this reasdrP! reasoning that involves chaining of rules, these systems
that the heart of all the commercial expert systems of thvariably violate the principles of fuzzy logic, as will be clear
traditional nonfuzzy type such as ART, CLIPS [9], opPssgffom subsequent discussion. In other words, they can be used
[16], etc. that are designed to handle hundreds or thousand¥/8f confidence only for control applications where, in most
rules consists of a Rete network or a variant thereof. Ret@Ses, only a single level of inference is needed.
networks were originally advanced by Forgy [14], [15] to 1O drive home this point, consider for illustration the
enhance the computational efficiencies of the traditional expé@tlowing three rules:
systems; that is, expert systems that are based on classic logi®ule 1 IF (X is A) THEN (Y is B);
Therefore, if fuzzy expert systems are to become as succesRule 2 IF (X is A’) THEN (Y is B'),
ful as their more traditional counterparts, it is imperative that Rule 3 IF(Y is B) THEN (Z is C).
techniques such as Rete network be generalized from classifssume that the termsi and A’ associated with the
logic to fuzzy logic and that is exactly what we have donknguistic variableX have overlapping membership functions
in this paper. The main contribution of this paper is to shoand that the same is the case for the tefrend B’ associated
how a Rete network can be designed so as to carry out fuzgith the linguistic variableY. Assuming that the working
inference with computational efficiencies that are comparabigemory contains the facf{ is A), let us now examine how a
to those of the now well-known expert system shells sucdkaditional expert system modified to carry out fuzzy reasoning
as OPS5, OPS83, CLIPS, etc. without running afoul of theould make inferences.
principles of fuzzy logic. The fact (X is A) would enable Rule 1 and, after this
As the rest of this paper makes clear, generalization of Retée is fired, the fact X is B) would be asserted into the
networks to handle fuzzy inference has proved to be nontrivialorking memory. Under the commonly used lexicographic
even when we restrict ourselves to the case of Mamdani-tyEX) and means-end analysis (MEA) stratedieonflict
inference [22]. As described elsewhere in this paper, our wordésolution strategies—strategies in which the time recency of
has required complex data and control structures. While ttiee enabling fact plays a decisive role in deciding which rule
Rete network for a traditional expert system uses basically fire next—this new fact would now enable Rule 3. The
two networks, one for matching facts with rule antecedents aprbblem is that if the dictates of fuzzy logic are not to be
the other for reasoning about the consistency of instantiatiovislated, then Rule 2 must also be fired before Rule 3 is picked.
for the variables in the different antecedent statements of tfRecall the fact X is A) will also enable Rule 2 due to the
rules, the generalized Rete network for fuzzy reasoning hagerlap between membership functions for the tewnand
required three networks. The additional network is needed fdf.) In other words, all the enabled rules that have anything to
the incremental aggregation of fuzzy evidence as each rulessy about the linguistic variablE must all be fired and their
fired. In addition, as the reader will see, the other two networksnclusions aggregated prior to selecting any rules for firing
for the case of fuzzy reasoning are quite different from suebhose antecedents containing this linguistic variable.
networks for the crisp case. It is true that with a different strategy in a traditional pro-
While it is true that the current implementation of theluction system, such as the breadth-first strategy, it would be
generalized Rete network (as reported in this paper) is for thessible to ensure that both Rule 1 and Rule 2 are fired before
specific case of Mamdani-type fuzzy inference, it can easily bige selection of Rule 3. But, it is often not possible to use the
modified to accommodate most other types of fuzzy inferendeeadth-first strategy. For example, backward reasoning can
In what follows, we will use a specific example to illustrat@nly be carried out with the MEA strategy [6].
a fundamental problem with the currently available shells Therefore, the upshot is that today one must either resort
for fuzzy expert systems. We will then review the relevarib highly inefficient systems that carry out a brute-force
concepts from fuzzy logic, focusing especially on Mamdani-
type inference, and provide a brief review of production 3'I_'hese are two of the more common strategies for conflict resolution in a
. .. traditional production system. In OPS like expert system shells—that includes
systems and Rete networks. That will be followed with fhe CLIPS shel—the MEA strategy is particularly useful for backward
detailed discussion of how Rete networks can be designeddasoning [6].

Il. A SPECIFIC EXAMPLE |LLUSTRATING
A SERIOUS SHORTCOMING OF THE
CURRENT Fuzzy EXPERT SYSTEM SHELLS
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implementation of fuzzy logic in which every fact must be Fuzzy Membership Function of the Rule
matched with every rule for every cycle of the inference engine
. - . . u‘B v 1‘%': o
or one might try to use modifications of the currently available commequent
computationally efficient expert system shells, but at the risk of o |ltel 00 0000000 0000 0
implementing faulty logic. While the former types of systems 025! |17 00 0 0 0 .25.25.25.25 25.25.25 0 25
can only be used when the number of rules is small, u;ually in 05 | 115/ 00 0 0025555 55250 5
the tens as opposed to hundreds, the use of the latter is fraught 00 00 02 § » 0 5 0
with the possibility of error in the inferences drawn. 015 | |18 #88.75.78.70 8 28 U
10 {|t4| 00 0 0 0 .25 .5.751.0.75.5 .25 0 5 T
. Fuzzy LosIc 07513, 0 0 0 0 0 .25.5.75 75.75.5 .25 0 J P
_ _ ' _ _ _ 05 112/ 00 00 0 255 55 5.5 350 5 f
Despite the existence of voluminous literature on the subject 05 |11 0 0 0 0 0 25 25252525255 0 25
[4], [13], [20], [22], [23], [28]-[30], [32], we feel it is 0l 000000000000 0 o T
necessary for us to include a very brief review of fuzzy
logic for two reasons. We wish to inform the reader as to 1234567868910 11213

which fuzzy logic—especially what compositional operators
for propagating evidence—we have used for the new class
of Rete networks presented in Section V. Additionally, we
believe that a brief fuzzy logic review here would be helpful
to the readers who are from the traditional expert system
community? Data

Central to fuzzy logic is the notion of a linguistic variable,
such agdistance(whose values are known as the terms) sudpg- 1. A pictorial illustration of the compositional rule of inference.
as very-far, far, very-near, near, clos@nd very-close The
range of numerical values spanned by a linguistic variableirgersection are arbitrary but commonly used choices among
called theuniverse of discourséor that variable. Associated all possible ways of defining such operators.
with each term is auzzy membership functipm function Finally, the complement can be defined by
whose range is the closed interval [0,1] and whose domain c 1
is a subset of the universe of discourse. A term together with (pra () = pra(w).
its membership function is also calledfazzy setThe three  Besides these basic operations, fuzzy inference requires
basic operations on fuzzy sets are those of union, intersectighat we associate a fuzzy membership function with each
and complement. There are various ways of generalizing tingplication. Along the lines discussed in [22], for the rule
definitions of these operations from crisp sets to fuzzy set$= A THEN B,” a possible fuzzy membership function is
We will now briefly state the definitions on which our work .
is founded. Suppose for a linguistic variatilewe have two pa—np(u, v) = min(pa(u), pp(v))
fuzzy setsA and B with membership functions given By wherew andv span the universes of discourse corresponding
and .3, respectively. The membership function of the uniogy the termsA and B. Note that j4_p(u,v) is a two-
is given by dimensional set. To drive home this very important point,
consider the following rule:

IF distance is close THEN brake hard.

00 0O O O0.25.5.7510.75.5.25 0 l“l‘
A

101010101075 525 0 0 0 0 O

Aden

raup(w) = max|pa(u), pp(u)].

The max operator above is just one of the mafAynorm
functions [10] commonly used in fuzzy logic for implementingn Fig. 1, we have shown the fuzzy membership function
the union and it represents the “most pessimistic” of themidistance: close—brake:hard N the form of a matrix of numbers
Similarly, for the definition of intersection, lett and B be inside a box when.i.s. is as shown just below the horizontal
the terms of the same linguistic variaklg the membership axis (on the line labeleg 1) andiya.q as shown to the left of

function of the intersection is given by the vertical axis. Shown in Fig. 2 are the membership functions
_ for the different terms for the linguistic variablésstance and
pans(uw) = minfpa(u), pp(u)]. brake.

As suggested by Zadeh, given data,;., fuzzy evidence

The min operator is one of th&-norm functions that define . )

. . “ L can be propagated through a rule by using what is usually

intersection and represents the “most optimistic” of them, By .
. ! réferred to as a compositional rule of inference (CRI) [31].

Both the max operator for union and thenin operator for

To explain the CRI we use, let us say, the given rule is “IF
4The explanation of our work is made complicated by the fact that it THEN B” and the data available igd,;,. Our goal now
represents a bridge between two rather disparate fields of knowledge, fuggto infer a new membership function for the tedin the

logic, and Rete networks. To make our work accessible to readers from the t of th le in the light of th ilable f
traditional expert systems community, we must provide at least a brief revié®1S€QUeENt Of tn€ rule in the light or the available Ak a-

of the fuzzy logic ideas, though at the risk of sounding pedestrian to tiehe following CRI is common in the literature
fuzzy logic community. Similarly, to make our work accessible to the fuzzy

logic community, we must not gloss over too quickly the concepts from Rete pp(v) = sup{minfpa,, (v), pa—p(y,v)]}
networks. Hence, the material reviewing Rete networks. u u
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Fig. 2. Fuzzy membership functions fatose, very-close, hardand very-hard
u " If the measured distance (considered a discrete value) has a
10! very-close close 10 hard value which has a nonzero membership in both the dete

» andvery close then both the rules shown above can be fired.
If the measured distance is itself a fuzzy set—because of the
uncertainties associated with the sensor—and this fuzzy set has
a nonzero intersection with the fuzzy setsseandvery close

then again, both these rules could be fired. Two important
issues need to be resolved with regard to the propagation of
evidence through multiple rules.

1) Is the order in which the rules are invoked important?
Fig. 3. The degree of match betweelnseandvery-closeis used to truncate ~ 2) How does one combine the conclusions drawn from all
the membership function of the consequent tdrard associated with the the rules fired from a given set of facts?
linguistic variablebrake . .
The following lemmas answer both questions. For proofs, the
reader is referred to [20].
wherew spans the universe of discourse for the tetrandv Lemma 1: Given a factA that can match the antecedents of
the same for the tern®?. Obviously, the termsA and Ag,ts  rules Ry, Ro, ---, R, each rule being of the form; — B;,
must span the same universe of discourse. To illustrate ttiie overall conclusion from the rules satisfies the following
further with our example, we have shown (in Fig. 1) thelistributive relationship:
sup—min operation demanded by the formula above leading to
the inferred membership function for the consequent variable n n
hard. The inferred membership function is shown as a column B=Ao U R, = U Ao R;.
of numbers to the right of the box. In this caséy... is i=1 i=1
very-close(see Fig. 2). This inferring process is denoted by
Note that a set of rules that can be fired by a given fact has
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B = Agsa0 (A — B). been represented by a union operator; also note that B is the
fuzzy set obtained by aggregating together the appropriately
In practice, there is a faster way to implement the above crjodified conclusion fuzzy sei8,, By, - --, B,. Representing

As shown in Fig. 3, we get the same result if we first take & set of rules by a union operator is justified because the
different rules represent alternative ways of asserting the

conclusion. The lemma above tells us that if we wish to
propagate a fuzzy fact through, say, two different rules, we
should propagate the fact through each rule separately and
and use the number thus obtained to truncate the membershih take fuzzy union of the conclusion fuzzy sets.
function for the consequent ter®. We will refer to the  while the above lemma teaches us how to deal with multiple
number obtained from the sup—min operation above as tiges, there is only one term in each rule antecedent. We will
degree-of-match betweeHua:. and A. Using the example now allow each rule to contain multiple terms, expressed as
membership functions shown in Fig. 2, the reader can easgiynjunctions, in its antecedent. In what follows, we will show
verify the veracity of this statement. So, while it is common t@yo more lemmas derived by Lee [20], which will tell us how
show figures like the one in Fig. 3 to explain the propagatiag carry out the fuzzy inference in one rule and then how to
of fuzzy evidence, for theoretical analysis one has to resortd@tain the final conclusion of a linguistic variable for a set of
the compositional formulas shown above. firing rules.

We will now discuss the case when fUZZy evidence must Lemma 2: Given two facts4 and B Corresponding to two
be propagated through multiple rules simultaneously and thgferent linguistic variables that can match the two facts in
results aggregated. Consider the case when we have #he antecedent of a single rule of the form “i and B;
following two rules that can both be triggered by the sampHEN ¢;,” the conclusion fuzzy set fo€; can be obtained
data: by the following formula:

Rule 1 IF distance is close THEN brake hard;

Rule 2 IF distance is very-close THEN brake very-hard. Cy=[Ao(A — C)] N [Bo(Bi — )]

sup lnlLill[l’LAglata7l/LA]
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" fire due to the overlap between the accumulated evidence in
close near far slow medium fast the form of the asserted membership function for the term
aggregate_ternand the membership function for the tefast

IV. PRODUCTION SYSTEMS AND RETE NETWORKS

distance speed All large-scale expert-system shells of note, such as the
CLIPS system from NASA, the commercial systems ART,
OPS5, OPS83, and many others, are founded on the concept

Lemma 3: Given two facts A and B corresponding to of production systems, a concept that was first promulgated by

different linguistic variables that can match the two facts ilﬁlewell a_nd his co-workers_ [24] and subse_quently made useful
each of rulesk;, R, - --, R,,, each rule being of the form “IF or practical problem solving by the seminal work of Forgy

A; andB; THEN C;,” the overall conclusion that can be drawr" Rete networks [;4]’_[15]' . )
The overall organization of a production can be explained

from the rules obeys the following distributive relationship: very quickly with the help of Fig. 6. The three principal

. " o o components of a production system arewarking memory
C= U [Ao(Ai = I N [Bo(Bi = Ci)] for data (also called the facts);poduction memoryor rules;

=1 . . . . .
. ‘ . L. and aninference enginewhose function is to infer new facts
This lemma tells us that the final conclusion is to be made kf%m existing facts and rules, to assert the new facts into

propagating the fuzzy evidence through each rule separatgiy \orking memory, and then to continue this process of
and then taking a fuzzy union of the resulting conclusions. yiscovering new facts via the rules through the new store of
facts in the working memory until, of course, no further facts
can be inferred. Traditionally, the statements on the left-hand
The different terms for a linguistic variable will ordinarily beside of a rule are called theondition elementi the argot of

defined by a human user. Unfortunately, if two different rulgsroduction systems and the statements on the right-hand side
assert two different terms for the same linguistic variable, theime action elementsWhat gives an expert system the flavor
the composite fuzzy membership function for that linguistiof a production system is the manner in which the inference
variable may not correspond to any of the predefined ternghgine operates. Each cycle of the inference engine consists of

Fig. 4. Membership functions for the terndgéstanceand speed

An Important Issue Related to Fuzzy Evidence Aggregation

Consider the following fact and rules: three steps, each corresponding to one of the modules shown
Fact 1 (distance is near); inside the inference engine box in Fig. 6. The first step consists
Rule 1 IF (distance is close) THEN (speed is slow); of propagating the latest changes to the working memory
Rule 2 IF (distance is far) THEN (speed is medium);  through the Rete networks—its operation will be explained
Rule 3 IF (speed is fast) THEN - -). shortly—and figuring out which rules are enabled by the latest

The membership functions of fuzzy terms speedand facts. This set of rules is called tlwenflict setor theagenda
distanceare shown in Fig. 4. Rules 1 and 2 will be activated"® seécond step consists of ordering the rules posted on the
by Fact 1 since the membership function f@arhas overlaps agenda on the basis of considerations such as whether or not
with those ofclose and far. It is clear that after Rules 1 the same rule was fired before, the recency of the enabling
and 2 have fired, the composite membership function for tfets from the working memory, the simplicity/complexity of
consequent linguistic variable will look like what is showrih® rule, etc. The top-ranked rule is then selected from the
in Fig. 5. If a purely numerical approach to fuzzy evidenc@denda thus ordered. The last step of the inference engine
accumulation was used, as would be the case for small-schig" executes thactionslisted on the right-hand side of the
systems—such a composite membership function would pd‘ggd rule. ThIS' action may consist of either asserting the newly
no problems even though it does not correspond to any of t#ferred facts into the working memory or |nv_ok|ng fun(?t|ons
terms shown for the consequent linguistic variable. Howevé, Procedures that are external to the production systehis,
for a large-scale system, there needs to be a mechanismtf§n; is the explanation in a nutshell of a production system.

associating a label with any arbitrary membership function th4{¢ aré now ready to explain the operation of Rete networks.
the process of evidence accumulation might result in. Rete networks have been used in the traditional expert

Therefore, in FuzzyShell, for each linguistic variable w&YStems to ameliorate the computational burden that would
define a special term, called ttaggregate_termThis term otherwise be associated with matching all the rules with all
is a shell-created special term for each linguistic variabl@® facts on each cycle of the inference engine. A regular
for which fuzzy evidence is asserted via the consequentsRfte network compiles all the rules into a tree-structured
two or more rules. Evidently, this term does not possess th8Nd network of feature tests. Only the rule antecedents are
usual semantics; for example, for the linguistic varistpeeq US€d for the creation of a Rete network. Generally speaking,
the usual termsslow, mediumand fast possessing obvious & Rete network contains two networks that are the pattern
meanings, stand in contrast to the teaggregate_ternthat network and the join network, the former for the purpose of

admits any membership function. 5 ) ) . . . .
For th | h bove. it is obvious that after t For further discussion on the different possible strategies for ordering the
or the example shown above, It | VIou h@es posted on the agenda—these strategies carry names like LEX, MEA,

evidence is accumulated from Rules 1 and 2, Rule 3 wouldpth-first, etc. [6], [18].



568 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 6, NO. 4, NOVEMBER 1998

u1 i
close near g slow
through / \
6 Rule-1 R
/ \ )
distance d speed is aggregate_term

s M Union >
near far
CRI

medium
through PN »
Rule-2 / N speed
5 7 \
distance

speed

Fig. 5. The composite membership function obtained for the consequent linguistic variable after the fuzzy evidence is combined from Rules 1 and 2.

e e Distribute tokens ote: Tokens consist of
/" working memory\‘ </proc|uction memory' ) changes to
“_ (data) S L (rules) working memory
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s ~ e N
>[ Matching W Is the 2nd element Is the 2nd element Is the 2nd element
— navigation ? low ? high ?
g p— R
(Confilict set)
S Bind ?x to value of | | Bind ?x to value of | | Bind ?x to value of
! " sensor. sensor. sensor.
| Selection P f n
\
- . Pattern Network
(Oneselected | TTTEEEEEEATETTTTCS B
rule) Join Network
| . 1 Is the value of ?x in the 1st Is the value of ?x in the 1st
;‘L Execution condition element equal to condition element equal to
the value of ?x in the 2nd the value of ?x in the 2nd
\ Y, condition element? condition element?
(Changes in working memory 41 * 52 *
or production memory)

Report to
Agenda that rule-1
is enabled

Report to
Agenda that rule-2
is enabled

Fig. 6. Architecture of a production system.

representing all the condition elements in all the rules (in
a manner that eliminates duplication between the rules) afid 7- Rete network for rule-1 and rule-2.

the latter for comparing the bindings of those variables that

are common to the different condition elements for the same - .

rule. To illustrate the organization of a Rete network, consid the Rete network (shown in Fig. 7), each condition element

the following example where we have shown the conditicff €ach rule is represented by a sequence of tests, each test
elements of two rules: corresponding to one node called the pattern node in the
pattern network. For example, the first condition element of
rule-1 is represented by the pattern nodges, andc, whereas
the second condition element of the same rule is represented
by d, ¢, and f. The join node (marked J1) for rule-1 holds
the test on the variable that is shared by the two condition
() elements of the rule. In this case, the test ensures that the
bindings for the variabl€x are consistent.
(robot (" mission navigation) {sensor 2x)) When a new fact is asserted into the working memory, the
(sensors {priority high) ("sensor ?x)) fact becomes a token that traverses through the pattern network
= and, subsequently, may be propagated to the join network to
(). find out which rules can be enabled. The syntax of a token is

(rule-name rule-1
(robot ("mission navigation){sensor ?x))

(sensors( piority low)("sensor ?x))
=

(rule-name rule-2
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represented as follows: i j
a0 Fact- Working Memory Production Memory
(ng Faci-1D)
. Tokens
where the tag could be+” or “—" for representing the r

addition or deletion for the tokens, respectively. The Fact- (Pattern  Network

ID contains the working memory elements or sequences of Fuzzy
working memory elements. To explain how the tokens are
propagated, assume that the following fact is asserted into the Symbol

working memory.

- > Manager
Fact 1: [robot-("mission  navigation) 7{sensor-range- Evidence Selection
ggregation
sensor)]. Network

A token (- Fact 1) will be created, and then propagated into
r v

the pattern network along arcs that contain tests relevant to the
fact® In this case, the first element of the token will pass the o — Fuzzy
test in pattern node since this node tests for whether or not o et roomony | terence
the first field contains the symbobbot For similar reasons, Engine
the token would also pass through the ndde\s the token
passes through the pattern nodethe variable?z will be
bounded to the value range-sensor. Finally, the token will be
saved in what is referred to as the left memories of the join
nodes marked J1 and J2. This would remain the status of the ) ]
Rete network if no further information were to be injected into We Wwill now present our new architecture for a fuzzy
the production system. Now assume that the following fact &Pert system shell (FuzzyShell) that employs a new class
asserted into the working memory. of Rete networks, which make possible fuzzy inference for
Fact 2: [sensors {priority high) ("sensor-range-sensor)]. large-scale expert systems. Since this system is based on the
This will cause the token Fact 2) to be injected into the S&me principles as a production system, its computational
Rete network at the root node. In a manner similar to whgfficiencies parallel those of such well-known systems as
happened for the previous token, the new token will trav&iLIPS, OPS83, etc.
along the path composed of the pattern nodeg, andh and Fig. 8 depicts the overall flow of control and the various
will then come to rest in the right memory for the join node JZnodules of FuzzyShell. All the symbols, fuzzy and crisp, are
Given the tokens residing in its left and the right memoried)terned in a module called the the fuzzy symbol manager
the join node J2 is now able to carry out the test assigned%‘ere the latest membership functions for the fuzzy terms are
it and declare that Rule 2 is to be placed on the agenda. stored. Therefore, when the firing of a rule calls for a change
The important features to note about a Rete network dfethe membership function of a variable; that change takes
that it eliminates temporal and structural redundancies fBlace in the fuzzy symbol manager.
figuring out what rules should be enabled at each cycle ofBesides the fuzzy symbol manager, what makes FuzzyShell
the inference engine. Since all the changes to the workifigly different from the more traditional production systems
memory are propagated into the network in the form &% the new three-layer Rete network shown in Fig. 8. The
positive and negative tokens, a fact once absorbed into fifét two layers, the pattern network and the join network, are
network remains there until a negative token regarding tigénilar but not at all identical to such layers in, say, CLIPS.
same fact is propagated into the network. A negative tok&tpwever, the third layer, the evidence aggregation layer, is
is propagated when a fact is retracted. So, unless a fA€w and designed solely to account for the fact that in fuzzy
is retracted, computations for matching the fact with thiéference, the membership function of a given fuzzy term
condition elements need to be carried out only once. THign be modified by multiple rules and that all these changes
is referred to as elimination of temporal redundancies IHust be aggregated together before that variable participates
the matching process. Another important feature of a Rdfesubsequent cycles of the inference engine.
network is that it eliminates the structural redundancies; that/n what follows, we will show how the working memory
is, redundancies caused by structural similarities between glements are represented in FuzzyShell. We will then discuss
different statements of rule antecedents. For example, fhe representations used for rule antecedents in the pattern
pattern noded is shared by Rules 1 and 2. By eliminatingtnd join networks; we will show representations that allow the
the redundancies mentioned above, a Rete network can redagiecedents to be of arbitrary length. We will also discuss how
the computational complexity for matching the facts with théhe pattern network calculates the degree of match between a

rules from exponential time complexity in the number of ruledata membership function and one associated with a matching
to polynomial time complexity [14]. term in a rule antecedent. Next, we will discuss how the

join network enforces consistency across different antecedent
6The search for which arcs to use for propagating a token takes place iﬁlgmgnts Ina rUIe'_ The last SUbse.Ct'On will then present the
depth-first fashion. workings of the evidence aggregation network.

JNEH

Fig. 8. Architecture of FuzzyShell.

V. ARCHITECTURE OF FUZZYSHELL
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: membership-
function

Fig. 9. Shown here is the representation for a symbol in the working
memory. X

Fig. 11. Shown here are two membership functions for two separate fuzzy
u sets to illustrate how to compute the degree of match between them.

p3:(x3,u3)
p2:(x2,u2) FuzzyShell to work in complex domains, a linguistic variable
may have differentaggregate_termn different but related
contexts. To drive home this point, assume that we wish to

assert the following facts into the working memory:

Fact-a [robot("name Petef)speed fast)];
Fact-b [robot("name Alvin) “speed medium)];
Fact-c [robot("name Pete(fspeed medium)];
Fact-d [robot("name Alvin) “speed slow)].
Obviously, the different terms for the linguistic variable

Fig. 10. The linked list shown in the lower portion allows the membershigP€€din Fact-a and Fact-b should not be aggregated into a
function shown in the upper portion to be piecewise linear continuous. single membership function since the facts relate to different
robots. However, the fuzzy evidence in Fact-a and Fact-
¢ should be aggregated into a single membership function
function for speed The same would be the case for Fact-b

Each working memory element is composed of synmand Fact-d. Assume that the following two facts represent the
bols—fuzzy and crisp. Each symbol, fuzzy or crisp, isaccumulated evidences, Fact-1 for Fact-a and Fact-c, Fact-2
represented by instantiating the data structure shown for Fact-b and Fact-d:
Fig. 9. This representation consists of a field fiame a Fact-1 [robot("name Petefyspeed aggregate_term)];
field for typg indicating if the symbol is crisp or fuzzy; Fact-2 [robot(*name Alvin) “speed aggregate_term)].
and a field formembership-functignwhich points to a data  gyjgently, the two instantiations of the data-structure of
structure where the membership function of the symbgﬁg_ 9 for the same fuzzy terraggregate_termwill be dif-
resides. The membership function is allowed to be piecewiggant. Each will have a pointer from the data structure

linear continuous (as shown in Fig. 10) and is rePrese”tF‘éjpresenting the entire working memory element.
by a linked list of nodes such that each node contains a

value from the universe of discourse and a membership grade
corresponding to that value. To compute the degree-of-mafdh Pattern Network

between two membership functions, the system computesas mentioned in Section IV, in a traditional (nonfuzzy)
the intersection of the membership functions comparing eagkpert system, the pattern network is used for creating and then
linear edge in one function against all the linear edges in thgaintaining matches between all the rule antecedents and the
other. For example, to compute the intersection of the twairrently available facts. As was mentioned there, each node
membership functions shown in Fig. 11, the edg®ef one of this network carries out a test that, in effect, compares a
of the functions will be compared with all the edges of theymbol from a rule antecedent with a symbol in the same
other; then edgé will be compared in a similar manner andposition in a fact. In other words, each “arm” of the pattern
so on. If V' is the number of linear segments in a membershigetwork is a string matcher for comparing condition element
function, the complexity of this approach is obviousiyN?), strings with fact strings.
but given thatVV is usually a very small number, the resulting For obvious reasons, when fuzzy predicates are involved,
computational burden is minimal. After the intersection pointhiere is much more to matching than carrying out a position-
between the two membership functions are computed, the-position comparison of symbols. Now we must also com-
point that has the largest value for the intersection is retainggire fuzzy sets associated with the symbols and ascertain
this largest value, as, for example, represented by:jhealue the degree of match between a fact symbol and a condition-
of the pointp in Fig. 11, corresponds to what would resulelement symbol. This introduces complications into the design
from the sup—min operation. of a pattern network. In order to explain how the pattern
As we mentioned in the previous section, a special ternetwork works in FuzzyShell, we will first introduce the
(aggregate_terinis used to represent the accumulated evpattern node (Fig. 12), the basic building block of the pattern
dence for a linguistic variable during the inference process. Feetwork. This node is connected to the rest of the pattern

p4:(x4,u4)

pl:(x1,pl) p5:-(x5,u5)7 X

A. Representation of Working Memory Elements
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next y ! last

Pattern Node

: alpha-memory |,

Is the 1st element
left | : degree-of-match | right X?

: pattern-value

PN1 nexw last
: mem-fun

Is the value of
/ l propia?
PN2next l jast
join next
J Is the value of
prop2 b ?

PN3 next l last

. . . terminal node
network via the five links shown, although not all of them may of Pattern1
4

be used for any particular node, depending on the position PN join | Propagate tokens to

of the node in the network. For example, the lin&in, is the join network.

used at only those nodes that feed information into the join ) )

network. Also shown in Fig. 12 is all the information thaflg' 13. This example illustrates the pattern network for Patternl.

resides at each pattern node. The first one of thakda-

Fig. 12. Representation of a pattern node.

memory is used only in the terminal pattern nodes; these
are the same nodes that use fhim link. This information

consists of the token that has propagated to that point. The next . last
second piece of information at each nodegree-of-match

represents either the sup-min of the fuzzy membership function
for the variable that is under test and the membership function PNT ot last

of the corresponding entity in the fact or the least of such

sup-min values for upstream variables. The next fiptdtern- last

value is the fuzzy term in the pattern. Finally, there is a PN2 ot .Iast

field, mem-fun for representing the membership function of right

the node if the node stands for a fuzzy variable. The following ( Is the value of & Is the value of)
prop3c? eft prop2b ?

explanation will shed further light on how these different kinds
of information are used.

To explain further, consider first the following three condi-
tion elements in a rule-antecedent.

Patternl [X(“propl a)("prop2 b)];

Pattern2 [X(“propl a)("prop3 c)];

Pattern3 [Y("prop4 d) ("prop5 e)]
where the fist pattern could, for example, stand for a regft't
pattern like (robot"distance mediunispeed low).

These patterns are compiled in the order in which they are
read. Upon reading the first pattern, a network consisting bifurcation point, a point prior to which the nodes are common
the nodes PN1, PN2, PN3, and PN4, as shown in Fig. 13,two or more patterns. It is in this manner that the pattern
is constructed. (The pointersextand last between the nodes network eliminates the structural redundancies in the matching
make it possible for a token to traverse easily between nodpeocess. The reader has probably already noted that of the two
More on this subject later.) When the second pattern is resibling links left andright, it would be sufficient to use only
in, this network is extended in the manner shown in Fig. Ithe latter to get rid of all the aforementioned redundancies. The
by the creation and inclusion of the nodes labeled PN5 afink left is needed to eliminate those portions of a compiled
PNG6. Note that this extension was achieved by first breakingtwork that correspond to a deleted rule. For example, if
the link nextbetween PN2 and PN3 in Fig. 13; this link nowwe wished to delete Patternl (supposedly, this pattern is the
points from PN2 to the new node PN5. At the same time, tlamtecedent of some rule we wish to excise from the database)
links right and left connect the two siblings nodes PN3 andfter the structure shown in Fig. 14 has already been created.
PN5. Both PN3 and PN5 have PN2 as their common parértte deletion of nodes must of necessity begin from the bottom
since the nodes prior to and including PN2 are common to baifithe pattern network, since the one lower down goes into a
the patterns being compiled here. An important point to nopattern network, the more specific the nodes are to individual
is that when a new pattern is compiled, the network alreaghtterns and rules. So, in this case, the system would first
constructed is searched in a depth-first fashion to seek out ttedete node PN4. At the same time, through Kt link of
nodes that can be reused. The poimight is used to mark the PN4, the system would discover that PN3 belongs to the same

PN5 next | T last PN3 next last

terminal pattern
node of Pattern2

PN6

terminal pattern
node of Patternt

Propagate tokens to Propagate tokens to
the join network. the join network.

14. This example illustrates the pattern network for Patternl and
ern2.
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|
next last i
Robot
Is the 1st element 1.0
Y?
PN
next I last P 1.0

Is the value of

)

Is the value of

propd d ? propla? “distance right Adistance
PN8 last close very far
next last last 0.6 -
next as right .
Is the value of ‘ Is the value of) ( Is the value OD 0.6 :\:ialtschmg
prop5e ? prop3 ¢ ? left prop2b ? Vd )
PN ext last PN5 nextl T last PN3nextl T last right | agpeed Aspeed
: i slow slow
terminal pattern terminal pattern terminal pattern
node of Pattern3 node of Pattern2 node of Pattern1 ] .
PN i join PN6 l join PN4 l join ,\:;:hmg |

terminal
node of
Patternd

Propagate tokens to Propagate tokens to Propagate tokens to terminal
the join network. the join network. the join network. node of
Pattern1

terminal
node of
Pattern2

terminal
node of
Pattern3

Fig. 15. This example illustrates the pattern network for Patternl, Pattern2
and Pattern3.

( + (robot ( ~distance near) J
. . ( “speed fast)) 0.5
pattern. So this node would be deleted next. Simultaneouslyg . (robot (*distance near) No token will  No token will

the deletion algorithm would discover that the just-deleted (“speed fast)) 0.6) be transmitted  be transmitted
node Was a blfu_rcatlon point; this, _th_rOUQh the liekt, would Fig. 16. An example that shows how fuzzy evidence is propagated through
result in the discovery of the sibling PN5. The last stefe pattern network.
undertaken by the deletion program would be to drop the
right pointer from PNS5. . )

Now let us see what happens when Pattern3 is compiledPatternl [robo(Ad!Stance clos?l speed fast)];
As shown in Fig. 15, since none of the existing pattern nodes-attérn2  [robo(” distance far)(“speed medium];
is reusable for embedding Pattern3 in the network, the newPattern3 [robo(" distance very-far)“speed slow)];
nodes (PN7—PN10) are created. Comparing Figs. 14 and 157attern4 [robo{"distance far)("speed slow)].
note that the linknextemanating from the Root node is broken Fig. 16 shows how the fuzzy evidence is propagated through
with PN1; it is now directed to PN7. Therefore, the newhe pattern network given the fagtobot ("distance near)
entry point into the network will now be PN7. When a tokeff” speed fast)] The number inside a pattern node is degree-of-
corresponding to, say, Patternl is now propagated into t@tch between the fuzzy term that corresponds to that node
network, it would clearly fail to descend down the column o&nd the corresponding fuzzy term in the token. For example,
nodes headed by PN7. This token will instead usertpet at the node for the linguistic variabiistancein the leftmost
pointer at PN7 to hop over to the PN1 node. column in Fig. 16, the degree-of-match corresponding to a

Before we discuss how to build the join network, we wilmatch of the ternclose with the termnear in the token is
now describe how fuzzy evidence gets propagated through the, the number shown inside the node. The minimum of this
pattern network. As we mentioned earlier, for each pattefymber and the degree-of-match number associated with the
node there is a degree-of-match value stored in the node—tken is what gets passed down to the next node in the network.
value obtained using the applicable principles of fuzzy infe0, for the same node as before, the incoming token degree-of-
ence. To be more specific, given a fact lik& is A) and a match value is 1.0 and the local degree-of-match value is 0.6.
rule antecedent likéX is A’), if the membership functions of So the token degree-of-match is reset to 0.6, as depicted by the
A and A’ have an overlap, the match occurs and the value Bfmber shown next to the downward arrow emanating from
degree-of-matclis computed and stored in the correspondingie node. The operation of taking the minimum of the local
node of the pattern network to indicate the extent to whicid the token degree-of-match at each node corresponds to the
the fact (X is A) matches the rule antecedefi¥ is A’); intersection operation discussed in Section Ill. Now consider
this degree-of-match then becomes a part of the token tHa@ case of Pattern3. As shown in Fig. 16, siveey-far is
is transmitted downstream in conjunction with the fact. Theot the overlapping term afiear, there is no token produced
syntax of this token is by this branch of the network. The tokens will be directly

propagated from the terminal pattern nodes to the join network.
(4 (fact-ID), degree-of-match).

Consider, for example, the following patterns which are tHe: J0in Network

antecedents of different rules. Additionally, assume that theln the previous section, we showed how the pattern network
fact in the working memory is [robdt distance near)"speed part of a Rete network can be generalized to handle matching
fast)]: for fuzzy strings. We will now do the same for the join
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T last /4 pattern

Root node

P,jemﬂqqe ,,,,, | next | ¥ fast
| : binding-expressions | Is the first
le‘ﬂ' " beta-memory " right element robot ?
. : min-degree-of-match ‘ next las
i \ ( Is the value of k Is the value 00
next aggregation name Peter ? J left \_name Alvin ?
next| { last next| | last
Fig. 17. Representation of a join node. -
Bind ?x to valu Bind ?x to valu
of distance of distance
network. Recall from Section 1V, the purpose of a join network nexty | tast next{ fiast
in a traditional expert system is to ensure that the bindings for Bind ?y to valu [ Bind ?y to Vall%
of speed of speed

the same variable in the different condition elements of a rule
are consistent. In a fuzzy system, two different bindings for
the same variable would be consistent if there is an overlap of
the fuzzy sets for the two bindings.

Consider the following rule antecedent for which the two
separate arms of the pattern network corresponding to the two
condition elements shown would come together at a join node

Binding test for variable 7x
Binding test for variable ?y

as shown in Fig. 18:
join node l Report rule-1
(rule-name rule-1 for rule-1 is satisfied
(robot (‘name Pet_er) Kd'.Stance ?x) (speed ?y)) Fig. 18. The join node for rule-1 will ensure that the bindings for the
(robot ("name Alvin) ("distance ?x) (speed ?y)) variables?» and ?y are consistent.
=
().
Germlnal pattern termlnal pattern
Now assume that the following two facts are in the working node of Pa“e”‘ ”Ode of Paﬂem
memory. join\ pattern join
Fact-1 [robot("name Peter] "distance far) “speed fast)]; )
Fact-2 [robot ("name Alvin) (“distance near)( speed Join
medium)]. neNSt pattern
Evidently, the match of Fact-1 and the first condition Join2
element will produce the instantiatidar for the variable?x terminal join
and the instantiation distfor the variable?y. Similarly, the node of Rule1
match of Fact-2 with the second condition element will yield
the instantiatiomear for 72 and the instantiatiomediumfor agenda

7y. The join node shown in Fig. 18 must now decide Wheth§g 19. Join network for Rule 1.
or not the different instantiations for the same variable are
reconcilable on the basis of the overlap between the respective
fuzzy sets. The join node carries out the following two steps: There are three kinds of information residing at each join
1) compares the fuzzy sets of all the different fuzzy set®de. The firsthinding-expressionss a pointer to the feature
associated with the same linguistic variable (such #ssts for the two inputs to ensure that the bindings for the
speedin the above example) and then takes sup—mirariables shared by the rule antecedents are consistent as
of the fuzzy membership functions; mentioned above. The second fieldjn-degree-of-matghis
2) the node calculates the minimum of all the sup—mifor storing the minimum of three such values, two coming from
numbers for all the different shared variables in the twhe two input tokens to the join node and one corresponding
inputs to the join node; this minimum must be nonzerw the fuzzy match between the bindings for the variable in
for the join node to produce any output. guestion. The value ahin-degree-of-matcfor a join node is
How a join node accomplishes all of the above will be cledransmitted along with the token to the next level of the join
from its representation shown in Fig. 17. There are six pointergtwork if the tests associated with that join node are passed.
employed by a join node. Four linkigst, next, leftandright, The last field,beta-memoryis the set of working memory
are used for connecting the nodes within the join network. Tiedements associated with consistent variable bindings that have
other two links patternandaggregation provide the pathways been tested by the join nodes up to and including the current
to the pattern network and the evidence aggregation netwooke. Later, we will have more to say about these different
respectively. types of information stored at each join node.
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In our case, a rule withV rule antecedents will havéy
join nodes, with each join node having either one or two input

nodes, as shown in Fig. 19, for the case of two patterns from 1

- .. pattern ttern join
the first of the rule fragments shown below. The join nodes pa n
that feed rule instantiations into the agenda require two inputs, join loin ¢ | pattern
usually referred to as the left and the right memories in the Joini Join3
literature on production systems; thigght memory consists "
of what is pointed to by theattern pointer and the left last last
memory of what is pointed to by thiast pointer. The join next aght it pattern
nodes that are more in the interior are of one input kind. -

. . Join2 Join4

These nodes are usually just below the terminal nodes of the terminal join terminal join
pattern network and owe their existence to the resulting ease node of Rule1 node of Rule2

in programming.
With the help of an example we will now illustrate how
the join network takes advantage of any structural similarity

that might be present across different rules through shared &ige 20.

of join nodes. In general, the following three conditions must
be satisfied to share a join node: First, all the previous join
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terminal node
of Pattern1 of Pattern2

terminal node
of Pattern3

'

agenda

join

!

agenda

Join network for Rule 1 and Rule 2.

nodes must be shared; second, the join node to be shared mus
be entered from the same direction; and third, the bindingC

terminal pattern

)

ode of Patternt

Gode of Pattern

terminal pattern

y

terminal pattern
node of Pattern3

expressions generated by what would otherwise be a new pattern ]
join node must be identical to the expressions generated when pattern | .
an already existing join node is instead shared. Consider the 19" join ¢ { pattern
following three rules: Joint Join3
4 last
(rule-name Rule 1 last| \last | "IN
Patternl next o next pattern
Pattern2 Join5 Join2 Join4
terminal join terminal join terminal join
= node of Rule3 node of Rule1 node of Rule2
()
(rule-name Rule 2
Pattern2
Pattern3 Fig. 21. Join network for Rule 1, Rule 2, and Rule 3.
=
()

the partial matches. As for the downward pointers in Fig. 19,

(rule-name Rule 3 they permit the system to focus on just those join nodes that

Patternl are affected by the latest changes to the working memory. For

Pattern3 example, if after the generalized Rete network is all assembled,
= two facts that can match Patternl and Pattern2 are placed in

---) the working memory. Through the downward pointgos

andnext Join2 node will be intimated that partial matches are

where Patternl, Pattern2, and Pattern3 are the different camailable in its left memory. Via th@in link, Join2 node will
dition elements in the rules; these patterns result in a netwatiscover that information is also available in its right memory.
like the one shown in Fig. 15, with the leaves of this networ/ith both memaories being made available at Join2 node, it
being called the terminal pattern nodes. The join part of thll go ahead and decide whether or not Rule 1 should be
network that results from processing Rule 1 is shown jplaced on the agenda.
Fig. 19. After processing Rule 2, the join network will look as

While the field patternis for creating links between the shown in Fig. 20. Note how thin field of “terminal pattern
pattern network and join network, the fieltisst, left, right, node of Pattern2” is broken for inserting another join node,
and nextin a join node are essential for creating the needédin3, and theight pointer of Join3 node made to point to
pathways for propagating the tokens. As mentioned befotbe Join2 node. This allows both the Join2 and Join4 nodes
at each join node the pointelast and pattern are pathways to inherit all the nodes that correspond to Pattern2. At a
for the left and right memories, the former supplying all thstill higher level of complexity, now consider what happens
partial matches in all the patterns encountered so far and thieen Rule 3 is also processed. The new network is as shown
latter in the new pattern. Each join node is capable of queryiimg Fig. 21. The new rule shares Patternl with the first rule
the higher level nodes through these pathways and pullingand Pattern3 with the second rule. Rule 3 causes redirection



PAN et al: LARGE-SCALE EXPERT SYSTEM SHELL USING FUZZY LOGIC FOR UNCERTAINTY REASONING 575

:i::'t;;nta(l,\%?;tg:c:c:‘i:;’r terminal pattern node Pattern
(*speed 7x) ) for (turn-angle right-20 Network

terminal node for

(mission (*goal find-object)
(*speed ?x)
(*sonar-reading ?y

(+ ( robot
Adistance far
Aspeed fast ) .5

terminal pattern node
for (sonar-reading ?y )

Join1. ( +{ mission -
(~goal find-object) Join
(+ ('robot ("speed medium) { + (turn-angle Network
(~distance far) ("sonar-reading safe) right-30) 0.6)
(“speed fast) .5 1.0)
Join2 left Join4
binding test | terminal join
for ?x node of rule2

( + (robot
(~distance far) (+ (rOPo_t
(“speed fast)) (~distance far)
{mission ( ("$l:>ee¢:|I fast))
i j turn-angle
(*goal find-object) r-an
(*speed medium) right-30) .5)

("sonar-reading safe)) Report that the
S5) Join3 rule2 is activated. {+ (sonar-reading
( + (robot binding test for ?y safe) 1.0)
Jerminal join node of rule1
1

(~distance fa

(~speed fast))
(mission
(~goal find-object)

(*speed medium)
(*sonar-reading saf
5)
Report that the rule1
is activated.

Fig. 22. An example for propagating fuzzy evidence through the Join Network.

of the join pointer of “terminal pattern node of Pattern3’"subsequently propagated via the lilgt. Similarly, if a token
node from Join4 node to the new node Join5. Note that thisreceived at the right input, a new token will be propagated
redirection leaves undisturbed the pathways to the left and f&¢ via the link next subsequently, the same token will be
r.'ght memories at Jq|n4 node, since the former is V'a'?".“’ propagated via the linkight. Backtracking in this depth-first
field and the latter via theatternfield, both these remaining . X _

propagation is accomplished with the help of the pathways

unchanged. ) ’
Before we describe how to propagate the fuzzy evidenBEPvided by the linklast

through the join network, we'd like to mention the different TO illustrate the workings of join nodes in the network and
roles played in this process by theft and theright links. the fuzzy inference operations that take place in these nodes,
When two different rules share the same join nodes from t@ensider the following two-rule example and the fajgtbot

left input (example: Joinl is shared on the left-hand side deistance far) (speed fast)), (mission”goal find-object)

Join5 an_d .Join2),_ that is representedléff link from, ir_l Fhis d(Aspeed medium) onar-reading safe)], (sonar-reading safe)
case, Join5 to Join2. On the other hand, when two join nodes .
ar(n}d (turn-angle right-30)

share a pattern on the right-hand side (example: Join5 an

Join4 share Pattern3 on the right input), that is represented by (rule-name Rule 1

link right from, in this case, Join5 to Join4. (robot ("distance near)gpeed ?x) )
As mentioned earlier, the fuzzy evidence is propagated from (mission (goal find-object) (speed ?x)

the terminal pattern nodes to the join network. Each join node (“sonar-reading ?y))

contains the value of min-degree-of-match that was mentioned =

previously. This value will also be transmitted to other join (--9)

nodes along with the tokens. Using the same strategy as in the

pattern network, the tokens traverse the join network depth (rule-name Rule 2

first. To explain further, for each join node, if the input token (robot ("distance near)gpeed ?x) )

is received from the left input, a new token is propagated (turn-angle right-20)

first via the link nextassuming the tests on the variables are =

satisfied. The depth-first strategy will cause this token to be ().
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Shown in Fig. 4 are the membership functions of the fuzzy
terms fordistanceand speed We assume that the degree-of- Aggregation Node
match betweemnight-20 and right-30 is 0.6. The section of /7777777~ 777=========°
the join network that would correspond to these two rule
antecedents is shown in Fig. 22. As shown in the figure,
each node for the “terminal pattern node” of some pattern
is equivalent to one condition element in a rule. There is
a terminal join node where the condition-element branches
come together for each rule and the output of the join node
tells us whether or not a rule can be fired. Recall that the
min-degree-of-match to be sent by a join node is set to be the
minimum of the min-degree-of-match values for both inputs
and the degree-of-match computed between those bindings
for the variables. For example, the min-degree-of-match of
the left input, Joinl, for the Join2 shown in Fig. 22 is 0.5
and the degree-of-match of the right input for the Join2
is 1.0. In addition, the sup-min number betwefast and
medium for the linguistic variablespeedin Join2 is 0.8.
Thus, the min-degree-of-match of Join2 is 0.5. With botf9- 23- The representation of an aggregation node.
inputs available in Join3, Join3 will check weather or not

the bindings for the variabl&y are consistent. The sup-ming o e multiple inputs from the terminal join nodes. During

number for the variable bindings of Join3 will be 1.0 sinCﬂ1e network building process, the action elements of rules

Ehe bmdmggs of trf1e _}_’?”at;léy ft%r bOt.h énputs a:ce bct)ur?d ﬁ:e scanned and parsed, and the rules whose consequents
Jo iﬁSCri'S% 5errgi?]a N P iﬁ;eiore,t r?nir:lr:-' e;grer:]e—do -n:r?ic m? ake assertions about the same linguistic variable are made
0 S Do ce Joins 1S a terminal join node, this mirg point to the same aggregation node. At the same time, a
degree-of-match associated with Join3 will be sent to the .

; ; . . _— subnode for each consequent element is created and made
evidence aggregation network by the limiggregation Via

) . . internal to the node for the respective linguistic variable.
the link left, the node Join4 can also receive the token sent Y such subnodes inside an agaregation node constitute a
Joinl. Since Join4 receives 0.5 and 0.6 from the two inpu& 9greg

S . . o
for the fuzzy evidence, the min-degree-of-match of Join4 |sOUny linked list. ‘In addition to the forward and back-

0.5. Subsequently, Join4 will report that Rule 2 is enable\éY.ard p0|_nters of a doubly linked I.ISt’ each subnode in an
) . gregation node may also contain what we refer to as a
So far, we have described how to build the pattern and tﬁght ointer. The purpose of this pointer is to allow us
join networks for a set of rules and how to propagate t degl With'multi |2 rSIes whose C(E)nse uents make asser
fuzzy evidence through these networks without sacrificing t '%n bout multi F linauistic variabl ch h subnod
computational efficiencies. We now show how to aggrega?g S about multiple Tinguistic vanables. AlSo, each subnode

the fuzzy evidence when multiple rules make inferences ab tains the following slotsdegree-of-match, consequent-
the same linguistic variable. element and flag. The purpose of theight link and the

slots will now be explained with the help of the following
example.
D. Evidence Propagation Network Consider, for illustration, the following three rules:
Rule 1 IF (distance is near) THEN (speed is slow) (brake
hard);

Assert1:
consequent-element
degree-of-match
flag

Assert2:
consequent-element
degree-of-match
flag

For a nonfuzzy expert system, the pattern and the join
networks perform the function of ascertaining which rules k _ ) _
will be enabled by the facts in the working memory. As was Rulé 2 IF (distance is far) THEN (speed is medium)(brake
mentioned earlier, this is all a Rete network has to do for medium);

a traditional expert systems. However, the Rete network forRule 3 IF (speed is slow ) THEN ().

a fuzzy-logic based system must go one step further to solvel he complete evidence aggregation network for these rules
the difficulty (1) introduced in Section | and make sure that alf shown in Fig. 24. The left node is for the linguistic variable
the fuzzy evidence for a given linguistic variable is aggregatégpeecand the right node foorake the other linguistic variable
before that linguistic variable is allowed to trigger any furtheappearing in the consequents of the rules. With the help of
rules. In this section, we will show how this is accomplished biae right pointer attached to the first subnode in the node for
incorporating a third network, called the evidence aggregatispeed the system knows that the assertions (speed is slow)
network, in the Rete network. It is the evidence aggregati@md (brake hard) belong to the same consequent. Similarly, via
network that allows FuzzyShell to aggregate all the terntBe right pointer attached to the subnode (speed is medium)
in all the consequents of the rules in the agenda. This tle system knows that the assertions (speed is medium) and
accomplished before any of the rule is actually fired by thgrake medium) come from the same rule. Also, note that the
inference engine. two pointers used to glue the linked list of consequent items to

Basic to the evidence aggregation network is an aggmn aggregation node are called tloet and entry for reasons
gation node, shown in Fig. 23. An aggregation node cdhat are obvious from the figure.
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terminal join terminal join
node of rule2 node of rule1 Join
aggregation aggregation Network

0.5
emry\ Evidence

Aggregation
Network

1.0

) 05 |

/ right \
1.0
Aggregation node
for "speed"
speed is
aggregate_term

‘Aggregation node
for "brake"

brake
aggregate_term

To working memory To working memory

Fig. 24. This example shows how fuzzy evidence is aggregated in the
evidence aggregation network.

To explain how evidence gets aggregated by the evidence
aggregation network, we will consider the same set of rules
as above and assume that the fact in the working memory
is (distance is far). As shown in Fig. 24, 0.5 represents the
degree-of-match between the fact (distance is far) and the
rule antecedent (distance is near) while 1.0 is the degree-
of-match for the antecedent (distance is far) and the same
fact. After Rule 1 is enabled, the aggregation subnode cor-
responding to (speed is slow) will receive the value 0.5
from the terminal join node of Rule 1 via the linkggre-
gation Subsequently, the aggregation subnode representing
(brake hard) will also receive the value 0.5 via the link
right. Next, after Rule 2 is enabled, the aggregation subnode
corresponding to (speed is medium) will receive the value
1.0 form the terminal join node of Rule 2 and transmit it
to the aggregation subnode for (brake medium) via the link
right. Finally, the results of the aggregation for the linguistic
variablesspeedand brake will be asserted into the working
memory.

VI. AN EXAMPLE TO |LLUSTRATE
THE WORKINGS OF FUZZY SHELL

In what follows, we will use a simple example to show
the workings of FuzzyShell. In particular, our example will
illustrate how FuzzyShell addresses the first difficulty pre-
sented in the Introduction, namely, the difficulty of ensuring
that the evidence from all the enabled rules containing the
same consequent linguistic variable is aggregated before any

Fact-1[robot (mission obstacle-avoidancéyensor 2D-
vision)];

Fact-2[2-D-vision
position-y far)]

(pixel-position-x  med-left)(pixel-

(rule-name rule-1
(robot ("mission ?x)(sensor 2D-vision))
(2D-vision ("pixel-position-x left)
("pixel-position-y near))

=
(goal ("mission ?x)(orientation NWW)))

(rule-name rule-2
(robot (‘mission ?x)(sensor 2D-vision))
(2D-vision ("pixel-position-x med-left)
(" pixel-position-y far))

=
(goal (‘mission ?x)(orientation NW)))

(rule-name rule-3
(goal (‘mission obstacle-avoidance)
("orientation NW))

=
(“turn-angle right-20)
(“distance-to-travel medium))

(rule-name rule-4
(goal ("mission obstacle-avoidance)
("orientation NNW))

=
("turn-angle right-30)
("distance-to-travel long))

(rule-name rule-5
(goal ("mission object-recognition)
("orientation NWW))

=
(“turn-angle left-40)
("distance-to-travel short))

(rule-name rule-6
(goal (‘mission object-recognition)
("orientation NW))

=
(“turn-angle left-30)
(“distance-to-travel long)).

other rules can be invoked. This example concerns a mobileThe membership functions of the fuzzy terms for the lin-
robot that should either circumnavigate an object if the missi@uistic variablegixel-position-x, pixel-position-y, orientation,
is obstacle avoidance or that should approach the objectditance-to-traveland turn-angle are shown in Fig. 25. As-

the mission is object recognition. In each case, the fineime that the depth-first strategy is selected for conflict
inference can only be drawn after a two-level inferencegsolution, meaning that a rule matched with the most re-
meaning that the rules fired initially must enable other ruleent facts will have a higher priority to be fired and the
whose consequents constitute the final conclusions. For tiies with the same priority will be randomly selected for
sake of our explanation here, the following six rules wilinclusion in the agenda. After Fact-1 and Fact-2 have been
suffice. Note, however, that an actual system for mobile roba$serted into the working memory to start the inference en-
navigation will contain hundreds of rules and that many of ttgine, rule-1 and rule-2 will be activated and placed in the
rules would be far more complicated than what we are aldgenda. Since both these rules contain the same linguistic
to show here. variable in their consequent sides, the evidence aggregation



578 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 6, NO. 4, NOVEMBER 1998

left-40 left-30 left-20 left-10  zero right-10 right-20 right-30 right-40
VR
1.0

-45 -40 -35 -30 -25 -20 -15-10 -6 0 5 10 15 20 25 30 35 40 45(de§)

turn-angle
4 med- med- 4
left  left ter right right I
1.0 & & center rig rig 1.0 close near far
255 0 255 0 120 240 360 480
pixel-position-x pixel-position-y
“INWW NW NNW N NNE NE NEE HIvery-  ghont medium long
1.0 1.0 |short
60 30 O 30 60 3 6.912 18222730 36(m)
orientation distance-to-travel

Fig. 25. Shown here are the membership functions of the fuzzy terms for the linguistic varmkébgosition-x, pixel-position-y, orientation, dis-
tance-to-travel,and turn-angle

network will go ahead and compute the final membership This new fact will nhow be encapsulated in a token and
function for this linguistic variable, taking into account thgropagated through the pattern network; as a result, the rule-
sup—min values propagated down by the pattern and tBeand rule-4 will be enabled and placed in the agenda. At
join networks and the prior membership function for théhis time, the agenda will contain rule-3, rule-4, and rule-2.
variable. Since rule-3 and rule-4 are matched with the same fact, Fact-
Since rule-1 and rule-2 are matched with the same fac8,they have the same priority. In addition, their priority is
they have the same priority to be fired. Assume rule-1 f@gher than the priority of rule-2 since Fact-3 is the most
fired first. The firing of this rule will cause the membershipecent fact. Recognizing that the enabled rule-3 and rule-4
function of the orientation variable to be updated with thecontain the same linguistic variables in the consequents, the
latest membership function computed for this variable by tlevidence aggregation network will go ahead and figure out the
evidence aggregation network. Fig. 26 illustrates the inferengpdated membership function for the variabtes-angleand
process resulting from the enabling of rule-1 and rule-2 amtistance-to-travetaking into account, via the pattern and the
the firing of rule-1. It is important to note that the fuzzyjoin networks, the fuzzy constraints generated by the condition
evidence of the variablerientationwas updated on the basiselements of the two rules. Assume rule-3 is fired first. As a
of the two rules, rule-1 and rule-2, even though only rule4ksult, the membership functions for the linguistic variables
has been fired so far. Therefore, as far as fuzzy inferencetusn-angle and distance-to-travelwill be updated to those
concerned, we may think of rule-1 and rule-2 as being bundledmputed by the evidence aggregation network, as pictorially
together. But note that bundling together does not imply thifiustrated in Fig. 27.
rule-2 should be fired immediately after rule-1. In general, Now the agenda will contain rule-4 and rule-2 for firing.
the consequent side of a rule (such as rule-2) will includgnce the former has a higher priority (owing to the higher
action elements that are nonfuzzy; the inference process widltency number of the fact that enabled this rule), it will
regard to these action elements must proceed in the traditiobal fired next. Since, for the fuzzy part of the inference, the
manner. rule was already accounted for when it was first placed in the
Firing of rule-1 will cause the following fact to be asserteédgenda, the firing of this rule would cause changes only if the
in the working memory: Fact-3: [goal”fnission obstacle- consequent side contained nonfuzzy elements. In our example,
avoidance)(orientation aggregate_term)]. no further changes would take place as a result of the firing of
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Fig. 26. lllustration of how the membership function afigregate_termfor the linguistic variableorientation is aggregated in the first cycle of the

inference engine.
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Fig. 27. lllustration of how the membership functions arfgregate_ternfor the linguistic variablegurn-angle and distance-to-travelare aggregated in

the second cycle of the inference engine.
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rule-4. Finally, rule-2 will be fired. Again, for reasons identicaj10] D. Driankov, H. Hellendoorn, and M. Reinfranin Introduction to
to those just mentioned, this firing will not cause any chang?s
11]

to the currently known facts.
If the purpose of a fuzzy expert system is to only redi2]

son, then the evidence shown in Fig. 27 farn-angle and

[13]

distance-to-traveWwill be the conclusive evidence for the robot
motion. However, the expert system usually must make its
overall conclusions known to the world in terms of numeric
values for the different linguistic variables. FuzzyShell pro-
vides a simple command to defuzzify the linguistic variables
based on the “center of gravity” method. (3]

[16]

VIlI. CONCLUSION [17]

While it is relatively easy to program up a small-scale fuzzij8l

expert system, the same cannot be said when hundreds[1

thousands of rules are involved, as is common with large-
scale expert systems. Every fuzzy reasoning system that allow

chains of inference, meaning that a rule is allowed to tri

ger other rules, must correctly address the first of the two
difficulties mentioned in the Introduction. The fuzzy exper[tzl]
system shells that are currently available commercially or as
free-ware on the internet satisfy only the second of the&]
requirements for multistep fuzzy inference. As was mentioned
before, the reason for this failure in the software systens]
currently available is clear: these systems are a result of most|
cosmetic modifications of traditional nonfuzzy expert syste
shells. On the other hand, in the work reported here we haig]
completely modified the guts of the inference engine—the RE'[E%]
network—to make it work correctly for the fuzzy case. How

this Rete network is modified is one of the main contributions
of our work. 27

(1]
(2]

(3]
(4]

(5]

(6]
(7]
(8]
(9]

7 Although we have shown the two rules (rule-5 and rule-6), those rules

[28]
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