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FuzzyShell: A Large-Scale Expert System Shell
Using Fuzzy Logic for Uncertainty Reasoning

Juiyao Pan, Guilherme N. DeSouza, and Avinash C. Kak

Abstract—There exist in the literature today many contri-
butions dealing with the incorporation of fuzzy logic in expert
systems. However, unfortunately, much of what has been pro-
posed can only be applied to small-scale expert systems; that is,
when the number of rules is in the dozens as opposed to in the
hundreds. The more traditional (nonfuzzy) expert systems are
able to cope with large numbers of rules by using Rete networks
for maintaining matches of all the rules and all the facts. (A Rete
network obviates the need to match the rules with the facts on
every cycle of the inference engine.) In this paper, we present
a more general Rete network that is particularly suitable for
reasoning with fuzzy logic. The generalized Rete network consists
of a cascade of three networks: the pattern network, the join
network, and the evidence aggregation network. The first two
layers are modified versions of similar layers for the traditional
Rete networks and the last, the aggregation layer, is a new concept
that allows fuzzy evidence to be aggregated when fuzzy inferences
are made about the same fuzzy variable by different rules.

Index Terms—Expert system, fuzzy logic, Rete network.

I. INTRODUCTION

DURING the last decade, fuzzy expert systems have been
proposed as a viable and user-friendly approach for

reasoning and control in the presence of uncertainty for a
variety of problem domains. It can no longer be disputed that
fuzzy logic allows humans to interface with machines in a
language that at the human end consists of expressions not
unlike those we use in our everyday discourse and that at
the machine end possesses numerical attributes necessary for
quantification. That fuzzy logic should be able to simultane-
ously fulfill the needs of both the humans and the machines
is made possible through the association of fuzzy membership
functions with symbolic or conceptual variables, the reasoning
itself consisting of inferring the membership functions for
some of the variables as evidence becomes available for some
others.

While the use of fuzzy logic for control has mushroomed
over the years—there are now thousands of papers on the
subject—its use in expert systems, especially when long chains
of inference are involved, has lagged. Some researchers would
even go so far as to claim that fuzzy logic has not worked out at
all for expert systems [11], [12]. The claim is made despite the
fact that there now exist organizations offering fuzzy expert
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system shells. We believe that one of the better known of
such shells is the FuzzyCLIPS system, developed recently
by the National Research Council, Canada [17]. In addition
to the shells, there also now exist in the literature numerous
reports on fuzzy expert systems for specific applications, such
as CADIAG-2 [1], [2], FRIL [3], RUM [5], FLOPS [7], FESS
II [8], REVEAL [19], SYSTEMZ-II [21], FLISP [25], FESP
[26], and Fault [27].

Because of challenges unique to fuzzy expert system design,
especially when multiple levels of inference1 are involved,
there is always the question of whether the developers of a
shell or an expert system took any liberty with the logic itself
in order to get the entire software system to work. The special
difficulties that fuzzy reasoning presents—difficulties that do
not exist for the case of crisp reasoning—are twofold.

1) All the rules that contain the same linguistic variable
on the consequent side must be fired and evidence
aggregated for that linguistic variable in accordance with
the method of inference chosen before a fact asserted
by one such rule is allowed to trigger another rule. Said
another way, an asserted fact about a linguistic variable
cannot be allowed to trigger another rule if there are
other rules yet to be fired that would assert further facts
about the same linguistic variable.

2) Since fuzzy terms often have overlapping membership
functions, a fact such as (robot speed fast) should be
able to match with a rule antecedent such as (robot
speed medium) if there exists an overlap between the
membership functions for the fuzzy termsfast and
medium.

While it is clear that all the fuzzy expert system shells,
FuzzyCLIPS being a case in point, are able to handle the sec-
ond difficulty, the same cannot be said for the first difficulty.
In fact, we are not aware of any fuzzy expert system shell that
handles cleanly the first difficulty.2

We must hasten to add that if the goal was to design a shell
for a small-scale expert system (one containing a dozen or
so rules), it would be trivial to write a computer program
that would handle both the above difficulties cleanly. The
inference engine of such a program would consist of a simple
do-loop that for each cycle would match all the facts with

1“Multiple levels of inference” is synonymous with the notion of “chaining
of rules.”

2Besides the two difficulties mentioned above, there also exist many other
challenges that must be surmounted for building a fully functional fuzzy ex-
pert system, challenges such as knowledge acquisition, choice/representation
of membership function, etc. However, practicalities of research make it
impossible to simultaneously attack all these problems.
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all the rules; for each cycle, a list of all the rules that can be
triggered by the facts currently available would be constructed;
the rules would then be batched so that all the rules with the
same linguistic variable on the consequent side would be in
the same batch and, finally, all the rules in the same batch
would be fired one after another before any other activity of
the inference engine, save for the incremental aggregation of
the membership function for the consequent linguistic variable
as each rule is fired.Unfortunately, such do-loops cannot be
used for large expert systems.

As years of experience with traditional expert systems have
demonstrated, a simple-minded approach that entails that all
the facts be matched with all the rule antecedents in each cycle
of the inference engine results in computational complexity
that is exponential in the number of rules. It is for this reason
that the heart of all the commercial expert systems of the
traditional nonfuzzy type such as ART, CLIPS [9], OPS83
[16], etc. that are designed to handle hundreds or thousands of
rules consists of a Rete network or a variant thereof. Rete
networks were originally advanced by Forgy [14], [15] to
enhance the computational efficiencies of the traditional expert
systems; that is, expert systems that are based on classic logic.

Therefore, if fuzzy expert systems are to become as success-
ful as their more traditional counterparts, it is imperative that
techniques such as Rete network be generalized from classic
logic to fuzzy logic and that is exactly what we have done
in this paper. The main contribution of this paper is to show
how a Rete network can be designed so as to carry out fuzzy
inference with computational efficiencies that are comparable
to those of the now well-known expert system shells such
as OPS5, OPS83, CLIPS, etc. without running afoul of the
principles of fuzzy logic.

As the rest of this paper makes clear, generalization of Rete
networks to handle fuzzy inference has proved to be nontrivial,
even when we restrict ourselves to the case of Mamdani-type
inference [22]. As described elsewhere in this paper, our work
has required complex data and control structures. While the
Rete network for a traditional expert system uses basically
two networks, one for matching facts with rule antecedents and
the other for reasoning about the consistency of instantiations
for the variables in the different antecedent statements of the
rules, the generalized Rete network for fuzzy reasoning has
required three networks. The additional network is needed for
the incremental aggregation of fuzzy evidence as each rule is
fired. In addition, as the reader will see, the other two networks
for the case of fuzzy reasoning are quite different from such
networks for the crisp case.

While it is true that the current implementation of the
generalized Rete network (as reported in this paper) is for the
specific case of Mamdani-type fuzzy inference, it can easily be
modified to accommodate most other types of fuzzy inference.

In what follows, we will use a specific example to illustrate
a fundamental problem with the currently available shells
for fuzzy expert systems. We will then review the relevant
concepts from fuzzy logic, focusing especially on Mamdani-
type inference, and provide a brief review of production
systems and Rete networks. That will be followed with a
detailed discussion of how Rete networks can be designed to

enable them to carry out Mamdani-type inference for our new
reasoning architecture named FuzzyShell. Finally, we will use
an example to illustrate the workings of FuzzyShell.

II. A SPECIFIC EXAMPLE ILLUSTRATING

A SERIOUS SHORTCOMING OF THE

CURRENT FUZZY EXPERT SYSTEM SHELLS

A fundamental problem with practically all the currently
available shells for fuzzy reasoning is that they are surface-
level modifications of existing rule-based programming shells.
To us, trying to modify an expert system shell intended for
crisp reasoning so that it can carry out fuzzy reasoning is
a perfect example of fitting a square peg into a round hole.
For reasoning that involves chaining of rules, these systems
invariably violate the principles of fuzzy logic, as will be clear
from subsequent discussion. In other words, they can be used
with confidence only for control applications where, in most
cases, only a single level of inference is needed.

To drive home this point, consider for illustration the
following three rules:

Rule 1 IF is THEN is ;
Rule 2 IF is THEN is ;
Rule 3 IF is THEN is .

Assume that the terms and associated with the
linguistic variable have overlapping membership functions
and that the same is the case for the termsand associated
with the linguistic variable . Assuming that the working
memory contains the fact ( is ), let us now examine how a
traditional expert system modified to carry out fuzzy reasoning
would make inferences.

The fact ( is ) would enable Rule 1 and, after this
rule is fired, the fact ( is ) would be asserted into the
working memory. Under the commonly used lexicographic
(LEX) and means-end analysis (MEA) strategies3 conflict
resolution strategies—strategies in which the time recency of
the enabling fact plays a decisive role in deciding which rule
to fire next—this new fact would now enable Rule 3. The
problem is that if the dictates of fuzzy logic are not to be
violated, then Rule 2 must also be fired before Rule 3 is picked.
(Recall the fact ( is ) will also enable Rule 2 due to the
overlap between membership functions for the termsand

.) In other words, all the enabled rules that have anything to
say about the linguistic variable must all be fired and their
conclusions aggregated prior to selecting any rules for firing
whose antecedents containing this linguistic variable.

It is true that with a different strategy in a traditional pro-
duction system, such as the breadth-first strategy, it would be
possible to ensure that both Rule 1 and Rule 2 are fired before
the selection of Rule 3. But, it is often not possible to use the
breadth-first strategy. For example, backward reasoning can
only be carried out with the MEA strategy [6].

Therefore, the upshot is that today one must either resort
to highly inefficient systems that carry out a brute-force

3These are two of the more common strategies for conflict resolution in a
traditional production system. In OPS like expert system shells—that includes
the CLIPS shell—the MEA strategy is particularly useful for backward
reasoning [6].
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implementation of fuzzy logic in which every fact must be
matched with every rule for every cycle of the inference engine
or one might try to use modifications of the currently available
computationally efficient expert system shells, but at the risk of
implementing faulty logic. While the former types of systems
can only be used when the number of rules is small, usually in
the tens as opposed to hundreds, the use of the latter is fraught
with the possibility of error in the inferences drawn.

III. FUZZY LOGIC

Despite the existence of voluminous literature on the subject
[4], [13], [20], [22], [23], [28]–[30], [32], we feel it is
necessary for us to include a very brief review of fuzzy
logic for two reasons. We wish to inform the reader as to
which fuzzy logic—especially what compositional operators
for propagating evidence—we have used for the new class
of Rete networks presented in Section V. Additionally, we
believe that a brief fuzzy logic review here would be helpful
to the readers who are from the traditional expert system
community.4

Central to fuzzy logic is the notion of a linguistic variable,
such asdistance(whose values are known as the terms) such
as very-far, far, very-near, near, close,and very-close. The
range of numerical values spanned by a linguistic variable is
called theuniverse of discoursefor that variable. Associated
with each term is afuzzy membership function, a function
whose range is the closed interval [0,1] and whose domain
is a subset of the universe of discourse. A term together with
its membership function is also called afuzzy set. The three
basic operations on fuzzy sets are those of union, intersection,
and complement. There are various ways of generalizing the
definitions of these operations from crisp sets to fuzzy sets.
We will now briefly state the definitions on which our work
is founded. Suppose for a linguistic variablewe have two
fuzzy sets and with membership functions given by
and , respectively. The membership function of the union
is given by

The max operator above is just one of the many-norm
functions [10] commonly used in fuzzy logic for implementing
the union and it represents the “most pessimistic” of them.
Similarly, for the definition of intersection, let and be
the terms of the same linguistic variable; the membership
function of the intersection is given by

The min operator is one of the -norm functions that define
intersection and represents the “most optimistic” of them.
Both the max operator for union and themin operator for

4The explanation of our work is made complicated by the fact that it
represents a bridge between two rather disparate fields of knowledge, fuzzy
logic, and Rete networks. To make our work accessible to readers from the
traditional expert systems community, we must provide at least a brief review
of the fuzzy logic ideas, though at the risk of sounding pedestrian to the
fuzzy logic community. Similarly, to make our work accessible to the fuzzy
logic community, we must not gloss over too quickly the concepts from Rete
networks. Hence, the material reviewing Rete networks.

Fig. 1. A pictorial illustration of the compositional rule of inference.

intersection are arbitrary but commonly used choices among
all possible ways of defining such operators.

Finally, the complement can be defined by

Besides these basic operations, fuzzy inference requires
that we associate a fuzzy membership function with each
implication. Along the lines discussed in [22], for the rule
“IF THEN ,” a possible fuzzy membership function is

where and span the universes of discourse corresponding
to the terms and . Note that is a two-
dimensional set. To drive home this very important point,
consider the following rule:

In Fig. 1, we have shown the fuzzy membership function
in the form of a matrix of numbers

inside a box when is as shown just below the horizontal
axis (on the line labeled and as shown to the left of
the vertical axis. Shown in Fig. 2 are the membership functions
for the different terms for the linguistic variables and

.
As suggested by Zadeh, given data , fuzzy evidence

can be propagated through a rule by using what is usually
referred to as a compositional rule of inference (CRI) [31].
To explain the CRI we use, let us say, the given rule is “IF

THEN ” and the data available is . Our goal now
is to infer a new membership function for the termin the
consequent of the rule in the light of the available fact .
The following CRI is common in the literature
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Fig. 2. Fuzzy membership functions forclose, very-close, hard,and very-hard.

Fig. 3. The degree of match betweencloseandvery-closeis used to truncate
the membership function of the consequent termhard associated with the
linguistic variablebrake.

where spans the universe of discourse for the termand
the same for the term . Obviously, the terms and
must span the same universe of discourse. To illustrate this
further with our example, we have shown (in Fig. 1) the
sup–min operation demanded by the formula above leading to
the inferred membership function for the consequent variable
hard. The inferred membership function is shown as a column
of numbers to the right of the box. In this case, is
very-close(see Fig. 2). This inferring process is denoted by

In practice, there is a faster way to implement the above CRI.
As shown in Fig. 3, we get the same result if we first take

and use the number thus obtained to truncate the membership
function for the consequent term . We will refer to the
number obtained from the sup–min operation above as the
degree-of-match between and . Using the example
membership functions shown in Fig. 2, the reader can easily
verify the veracity of this statement. So, while it is common to
show figures like the one in Fig. 3 to explain the propagation
of fuzzy evidence, for theoretical analysis one has to resort to
the compositional formulas shown above.

We will now discuss the case when fuzzy evidence must
be propagated through multiple rules simultaneously and the
results aggregated. Consider the case when we have the
following two rules that can both be triggered by the same
data:

Rule 1 IF distance is close THEN brake hard;
Rule 2 IF distance is very-close THEN brake very-hard.

If the measured distance (considered a discrete value) has a
value which has a nonzero membership in both the setsclose
andvery close, then both the rules shown above can be fired.
If the measured distance is itself a fuzzy set—because of the
uncertainties associated with the sensor—and this fuzzy set has
a nonzero intersection with the fuzzy setscloseandvery close,
then again, both these rules could be fired. Two important
issues need to be resolved with regard to the propagation of
evidence through multiple rules.

1) Is the order in which the rules are invoked important?
2) How does one combine the conclusions drawn from all

the rules fired from a given set of facts?

The following lemmas answer both questions. For proofs, the
reader is referred to [20].

Lemma 1: Given a fact that can match the antecedents of
rules , , , , each rule being of the form ,
the overall conclusion from the rules satisfies the following
distributive relationship:

Note that a set of rules that can be fired by a given fact has
been represented by a union operator; also note that B is the
fuzzy set obtained by aggregating together the appropriately
modified conclusion fuzzy sets , , , . Representing
a set of rules by a union operator is justified because the
different rules represent alternative ways of asserting the
conclusion. The lemma above tells us that if we wish to
propagate a fuzzy fact through, say, two different rules, we
should propagate the fact through each rule separately and
then take fuzzy union of the conclusion fuzzy sets.

While the above lemma teaches us how to deal with multiple
rules, there is only one term in each rule antecedent. We will
now allow each rule to contain multiple terms, expressed as
conjunctions, in its antecedent. In what follows, we will show
two more lemmas derived by Lee [20], which will tell us how
to carry out the fuzzy inference in one rule and then how to
obtain the final conclusion of a linguistic variable for a set of
firing rules.

Lemma 2: Given two facts and corresponding to two
different linguistic variables that can match the two facts in
the antecedent of a single rule of the form “IF and
THEN ,” the conclusion fuzzy set for can be obtained
by the following formula:
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Fig. 4. Membership functions for the termsdistanceandspeed.

Lemma 3: Given two facts and corresponding to
different linguistic variables that can match the two facts in
each of rules , , , , each rule being of the form “IF

and THEN ,” the overall conclusion that can be drawn
from the rules obeys the following distributive relationship:

This lemma tells us that the final conclusion is to be made by
propagating the fuzzy evidence through each rule separately
and then taking a fuzzy union of the resulting conclusions.

An Important Issue Related to Fuzzy Evidence Aggregation

The different terms for a linguistic variable will ordinarily be
defined by a human user. Unfortunately, if two different rules
assert two different terms for the same linguistic variable, then
the composite fuzzy membership function for that linguistic
variable may not correspond to any of the predefined terms.
Consider the following fact and rules:

Fact 1 (distance is near);
Rule 1 IF (distance is close) THEN (speed is slow);
Rule 2 IF (distance is far) THEN (speed is medium);
Rule 3 IF (speed is fast) THEN .

The membership functions of fuzzy terms ofspeedand
distanceare shown in Fig. 4. Rules 1 and 2 will be activated
by Fact 1 since the membership function fornearhas overlaps
with those of close and far. It is clear that after Rules 1
and 2 have fired, the composite membership function for the
consequent linguistic variable will look like what is shown
in Fig. 5. If a purely numerical approach to fuzzy evidence
accumulation was used, as would be the case for small-scale
systems—such a composite membership function would pose
no problems even though it does not correspond to any of the
terms shown for the consequent linguistic variable. However,
for a large-scale system, there needs to be a mechanism for
associating a label with any arbitrary membership function that
the process of evidence accumulation might result in.

Therefore, in FuzzyShell, for each linguistic variable we
define a special term, called theaggregate_term. This term
is a shell-created special term for each linguistic variable
for which fuzzy evidence is asserted via the consequents of
two or more rules. Evidently, this term does not possess the
usual semantics; for example, for the linguistic variablespeed,
the usual terms,slow, mediumand fast possessing obvious
meanings, stand in contrast to the termaggregate_termthat
admits any membership function.

For the example shown above, it is obvious that after the
evidence is accumulated from Rules 1 and 2, Rule 3 would

fire due to the overlap between the accumulated evidence in
the form of the asserted membership function for the term
aggregate_termand the membership function for the termfast.

IV. PRODUCTION SYSTEMS AND RETE NETWORKS

All large-scale expert-system shells of note, such as the
CLIPS system from NASA, the commercial systems ART,
OPS5, OPS83, and many others, are founded on the concept
of production systems, a concept that was first promulgated by
Newell and his co-workers [24] and subsequently made useful
for practical problem solving by the seminal work of Forgy
on Rete networks [14], [15].

The overall organization of a production can be explained
very quickly with the help of Fig. 6. The three principal
components of a production system are: aworking memory
for data (also called the facts); aproduction memoryfor rules;
and aninference engine, whose function is to infer new facts
from existing facts and rules, to assert the new facts into
the working memory, and then to continue this process of
discovering new facts via the rules through the new store of
facts in the working memory until, of course, no further facts
can be inferred. Traditionally, the statements on the left-hand
side of a rule are called thecondition elementsin the argot of
production systems and the statements on the right-hand side
the action elements. What gives an expert system the flavor
of a production system is the manner in which the inference
engine operates. Each cycle of the inference engine consists of
three steps, each corresponding to one of the modules shown
inside the inference engine box in Fig. 6. The first step consists
of propagating the latest changes to the working memory
through the Rete networks—its operation will be explained
shortly—and figuring out which rules are enabled by the latest
facts. This set of rules is called theconflict setor theagenda.
The second step consists of ordering the rules posted on the
agenda on the basis of considerations such as whether or not
the same rule was fired before, the recency of the enabling
facts from the working memory, the simplicity/complexity of
the rule, etc. The top-ranked rule is then selected from the
agenda thus ordered. The last step of the inference engine
then executes theactions listed on the right-hand side of the
fired rule. This action may consist of either asserting the newly
inferred facts into the working memory or invoking functions
or procedures that are external to the production system.5 This,
then, is the explanation in a nutshell of a production system.
We are now ready to explain the operation of Rete networks.

Rete networks have been used in the traditional expert
systems to ameliorate the computational burden that would
otherwise be associated with matching all the rules with all
the facts on each cycle of the inference engine. A regular
Rete network compiles all the rules into a tree-structured
sorting network of feature tests. Only the rule antecedents are
used for the creation of a Rete network. Generally speaking,
a Rete network contains two networks that are the pattern
network and the join network, the former for the purpose of

5For further discussion on the different possible strategies for ordering the
rules posted on the agenda—these strategies carry names like LEX, MEA,
depth-first, etc. [6], [18].



568 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 6, NO. 4, NOVEMBER 1998

Fig. 5. The composite membership function obtained for the consequent linguistic variable after the fuzzy evidence is combined from Rules 1 and 2.

Fig. 6. Architecture of a production system.

representing all the condition elements in all the rules (in
a manner that eliminates duplication between the rules) and
the latter for comparing the bindings of those variables that
are common to the different condition elements for the same
rule. To illustrate the organization of a Rete network, consider
the following example where we have shown the condition
elements of two rules:

(rule-name rule-1
(robot ( ission navigation)( ensor ?x))
(sensors( iority low)( ensor ?x))

(rule-name rule-2
(robot ( ission navigation) ( ensor ?x))
(sensors ( riority high) ( ensor ?x))

Fig. 7. Rete network for rule-1 and rule-2.

In the Rete network (shown in Fig. 7), each condition element
of each rule is represented by a sequence of tests, each test
corresponding to one node called the pattern node in the
pattern network. For example, the first condition element of
rule-1 is represented by the pattern nodes, , and , whereas
the second condition element of the same rule is represented
by , , and . The join node (marked J1) for rule-1 holds
the test on the variable that is shared by the two condition
elements of the rule. In this case, the test ensures that the
bindings for the variable are consistent.

When a new fact is asserted into the working memory, the
fact becomes a token that traverses through the pattern network
and, subsequently, may be propagated to the join network to
find out which rules can be enabled. The syntax of a token is
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represented as follows:

-

where the tag could be “” or “ ” for representing the
addition or deletion for the tokens, respectively. The Fact-
ID contains the working memory elements or sequences of
working memory elements. To explain how the tokens are
propagated, assume that the following fact is asserted into the
working memory.

Fact 1: [robot-( mission navigation) (sensor-range-
sensor)].

A token ( Fact 1) will be created, and then propagated into
the pattern network along arcs that contain tests relevant to the
fact.6 In this case, the first element of the token will pass the
test in pattern node since this node tests for whether or not
the first field contains the symbolrobot. For similar reasons,
the token would also pass through the node. As the token
passes through the pattern node, the variable will be
bounded to the value range-sensor. Finally, the token will be
saved in what is referred to as the left memories of the join
nodes marked J1 and J2. This would remain the status of the
Rete network if no further information were to be injected into
the production system. Now assume that the following fact is
asserted into the working memory.

Fact 2: [sensors (priority high) ( sensor-range-sensor)].
This will cause the token ( Fact 2) to be injected into the

Rete network at the root node. In a manner similar to what
happened for the previous token, the new token will travel
along the path composed of the pattern nodes, , and and
will then come to rest in the right memory for the join node J2.
Given the tokens residing in its left and the right memories,
the join node J2 is now able to carry out the test assigned to
it and declare that Rule 2 is to be placed on the agenda.

The important features to note about a Rete network are
that it eliminates temporal and structural redundancies for
figuring out what rules should be enabled at each cycle of
the inference engine. Since all the changes to the working
memory are propagated into the network in the form of
positive and negative tokens, a fact once absorbed into the
network remains there until a negative token regarding the
same fact is propagated into the network. A negative token
is propagated when a fact is retracted. So, unless a fact
is retracted, computations for matching the fact with the
condition elements need to be carried out only once. This
is referred to as elimination of temporal redundancies in
the matching process. Another important feature of a Rete
network is that it eliminates the structural redundancies; that
is, redundancies caused by structural similarities between the
different statements of rule antecedents. For example, the
pattern node is shared by Rules 1 and 2. By eliminating
the redundancies mentioned above, a Rete network can reduce
the computational complexity for matching the facts with the
rules from exponential time complexity in the number of rules
to polynomial time complexity [14].

6The search for which arcs to use for propagating a token takes place in a
depth-first fashion.

Fig. 8. Architecture of FuzzyShell.

V. ARCHITECTURE OFFUZZYSHELL

We will now present our new architecture for a fuzzy
expert system shell (FuzzyShell) that employs a new class
of Rete networks, which make possible fuzzy inference for
large-scale expert systems. Since this system is based on the
same principles as a production system, its computational
efficiencies parallel those of such well-known systems as
CLIPS, OPS83, etc.

Fig. 8 depicts the overall flow of control and the various
modules of FuzzyShell. All the symbols, fuzzy and crisp, are
interned in a module called the the fuzzy symbol manager
where the latest membership functions for the fuzzy terms are
stored. Therefore, when the firing of a rule calls for a change
in the membership function of a variable; that change takes
place in the fuzzy symbol manager.

Besides the fuzzy symbol manager, what makes FuzzyShell
truly different from the more traditional production systems
is the new three-layer Rete network shown in Fig. 8. The
first two layers, the pattern network and the join network, are
similar but not at all identical to such layers in, say, CLIPS.
However, the third layer, the evidence aggregation layer, is
new and designed solely to account for the fact that in fuzzy
inference, the membership function of a given fuzzy term
can be modified by multiple rules and that all these changes
must be aggregated together before that variable participates
in subsequent cycles of the inference engine.

In what follows, we will show how the working memory
elements are represented in FuzzyShell. We will then discuss
the representations used for rule antecedents in the pattern
and join networks; we will show representations that allow the
antecedents to be of arbitrary length. We will also discuss how
the pattern network calculates the degree of match between a
data membership function and one associated with a matching
term in a rule antecedent. Next, we will discuss how the
join network enforces consistency across different antecedent
elements in a rule. The last subsection will then present the
workings of the evidence aggregation network.
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Fig. 9. Shown here is the representation for a symbol in the working
memory.

Fig. 10. The linked list shown in the lower portion allows the membership
function shown in the upper portion to be piecewise linear continuous.

A. Representation of Working Memory Elements

Each working memory element is composed of sym-
bols—fuzzy and crisp. Each symbol, fuzzy or crisp, is
represented by instantiating the data structure shown in
Fig. 9. This representation consists of a field forname; a
field for type, indicating if the symbol is crisp or fuzzy;
and a field formembership-function, which points to a data
structure where the membership function of the symbol
resides. The membership function is allowed to be piecewise
linear continuous (as shown in Fig. 10) and is represented
by a linked list of nodes such that each node contains a
value from the universe of discourse and a membership grade
corresponding to that value. To compute the degree-of-match
between two membership functions, the system computes
the intersection of the membership functions comparing each
linear edge in one function against all the linear edges in the
other. For example, to compute the intersection of the two
membership functions shown in Fig. 11, the edgeof one
of the functions will be compared with all the edges of the
other; then edge will be compared in a similar manner and
so on. If is the number of linear segments in a membership
function, the complexity of this approach is obviously ,
but given that is usually a very small number, the resulting
computational burden is minimal. After the intersection points
between the two membership functions are computed, the
point that has the largest value for the intersection is retained;
this largest value, as, for example, represented by thevalue
of the point in Fig. 11, corresponds to what would result
from the sup–min operation.

As we mentioned in the previous section, a special term
(aggregate_term) is used to represent the accumulated evi-
dence for a linguistic variable during the inference process. For

Fig. 11. Shown here are two membership functions for two separate fuzzy
sets to illustrate how to compute the degree of match between them.

FuzzyShell to work in complex domains, a linguistic variable
may have differentaggregate_termin different but related
contexts. To drive home this point, assume that we wish to
assert the following facts into the working memory:

Fact-a [robot ame Peter) peed fast)];
Fact-b [robot ame Alvin) peed medium)];
Fact-c [robot ame Peter) peed medium)];
Fact-d [robot ame Alvin) peed slow)].

Obviously, the different terms for the linguistic variable
speedin Fact-a and Fact-b should not be aggregated into a
single membership function since the facts relate to different
robots. However, the fuzzy evidence in Fact-a and Fact-
c should be aggregated into a single membership function
function for speed. The same would be the case for Fact-b
and Fact-d. Assume that the following two facts represent the
accumulated evidences, Fact-1 for Fact-a and Fact-c, Fact-2
for Fact-b and Fact-d:

Fact-1 [robot ame Peter) peed aggregate_term)];
Fact-2 [robot ame Alvin) peed aggregate_term)].

Evidently, the two instantiations of the data-structure of
Fig. 9 for the same fuzzy termaggregate_termwill be dif-
ferent. Each will have a pointer from the data structure
representing the entire working memory element.

B. Pattern Network

As mentioned in Section IV, in a traditional (nonfuzzy)
expert system, the pattern network is used for creating and then
maintaining matches between all the rule antecedents and the
currently available facts. As was mentioned there, each node
of this network carries out a test that, in effect, compares a
symbol from a rule antecedent with a symbol in the same
position in a fact. In other words, each “arm” of the pattern
network is a string matcher for comparing condition element
strings with fact strings.

For obvious reasons, when fuzzy predicates are involved,
there is much more to matching than carrying out a position-
by-position comparison of symbols. Now we must also com-
pare fuzzy sets associated with the symbols and ascertain
the degree of match between a fact symbol and a condition-
element symbol. This introduces complications into the design
of a pattern network. In order to explain how the pattern
network works in FuzzyShell, we will first introduce the
pattern node (Fig. 12), the basic building block of the pattern
network. This node is connected to the rest of the pattern
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Fig. 12. Representation of a pattern node.

network via the five links shown, although not all of them may
be used for any particular node, depending on the position
of the node in the network. For example, the link,join, is
used at only those nodes that feed information into the join
network. Also shown in Fig. 12 is all the information that
resides at each pattern node. The first one of these,alpha-
memory, is used only in the terminal pattern nodes; these
are the same nodes that use thejoin link. This information
consists of the token that has propagated to that point. The
second piece of information at each node,degree-of-match,
represents either the sup-min of the fuzzy membership function
for the variable that is under test and the membership function
of the corresponding entity in the fact or the least of such
sup-min values for upstream variables. The next field,pattern-
value, is the fuzzy term in the pattern. Finally, there is a
field, mem-fun, for representing the membership function of
the node if the node stands for a fuzzy variable. The following
explanation will shed further light on how these different kinds
of information are used.

To explain further, consider first the following three condi-
tion elements in a rule-antecedent.

Pattern1 [X rop1 a) rop2 b)];
Pattern2 [X rop1 a) rop3 c)];
Pattern3 [Y rop4 d) rop5 e)]

where the fist pattern could, for example, stand for a real
pattern like (robot istance medium peed low).

These patterns are compiled in the order in which they are
read. Upon reading the first pattern, a network consisting of
the nodes PN1, PN2, PN3, and PN4, as shown in Fig. 13,
is constructed. (The pointersnextand last between the nodes
make it possible for a token to traverse easily between nodes.
More on this subject later.) When the second pattern is read
in, this network is extended in the manner shown in Fig. 14
by the creation and inclusion of the nodes labeled PN5 and
PN6. Note that this extension was achieved by first breaking
the link nextbetween PN2 and PN3 in Fig. 13; this link now
points from PN2 to the new node PN5. At the same time, the
links right and left connect the two siblings nodes PN3 and
PN5. Both PN3 and PN5 have PN2 as their common parent
since the nodes prior to and including PN2 are common to both
the patterns being compiled here. An important point to note
is that when a new pattern is compiled, the network already
constructed is searched in a depth-first fashion to seek out the
nodes that can be reused. The pointerright is used to mark the

Fig. 13. This example illustrates the pattern network for Pattern1.

Fig. 14. This example illustrates the pattern network for Pattern1 and
Pattern2.

bifurcation point, a point prior to which the nodes are common
to two or more patterns. It is in this manner that the pattern
network eliminates the structural redundancies in the matching
process. The reader has probably already noted that of the two
sibling links left and right, it would be sufficient to use only
the latter to get rid of all the aforementioned redundancies. The
link left is needed to eliminate those portions of a compiled
network that correspond to a deleted rule. For example, if
we wished to delete Pattern1 (supposedly, this pattern is the
antecedent of some rule we wish to excise from the database)
after the structure shown in Fig. 14 has already been created.
The deletion of nodes must of necessity begin from the bottom
of the pattern network, since the one lower down goes into a
pattern network, the more specific the nodes are to individual
patterns and rules. So, in this case, the system would first
delete node PN4. At the same time, through thelast link of
PN4, the system would discover that PN3 belongs to the same
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Fig. 15. This example illustrates the pattern network for Pattern1, Pattern2
and Pattern3.

pattern. So this node would be deleted next. Simultaneously,
the deletion algorithm would discover that the just-deleted
node was a bifurcation point; this, through the linkleft, would
result in the discovery of the sibling PN5. The last step
undertaken by the deletion program would be to drop the
right pointer from PN5.

Now let us see what happens when Pattern3 is compiled.
As shown in Fig. 15, since none of the existing pattern nodes
is reusable for embedding Pattern3 in the network, the new
nodes (PN7–PN10) are created. Comparing Figs. 14 and 15,
note that the linknextemanating from the Root node is broken
with PN1; it is now directed to PN7. Therefore, the new
entry point into the network will now be PN7. When a token
corresponding to, say, Pattern1 is now propagated into the
network, it would clearly fail to descend down the column of
nodes headed by PN7. This token will instead use theright
pointer at PN7 to hop over to the PN1 node.

Before we discuss how to build the join network, we will
now describe how fuzzy evidence gets propagated through the
pattern network. As we mentioned earlier, for each pattern
node there is a degree-of-match value stored in the node—the
value obtained using the applicable principles of fuzzy infer-
ence. To be more specific, given a fact like is and a
rule antecedent like is , if the membership functions of

and have an overlap, the match occurs and the value of
degree-of-matchis computed and stored in the corresponding
node of the pattern network to indicate the extent to which
the fact is matches the rule antecedent is ;
this degree-of-match then becomes a part of the token that
is transmitted downstream in conjunction with the fact. The
syntax of this token is

- - -

Consider, for example, the following patterns which are the
antecedents of different rules. Additionally, assume that the
fact in the working memory is [robot istance near) peed
fast)]:

Fig. 16. An example that shows how fuzzy evidence is propagated through
the pattern network.

Pattern1 [robot istance close) peed fast)];
Pattern2 [robot istance far) peed medium)];
Pattern3 [robot istance very-far) peed slow)];
Pattern4 [robot istance far) peed slow)].

Fig. 16 shows how the fuzzy evidence is propagated through
the pattern network given the fact[robot istance near)
( peed fast)]. The number inside a pattern node is degree-of-
match between the fuzzy term that corresponds to that node
and the corresponding fuzzy term in the token. For example,
at the node for the linguistic variabledistancein the leftmost
column in Fig. 16, the degree-of-match corresponding to a
match of the termclose with the termnear in the token is
0.6, the number shown inside the node. The minimum of this
number and the degree-of-match number associated with the
token is what gets passed down to the next node in the network.
So, for the same node as before, the incoming token degree-of-
match value is 1.0 and the local degree-of-match value is 0.6.
So the token degree-of-match is reset to 0.6, as depicted by the
number shown next to the downward arrow emanating from
the node. The operation of taking the minimum of the local
and the token degree-of-match at each node corresponds to the
intersection operation discussed in Section III. Now consider
the case of Pattern3. As shown in Fig. 16, sincevery-far is
not the overlapping term ofnear, there is no token produced
by this branch of the network. The tokens will be directly
propagated from the terminal pattern nodes to the join network.

C. Join Network

In the previous section, we showed how the pattern network
part of a Rete network can be generalized to handle matching
for fuzzy strings. We will now do the same for the join
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Fig. 17. Representation of a join node.

network. Recall from Section IV, the purpose of a join network
in a traditional expert system is to ensure that the bindings for
the same variable in the different condition elements of a rule
are consistent. In a fuzzy system, two different bindings for
the same variable would be consistent if there is an overlap of
the fuzzy sets for the two bindings.

Consider the following rule antecedent for which the two
separate arms of the pattern network corresponding to the two
condition elements shown would come together at a join node
as shown in Fig. 18:

(rule-name rule-1
(robot ( ame Peter) ( istance ?x) ( peed ?y))
(robot ( ame Alvin) ( istance ?x) ( peed ?y))

( )).

Now assume that the following two facts are in the working
memory.

Fact-1 [robot ame Peter) istance far) peed fast)];
Fact-2 [robot ame Alvin) istance near) peed

medium)].

Evidently, the match of Fact-1 and the first condition
element will produce the instantiationfar for the variable
and the instantiation offast for the variable . Similarly, the
match of Fact-2 with the second condition element will yield
the instantiationnear for and the instantiationmediumfor

. The join node shown in Fig. 18 must now decide whether
or not the different instantiations for the same variable are
reconcilable on the basis of the overlap between the respective
fuzzy sets. The join node carries out the following two steps:

1) compares the fuzzy sets of all the different fuzzy sets
associated with the same linguistic variable (such as
speedin the above example) and then takes sup–min
of the fuzzy membership functions;

2) the node calculates the minimum of all the sup–min
numbers for all the different shared variables in the two
inputs to the join node; this minimum must be nonzero
for the join node to produce any output.

How a join node accomplishes all of the above will be clear
from its representation shown in Fig. 17. There are six pointers
employed by a join node. Four links,last, next, left,andright,
are used for connecting the nodes within the join network. The
other two links,patternandaggregation, provide the pathways
to the pattern network and the evidence aggregation network,
respectively.

Fig. 18. The join node for rule-1 will ensure that the bindings for the
variables?x and ?y are consistent.

Fig. 19. Join network for Rule 1.

There are three kinds of information residing at each join
node. The first,binding-expressions, is a pointer to the feature
tests for the two inputs to ensure that the bindings for the
variables shared by the rule antecedents are consistent as
mentioned above. The second field,min-degree-of-match, is
for storing the minimum of three such values, two coming from
the two input tokens to the join node and one corresponding
to the fuzzy match between the bindings for the variable in
question. The value ofmin-degree-of-matchfor a join node is
transmitted along with the token to the next level of the join
network if the tests associated with that join node are passed.
The last field,beta-memory, is the set of working memory
elements associated with consistent variable bindings that have
been tested by the join nodes up to and including the current
one. Later, we will have more to say about these different
types of information stored at each join node.
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In our case, a rule with rule antecedents will have
join nodes, with each join node having either one or two input
nodes, as shown in Fig. 19, for the case of two patterns from
the first of the rule fragments shown below. The join nodes
that feed rule instantiations into the agenda require two inputs,
usually referred to as the left and the right memories in the
literature on production systems; theright memory consists
of what is pointed to by thepattern pointer and the left
memory of what is pointed to by thelast pointer. The join
nodes that are more in the interior are of one input kind.
These nodes are usually just below the terminal nodes of the
pattern network and owe their existence to the resulting ease
in programming.

With the help of an example we will now illustrate how
the join network takes advantage of any structural similarity
that might be present across different rules through shared use
of join nodes. In general, the following three conditions must
be satisfied to share a join node: First, all the previous join
nodes must be shared; second, the join node to be shared must
be entered from the same direction; and third, the binding
expressions generated by what would otherwise be a new
join node must be identical to the expressions generated when
an already existing join node is instead shared. Consider the
following three rules:

(rule-name Rule 1
Pattern1
Pattern2

( ))

(rule-name Rule 2
Pattern2
Pattern3

( ))

(rule-name Rule 3
Pattern1
Pattern3

( ))

where Pattern1, Pattern2, and Pattern3 are the different con-
dition elements in the rules; these patterns result in a network
like the one shown in Fig. 15, with the leaves of this network
being called the terminal pattern nodes. The join part of the
network that results from processing Rule 1 is shown in
Fig. 19.

While the field pattern is for creating links between the
pattern network and join network, the fieldslast, left, right,
and next in a join node are essential for creating the needed
pathways for propagating the tokens. As mentioned before,
at each join node the pointerslast and pattern are pathways
for the left and right memories, the former supplying all the
partial matches in all the patterns encountered so far and the
latter in the new pattern. Each join node is capable of querying
the higher level nodes through these pathways and pulling in

Fig. 20. Join network for Rule 1 and Rule 2.

Fig. 21. Join network for Rule 1, Rule 2, and Rule 3.

the partial matches. As for the downward pointers in Fig. 19,
they permit the system to focus on just those join nodes that
are affected by the latest changes to the working memory. For
example, if after the generalized Rete network is all assembled,
two facts that can match Pattern1 and Pattern2 are placed in
the working memory. Through the downward pointersjoin
andnext, Join2 node will be intimated that partial matches are
available in its left memory. Via thejoin link, Join2 node will
discover that information is also available in its right memory.
With both memories being made available at Join2 node, it
will go ahead and decide whether or not Rule 1 should be
placed on the agenda.

After processing Rule 2, the join network will look as
shown in Fig. 20. Note how thejoin field of “terminal pattern
node of Pattern2” is broken for inserting another join node,
Join3, and theright pointer of Join3 node made to point to
the Join2 node. This allows both the Join2 and Join4 nodes
to inherit all the nodes that correspond to Pattern2. At a
still higher level of complexity, now consider what happens
when Rule 3 is also processed. The new network is as shown
in Fig. 21. The new rule shares Pattern1 with the first rule
and Pattern3 with the second rule. Rule 3 causes redirection
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Fig. 22. An example for propagating fuzzy evidence through the Join Network.

of the join pointer of “terminal pattern node of Pattern3”
node from Join4 node to the new node Join5. Note that this
redirection leaves undisturbed the pathways to the left and the
right memories at Join4 node, since the former is via thelast
field and the latter via thepatternfield, both these remaining
unchanged.

Before we describe how to propagate the fuzzy evidence
through the join network, we’d like to mention the different
roles played in this process by theleft and theright links.
When two different rules share the same join nodes from the
left input (example: Join1 is shared on the left-hand side by
Join5 and Join2), that is represented byleft link from, in this
case, Join5 to Join2. On the other hand, when two join nodes
share a pattern on the right-hand side (example: Join5 and
Join4 share Pattern3 on the right input), that is represented by
link right from, in this case, Join5 to Join4.

As mentioned earlier, the fuzzy evidence is propagated from
the terminal pattern nodes to the join network. Each join node
contains the value of min-degree-of-match that was mentioned
previously. This value will also be transmitted to other join
nodes along with the tokens. Using the same strategy as in the
pattern network, the tokens traverse the join network depth
first. To explain further, for each join node, if the input token
is received from the left input, a new token is propagated
first via the link next assuming the tests on the variables are
satisfied. The depth-first strategy will cause this token to be

subsequently propagated via the linkleft. Similarly, if a token

is received at the right input, a new token will be propagated

first via the link next; subsequently, the same token will be

propagated via the linkright. Backtracking in this depth-first

propagation is accomplished with the help of the pathways

provided by the linklast.
To illustrate the workings of join nodes in the network and

the fuzzy inference operations that take place in these nodes,

consider the following two-rule example and the facts[robot

( istance far) ( peed fast)), (mission ( oal find-object)

( peed medium) ( onar-reading safe)], (sonar-reading safe)

and (turn-angle right-30):

(rule-name Rule 1
(robot ( istance near)( peed ?x) )
(mission ( oal find-object) ( peed ?x)
( onar-reading ?y))

( ))

(rule-name Rule 2
(robot ( istance near)( peed ?x) )
(turn-angle right-20)

( )).
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Shown in Fig. 4 are the membership functions of the fuzzy
terms fordistanceand speed. We assume that the degree-of-
match betweenright-20 and right-30 is 0.6. The section of
the join network that would correspond to these two rule
antecedents is shown in Fig. 22. As shown in the figure,
each node for the “terminal pattern node” of some pattern
is equivalent to one condition element in a rule. There is
a terminal join node where the condition-element branches
come together for each rule and the output of the join node
tells us whether or not a rule can be fired. Recall that the
min-degree-of-match to be sent by a join node is set to be the
minimum of the min-degree-of-match values for both inputs
and the degree-of-match computed between those bindings
for the variables. For example, the min-degree-of-match of
the left input, Join1, for the Join2 shown in Fig. 22 is 0.5
and the degree-of-match of the right input for the Join2
is 1.0. In addition, the sup-min number betweenfast and
medium for the linguistic variablespeed in Join2 is 0.8.
Thus, the min-degree-of-match of Join2 is 0.5. With both
inputs available in Join3, Join3 will check weather or not
the bindings for the variable are consistent. The sup-min
number for the variable bindings of Join3 will be 1.0 since
the bindings of the variable for both inputs are bound
to a crisp term,safe. Therefore, the min-degree-of-match of
Join3 is 0.5. Since Join3 is a terminal join node, this min-
degree-of-match associated with Join3 will be sent to the
evidence aggregation network by the linkaggregation. Via
the link left, the node Join4 can also receive the token sent by
Join1. Since Join4 receives 0.5 and 0.6 from the two inputs
for the fuzzy evidence, the min-degree-of-match of Join4 is
0.5. Subsequently, Join4 will report that Rule 2 is enabled.
So far, we have described how to build the pattern and the
join networks for a set of rules and how to propagate the
fuzzy evidence through these networks without sacrificing the
computational efficiencies. We now show how to aggregate
the fuzzy evidence when multiple rules make inferences about
the same linguistic variable.

D. Evidence Propagation Network

For a nonfuzzy expert system, the pattern and the join
networks perform the function of ascertaining which rules
will be enabled by the facts in the working memory. As was
mentioned earlier, this is all a Rete network has to do for
a traditional expert systems. However, the Rete network for
a fuzzy-logic based system must go one step further to solve
the difficulty (1) introduced in Section I and make sure that all
the fuzzy evidence for a given linguistic variable is aggregated
before that linguistic variable is allowed to trigger any further
rules. In this section, we will show how this is accomplished by
incorporating a third network, called the evidence aggregation
network, in the Rete network. It is the evidence aggregation
network that allows FuzzyShell to aggregate all the terms
in all the consequents of the rules in the agenda. This is
accomplished before any of the rule is actually fired by the
inference engine.

Basic to the evidence aggregation network is an aggre-
gation node, shown in Fig. 23. An aggregation node can

Fig. 23. The representation of an aggregation node.

have multiple inputs from the terminal join nodes. During
the network building process, the action elements of rules
are scanned and parsed, and the rules whose consequents
make assertions about the same linguistic variable are made
to point to the same aggregation node. At the same time, a
subnode for each consequent element is created and made
internal to the node for the respective linguistic variable.
All such subnodes inside an aggregation node constitute a
doubly linked list. In addition to the forward and back-
ward pointers of a doubly linked list, each subnode in an
aggregation node may also contain what we refer to as a
right pointer. The purpose of this pointer is to allow us
to deal with multiple rules whose consequents make asser-
tions about multiple linguistic variables. Also, each subnode
contains the following slots:degree-of-match, consequent-
element, and flag. The purpose of theright link and the
slots will now be explained with the help of the following
example.

Consider, for illustration, the following three rules:

Rule 1 IF (distance is near) THEN (speed is slow) (brake
hard);

Rule 2 IF (distance is far) THEN (speed is medium)(brake
medium);

Rule 3 IF (speed is slow ) THEN ( ).

The complete evidence aggregation network for these rules
is shown in Fig. 24. The left node is for the linguistic variable
speedand the right node forbrake, the other linguistic variable
appearing in the consequents of the rules. With the help of
the right pointer attached to the first subnode in the node for
speed, the system knows that the assertions (speed is slow)
and (brake hard) belong to the same consequent. Similarly, via
the right pointer attached to the subnode (speed is medium)
the system knows that the assertions (speed is medium) and
(brake medium) come from the same rule. Also, note that the
two pointers used to glue the linked list of consequent items to
an aggregation node are called theroot andentry for reasons
that are obvious from the figure.
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Fig. 24. This example shows how fuzzy evidence is aggregated in the
evidence aggregation network.

To explain how evidence gets aggregated by the evidence
aggregation network, we will consider the same set of rules
as above and assume that the fact in the working memory
is (distance is far). As shown in Fig. 24, 0.5 represents the
degree-of-match between the fact (distance is far) and the
rule antecedent (distance is near) while 1.0 is the degree-
of-match for the antecedent (distance is far) and the same
fact. After Rule 1 is enabled, the aggregation subnode cor-
responding to (speed is slow) will receive the value 0.5
from the terminal join node of Rule 1 via the linkaggre-
gation. Subsequently, the aggregation subnode representing
(brake hard) will also receive the value 0.5 via the link
right. Next, after Rule 2 is enabled, the aggregation subnode
corresponding to (speed is medium) will receive the value
1.0 form the terminal join node of Rule 2 and transmit it
to the aggregation subnode for (brake medium) via the link
right. Finally, the results of the aggregation for the linguistic
variablesspeedand brake will be asserted into the working
memory.

VI. A N EXAMPLE TO ILLUSTRATE

THE WORKINGS OF FUZZYSHELL

In what follows, we will use a simple example to show
the workings of FuzzyShell. In particular, our example will
illustrate how FuzzyShell addresses the first difficulty pre-
sented in the Introduction, namely, the difficulty of ensuring
that the evidence from all the enabled rules containing the
same consequent linguistic variable is aggregated before any
other rules can be invoked. This example concerns a mobile
robot that should either circumnavigate an object if the mission
is obstacle avoidance or that should approach the object if
the mission is object recognition. In each case, the final
inference can only be drawn after a two-level inference,
meaning that the rules fired initially must enable other rules
whose consequents constitute the final conclusions. For the
sake of our explanation here, the following six rules will
suffice. Note, however, that an actual system for mobile robot
navigation will contain hundreds of rules and that many of the
rules would be far more complicated than what we are able
to show here.

Fact-1[robot ( ission obstacle-avoidance)(ensor 2D-
vision)];

Fact-2[2-D-vision ( ixel-position-x med-left)( ixel-
position-y far)]

(rule-name rule-1
(robot ( ission ?x)( ensor 2D-vision))
(2D-vision ( ixel-position-x left)
( ixel-position-y near))

(goal ( ission ?x)( rientation NWW)))

(rule-name rule-2
(robot ( ission ?x)( ensor 2D-vision))
(2D-vision ( ixel-position-x med-left)
( ixel-position-y far))

(goal ( ission ?x)( rientation NW)))

(rule-name rule-3
(goal ( ission obstacle-avoidance)
( rientation NW))

( urn-angle right-20)
( istance-to-travel medium))

(rule-name rule-4
(goal ( ission obstacle-avoidance)
( rientation NNW))

( urn-angle right-30)
( istance-to-travel long))

(rule-name rule-5
(goal ( ission object-recognition)
( rientation NWW))

( urn-angle left-40)
( istance-to-travel short))

(rule-name rule-6
(goal ( ission object-recognition)
( rientation NW))

( urn-angle left-30)
( istance-to-travel long)).

The membership functions of the fuzzy terms for the lin-
guistic variablespixel-position-x, pixel-position-y, orientation,
distance-to-traveland turn-angle are shown in Fig. 25. As-
sume that the depth-first strategy is selected for conflict
resolution, meaning that a rule matched with the most re-
cent facts will have a higher priority to be fired and the
rules with the same priority will be randomly selected for
inclusion in the agenda. After Fact-1 and Fact-2 have been
asserted into the working memory to start the inference en-
gine, rule-1 and rule-2 will be activated and placed in the
agenda. Since both these rules contain the same linguistic
variable in their consequent sides, the evidence aggregation
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Fig. 25. Shown here are the membership functions of the fuzzy terms for the linguistic variablespixel-position-x, pixel-position-y, orientation, dis-
tance-to-travel,and turn-angle.

network will go ahead and compute the final membership
function for this linguistic variable, taking into account the
sup–min values propagated down by the pattern and the
join networks and the prior membership function for the
variable.

Since rule-1 and rule-2 are matched with the same facts,
they have the same priority to be fired. Assume rule-1 is
fired first. The firing of this rule will cause the membership
function of theorientation variable to be updated with the
latest membership function computed for this variable by the
evidence aggregation network. Fig. 26 illustrates the inference
process resulting from the enabling of rule-1 and rule-2 and
the firing of rule-1. It is important to note that the fuzzy
evidence of the variableorientationwas updated on the basis
of the two rules, rule-1 and rule–2, even though only rule-1
has been fired so far. Therefore, as far as fuzzy inference is
concerned, we may think of rule-1 and rule-2 as being bundled
together. But note that bundling together does not imply that
rule-2 should be fired immediately after rule-1. In general,
the consequent side of a rule (such as rule-2) will include
action elements that are nonfuzzy; the inference process with
regard to these action elements must proceed in the traditional
manner.

Firing of rule-1 will cause the following fact to be asserted
in the working memory: Fact-3: [goal ( ission obstacle-
avoidance)( rientation aggregate_term)].

This new fact will now be encapsulated in a token and
propagated through the pattern network; as a result, the rule-
3 and rule-4 will be enabled and placed in the agenda. At
this time, the agenda will contain rule-3, rule-4, and rule-2.
Since rule-3 and rule-4 are matched with the same fact, Fact-
3, they have the same priority. In addition, their priority is
higher than the priority of rule-2 since Fact-3 is the most
recent fact. Recognizing that the enabled rule-3 and rule-4
contain the same linguistic variables in the consequents, the
evidence aggregation network will go ahead and figure out the
updated membership function for the variablesturn-angleand
distance-to-traveltaking into account, via the pattern and the
join networks, the fuzzy constraints generated by the condition
elements of the two rules. Assume rule-3 is fired first. As a
result, the membership functions for the linguistic variables
turn-angle and distance-to-travelwill be updated to those
computed by the evidence aggregation network, as pictorially
illustrated in Fig. 27.

Now the agenda will contain rule-4 and rule-2 for firing.
Since the former has a higher priority (owing to the higher
recency number of the fact that enabled this rule), it will
be fired next. Since, for the fuzzy part of the inference, the
rule was already accounted for when it was first placed in the
agenda, the firing of this rule would cause changes only if the
consequent side contained nonfuzzy elements. In our example,
no further changes would take place as a result of the firing of
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Fig. 26. Illustration of how the membership function ofaggregate_termfor the linguistic variableorientation is aggregated in the first cycle of the
inference engine.

Fig. 27. Illustration of how the membership functions ofaggregate_termfor the linguistic variablesturn-angle and distance-to-travelare aggregated in
the second cycle of the inference engine.
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rule-4. Finally, rule-2 will be fired. Again, for reasons identical
to those just mentioned, this firing will not cause any changes
to the currently known facts.7

If the purpose of a fuzzy expert system is to only rea-
son, then the evidence shown in Fig. 27 forturn-angle and
distance-to-travelwill be the conclusive evidence for the robot
motion. However, the expert system usually must make its
overall conclusions known to the world in terms of numerical
values for the different linguistic variables. FuzzyShell pro-
vides a simple command to defuzzify the linguistic variables
based on the “center of gravity” method.

VII. CONCLUSION

While it is relatively easy to program up a small-scale fuzzy
expert system, the same cannot be said when hundreds or
thousands of rules are involved, as is common with large-
scale expert systems. Every fuzzy reasoning system that allows
chains of inference, meaning that a rule is allowed to trig-
ger other rules, must correctly address the first of the two
difficulties mentioned in the Introduction. The fuzzy expert
system shells that are currently available commercially or as
free-ware on the internet satisfy only the second of these
requirements for multistep fuzzy inference. As was mentioned
before, the reason for this failure in the software systems
currently available is clear: these systems are a result of mostly
cosmetic modifications of traditional nonfuzzy expert system
shells. On the other hand, in the work reported here we have
completely modified the guts of the inference engine—the Rete
network—to make it work correctly for the fuzzy case. How
this Rete network is modified is one of the main contributions
of our work.
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