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Abstract Transglutaminase (TGs) enzymes and proteins

crosslinking have for long time been implicated in the

formation of hard tissue development, matrix maturation

and mineralization. Among the TGs family members, in

the context of connective tissue formation, TG2 and Factor

XIII are expressed in cartilage by hypertrophic chondro-

cytes. Here, we analyse the morphological consequences of

TG2 deficiency, during the development of skeletal ele-

ments. When TG2 is absent, there are not gross

abnormalities in the development of the skeletal system,

probably from compensatory mechanisms resulting in

increased expression of FXIIIA and TGF-ß 1. In vivo other

TGs may be involved in promoting chondrocytes and

osteoblast differentiation and matrix mineralisation

Keywords Endochondral ossification � Transglutaminase

Introduction

The process of endochondral bone development in verte-

brates is characterised by replacement of a cartilage

anlagen by bone: chondrogenesis and osteogenesis are

tightly coordinated in time and space (Erlebacher et al.

1995; Marks and Hermey 1996). Three tissues appear to be

the main players in the initiation of endochondral ossifi-

cation: the cartilage, the adjacent perichondrium, and the

invading vasculature. Interactions among these tissues are

synchronised, and a large number of secreted and intra-

cellular factors acting in this process have been recently

identified (Colnot 2005). Hypertrophic growth plate chon-

drocytes provide a scaffold for subsequent formation of

trabecular bone by mineralising their surrounding matrix

and inducing a bone collar, the precursor of cortical bone,

in the adjacent perichondrium (Chung and Lanske 1998).

In mice, endochondral ossification starts at 14.5-day

embryo. By 19-day embryo, ossification is complete

(Wirtschafter 1966).

Transglutaminase (TGs) enzymes and proteins cross-

linking have been implicated in the formation of hard

tissue, matrix maturation and mineralisation (Lorand and

Graham 2003; Aeschlimann et al. 1993, 1996; Aeschli-

mann and Thomazy 2000; Candi et al. 2005; Melino et al.

2000). TGs are a nine member family of calcium-depen-

dent enzymes which catalyse the formation of covalent

c-(glutamyl)-e-lysyl bonds (isopeptide bonds or crosslinks)

among protein-bound lysines and glutamines, thus forming

large polymers or proteins. TGs can also use as substrate

primary amines (putrescine, spermine and spermidine) to

specific glutamine residues (Lorand and Graham 2003).

TGs crosslinking activity can take place in the cytosol of

the cells, at the cells surface, and/or the bone extracellular

matrix compartments (Lorand and Graham 2003).
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Many TG substrates directly or indirectly related to

matrix maturation and mineralisation have been identified

in vitro so far, including collagen I-V-X-XI, fibronectin,

osteopontin, osteonectin and bone sialoprotein (Mosher

and Schad 1979; Jeong et al. 1995; Kaartinen et al. 1999;

Lorand et al. 1998; Turner and Lorand 1989; Prince et al.

1991; Sorensen et al. 1994; Kaartinen et al. 2002; Esposito

and Caputo 2005; Johnson 2007). However, the function of

the crosslinking is not yet understood. Among the TGs

family members, in the context of connective tissue for-

mation, TG2 and Factor XIII are expressed in cartilage by

hypertrophic chondrocytes (Aeschlimann et al. 1996;

Aeschlimann and Thomazy 2000; Nurminskaya and Lins-

enmayer 2002; De Laurenzi and Melino 2001;

Nurminskaya et al. 1998). In addition, several reports

correlate in vitro TG2 expression, chondrocyte differenti-

ation and matrix mineralization (Aeschlimann et al. 1996;

Aeschlimann and Thomazy 2000; Nurminskaya et al. 1998;

Nurminskaya and Linsenmayer 2002; Johnson and Ter-

keltaub 2005). Also, TGF-ß family is involved during

endochondral ossification and bone remodelling (Janssens

et al. 2005). However, the mechanisms behind these phe-

nomena mediated by TGs, and in particular those mediated

by TG2, are not known.

We characterised the morphological consequences of

TG2 deficiency produced by a gene-targeting approach in

mice (De Laurenzi and Melino 2001) during the develop-

ment of skeletal elements.

Materials and methods

The local Animal Experiment Committee approved all

procedures performed in this study.

Tissue preparation

Five newborns mice of TG2 knock-out and wild type were

stained with 0.5% alizarin red and 0.015% alcian blue were

performed as described previously (Hogan et al. 1994).

Five skeletons of 13.5- to 18.5-day embryo of TG2

knock-out and wild type mice, plus five newborn mice of

TG2 knock-out and wild type mice were euthanised with

an overdose of chloroform (total numbers of animals 70).

After some skin incisions, embryos were processed. All

samples were fixed in 10% buffered formalin for 12 hours,

and decalcified for 48 hours in Decalcifier II (Surgipath

Medical Industries, Richmond, IL, USA). After usual

processing and paraffin embedding, 5 lm section were

placed on SuperFrost Plus glass slides (Menzel-Gläser,

Braunschweig, Germany) and used for haematoxylin–eosin

or immunohistochemical stainings. Femurs were selected

for this study.

Immunohistochemical study

Slides were heated in a dry oven overnight at 60�C,

de-paraffinised in xylene, and rehydrated in graded con-

centrations of ethanol. Endogenous peroxidase activity was

blocked by incubation in 0.3% hydrogen peroxide and

methanol. Slides were re-hydrated in phosphate-buffered

saline. Non-specific antibody binding was blocked by

incubation with normal goat serum (Dako Cytomation,

Glostrup, Denmark). Optimal anti-TG2 antibody (Covalab,

Vinci-Biochem, Firenze, Italy) dilution was found to be

1:75 for 30 min. Slides were then incubated with a biotin-

labeled goat anti-rabbit secondary antibody (Dako Cyto-

mation, Glostrup, Denmark), followed by a streptavidin-

horseradish peroxidase conjugate. Bound antibody was

revealed with the use of the substrate 3,30-diaminobenzi-

dine. Sections were counterstained with haematoxylin,

washed, dehydrated with graded concentrations of ethanol,

cleared in xylene, mounted, and examined at light

microscopy. Human breast carcinoma was included with

each batch of sections as a positive control. The location of

the TG2 was determined by comparing each immunohis-

tochemical section with the adjacent slice stained with

haematoxylin–eosin.

Western blotting

Western Blots were performed using the whole sample

derived from a mouse femur, lysed in Laemli Buffer. The

blots (polyvinylidene difluoride membrane) were kept in

blocking solution (10% dried milk) for 2 h at room tem-

perature. Blots were incubated shaking for 2 h at room

temperature with the antibodies to TG2 (dilution 1:500,

Covalab); anti-FXIII (dilution 1:1,000, Santa Cruz);

anti-TGFb1 (dilution 1:500, Santa Cruz); anti-b tubulin

(dilution 1: 1,000, Santa Cruz). After three washes in

PBS-tween 20 (0.05%), secondary antibody peroxidase

conjugated (dilution 1:10,000) was added in blocking

solution, shaking for 1 h at room temperature. Proteins

were detected using the enhanced chemiluminescence

method (ECL, Amersham).

Results

The size of the skeletal elements and the relative ratio of

cartilage to bone in TG2-deficient mice were indistin-

guishable from those of new born wild-type animals

(Fig. 1a–c). Haematoxylin–eosin stained sections showed

that the wild-type fetal growth plate consists of three major

layers of chondrocytes: proliferating, prehypertrophic, and

hypertrophic layers. The proliferating layer contained two

distinct types of chondrocytes. Proliferating chondrocytes
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close to the articular surface were round and randomly

scattered, with the typical features of peri-articular chon-

drocytes. Proliferating chondrocytes immediately below

the peri-articular proliferating chondrocytes were flat, and

formed longitudinal columns (Fig. 2a, b): they were

columnar chondrocytes.

TG2-/- animals were indistinguishable in size and

behavior from wild-type mice in all the embryonic stages

analysed, and up to an age of 1 year (data not shown).

Adult mice lacking TG2 displayed no obvious skeletal

abnormalities, and no skeletal elements were missing or

deformed. Immunohistochemistry confirmed the expres-

sion of the TG2 in the hypertrophic chondrocytes of wild

type mice, and its absence in knock-out mice (Fig. 2c, d).

In knock-out mice, deficiency of TG2 causes no obvious

consequences during embryonic skeletal development and

in adulthood. The observation that TG2-/- mice have no

overt skeletal phenotype, suggest that at least a second TG

enzyme must influence matrix assembly and mineralisa-

tion. Previously, it has been described that, in addition to

TG2, cultured osteoblasts also express the plasma trans-

glutaminase Factor XIIIA (FXIIIA; Nurminskaya and

Linsenmayer 2002; De Laurenzi and Melino 2001; Nur-

minskaya and Kaartinen 2006). To verify whether Factor

XIIIA is involved, we analysed by western-blot its

expression on protein extracts obtained from wild type and

TG2-/- femurs (Fig. 3). The distal femoral epiphysis at the

18.5 day post conception of wild type and TG2-/- mice

were isolated, and proteins were extracted as indicated in

‘‘Materials and methods’’. Western blot analysis indicate

that FXIIIA protein is increased of about fivefold (Fig. 3),

as evaluated by densitometry analysis normalised over the

loading control (ß-tubulin). We also determined the levels

of transforming growth factor beta-1 (TGF-ß1). Western

blot analysis showed a marked increase of the TGF-ß 1

protein level in TG2-/- bones as compared with wild type

(Fig. 3).

Discussion

TG2 and Factor XIIIA are the only identified transgluta-

minases in human, mouse, and chick growth plates. These

locations led to speculation that transglutaminases regulate

endochondral ossification in particular both terminal cell

differentiation and matrix calcification (Johnson 2007;

Nurminskaya and Linsenmayer 2002; Nurminskaya et al.

2002; Johnson et al. 2001) also FXIIIA-null mice show a

dramatic decrease in COL I deposition in osteoblast cul-

tures (Al-Jallad et al. 2006). Indeed, many investigators

confirmed this hypothesis in vitro, but to our knowledge no

studies on the endochondral ossification of TG2-/- mice

during are available.

Recently, a 37 kDa form of Factor XIIIA was discov-

ered. It is located exclusively in cartilage and bone, and not

in plasma. This shortened form of Factor XIIIA may be

controlling mineralisation or have unique functions (Nak-

ano et al. 2007), similar to those of the shortened isoform

of TG2 in brain (Antonyak et al. 2006).

Latent TGF binding protein-1 is particularly interesting

because it release the active TGF-ß1 only after its TG2-

catalysed linkage to the matrix (Nunes et al. 1997). This

cytokine affects many aspects of bone formation (Janssens

et al. 2005), and TGs may regulate the extracellular levels

Fig. 1 Cartilage and bone develop normally in newborns lacking

TG2. The skeletons from newborn littermates of wild-type and TG2-/-

were stained with alcian blue and alizarin red, detecting cartilage and

bony structures, respectively (a). Haemotoxylin–eosin stained sec-

tions of femur of new born wild type and TG2-/- mice (b). Analysis of

histological embryos femurs development from wild type and TG2-/-

mice from 13.5 to 18.5 days stained with haematoxylin–eosin (c). The

primary ossification centers and periosteal cuffs are fully formed. The

secondary ossification center of the proximal epiphysis is already

visible at the 14.5 days in the knock-out embryo, and fully formed in

both the panels at day 18.5. Bars 200 lm for wild type and TG2-/- at

E13.5 and E14.5. Bars 250 lm for wild type and TG2-/- at E15.5,

E16.5 and E17.5, bars 500 lm for wild type and TG2-/- at E18.5
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of TGF-ß. In addition, TGF-ß1 null mice show severe

skeletal defects (Geiser et al. 1998).

TGF-ß is expressed in chondrocytes, osteoblast and

osteocytes (Janssens et al. 2005). Other studies have shown

that low levels (5–200 pg/ml) of TGF-ß2 promoted min-

eralisation in the co-cultures, but they demonstrated a

slightly lower level of activated latent TGF-ß after treat-

ment with recombinant TG2. This suggests that the

mechanism of TG2 induced mineralisation did not involve

TGF-ß (Nurminskaya et al. 2003).

To study in vivo the involvement of TG2 in skeletal

development, and to exclude possible developmental delay

or deformities, we focused on the early development of

skeletal structures in embryos from the stage embryo 13.5

to newborn.

Proliferating chondrocytes undergo a limited number

of divisions and then lose the capacity by beginning to

hyperthrophy. This switch is regulated by parathyroid

hormone-related peptide (Chung and Lanske 1998). Pre-

hyperthrophic and hypertophic chondrocytes increase

dramatically their height, volume and matrix mass, and

become more rounded until they have an egg like config-

uration (Fig. 2a, b).

In this study, we demonstrated no gross skeletal abnor-

malities or developmental delay in bone formation in the

absence of TG2 in the femora of mice. Therefore, in vivo

other TGs may be involved in promoting chondrocytes and

osteoblast differentiation and matrix mineralisation. Among

the TGs, FXIIIA has been described to contribute to TGs

activity observed in both hypertrophic chondrocytes and

Fig. 2 Haematoxylin–eosin

staining of sections of wild type

(a) and TG2-/- (b) proximal

femoral growth plates from the

18.5-day embryo. Brackets

indicate the approximate lengths

of the growth plates.

Periarticular proliferating

chondrocytes (ppc), columnar

proliferating chondrocytes

(cpc), prehypertrophic and

hypertophic chondrocytes

(p&hc) in the growth plate are

regularly arranged both in wild

type anf TG2-/- samples. Bars

500 lm. Expression of TG2 in

proximal femur of wild type (c)

and TG2-/- (d) mice.

Immunohistochemistry of

proximal femoral growth plate

sections from 18.5-day embryo.

Note in the wild type the

increased expression of TG

intracellularly and in the

interterritorial matrix of

columnar proliferating

chondrocytes. Bars 500 lm
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osteoblasts. Interestingly, protein level of FXIIIA increases

fivefold in protein extracted by TG2-/- femurs compared

with wild type. Therefore, FXIIIA is expressed in vivo in

bone, and we suggest that TG2 and FXIIIA work sinergi-

cally in these processes. In addition, we observed an

increased level of TGF-ß1 protein in TG2-/- bones in

comparison with wt. TGF-ß1 is a potent multifunctional

regulators of osteoblast differentiation, and TGF-ß1 acti-

vation and upregulation could be another parallel

compensatory mechanism responsible for the absence of

abnormal skeletal phenotype in TG2-/- mice. Therefore,

results obtained in vitro can contradict in vivo observations.

In the absence of TG2, we were not able to detect

phenotypical abnormalities in the femora of embryonic,

young, and adult TG2-/- mice. This may result from

compensatory mechanisms involving increased expression

of FXIIIA and TGF-ß 1.

Several questions remain open and are subject to future

research. For example, are there other TG isoforms sup-

plying the TG2 activity during endochondral ossification?

Are the recent short forms of FXIIIA and TG2 in vivo the

truly protagonist of endochondral ossification? Which

mechanisms activate in vivo the short forms of FXIIIA and

TG2? Are other parallel mechanisms involving TGs and

time depending cytokines and/or growth factors important

in mineralisation and stabilisation of extracellular matrix

during endochondral ossification? The development of

further knock-out mice for TG2, Factor XIIIA and TGF-ß 1

may help answer at least some of these questions.
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