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We derive a two-dimensional model for elastic plates as a Γ-
limit of three-dimensional nonlinear elasticity with the con-
straint of incompressibility. The resulting model describes
plate bending, and is determined from the isochoric elastic
moduli of the three-dimensional problem.
Without the constraint of incompressibility, a plate theory
was first derived by Friesecke, James and Müller [14]. We
extend their result to the case of p growth at infinity with
p ∈ [1, 2), and to the case of incompressible materials. The
main difficulty is the construction of a recovery sequence
which satisfies the nonlinear constraint pointwise. One main
ingredient is the density of smooth isometries in W 2,2 isome-
tries, which was obtained by Pakzad [23] for convex domains
and by Hornung [18, 17] for piecewise C1 domains.

1 Introduction

The constraint of incompressibility is frequently encountered in the frame-
work of nonlinear elasticity, for example in models of elastomeric materi-
als whose entropic shear moduli are much smaller than the bulk modulus
[3, 22, 2]. Recently both the mathematics and the physics community have
directed considerable effort to the analytic derivation of elastic properties of
thin sheets of these materials, e.g., for liquid-crystal elastomers, see [7, 29, 1]
and references therein. A common feature in all these works is that the in-
compressibility of the material is incorporated as a rigid constraint on the
determinant of the deformation gradient. This nonlinear constraint does
not allow one to use standard techniques in the calculus of variation for the
derivation of two-dimensional models from fully three dimensional models
via Γ–convergence.

A two-dimensional theory for the elastic behavior of plates has been first
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proposed by Kirchhoff back in 1850 with heuristic arguments; a rigorous
derivation was obtained in 2002 by Friesecke, James, and Müller [16, 14], see
also [15]. These authors used the theory of Γ–convergence [10, 11] to identify
a variational principle for the deformation of the cross-section ω as a limit of
functionals for thin domains Ωh = ω × (−h/2, h/2) in the limit h → 0. The
main ingredient in the proof is a rigidity estimate that gives a quantitative
estimate of how close a mapping is to a rigid body motion in L2. Previous
work (see, e.g., [13, 24, 25] and the references therein) relied instead on ad
hoc assumptions on the deformation that could not be verified rigorously.

In this paper we address the question of deriving a limiting theory for
plates made out of incompressible materials. Incompressibility is expressed
by the constraint that the determinant of the deformation gradient be equal
to one a.e. We consider the functional Ih : W 1,p(Ωh; R

3) → [0,∞] given by

Ih[u] =
1

h3

∫

Ωh

W (∇u) dxp dx3 (1.1)

where we write xp = (x1, x2) for the in-plane variables. The energy density
W : M

3×3 → [0,∞] incorporates the incompressibility of the material and is
defined by

W (F ) =

{
Wc(F ) if detF = 1,

∞ otherwise.
(1.2)

We suppose that Wc is invariant under composition with a rotation, in the
sense that

Wc(RF ) = Wc(F ) for all R ∈ SO(3) (1.3)

where SO(3) is the group of all proper rotations in R
3, i.e., the set of all

matrices R ∈ M
3×3 with RTR = Id and detR = 1. We assume that Wc :

M
3×3 → R is nonnegative, and that Wc(F ) = 0 if and only if F ∈ SO(3).

Moreover we require as in [14] that Wc is twice continuously differentiable in
a neighborhood of SO(3), that it has quadratic growth close to SO(3) but
we only require p-growth, with p ≥ 1, at infinity, in the sense of (1.7) below.
Moreover we show by an example that compactness fails if p < 1. As in [14]
we do not require growth conditions from above, it suffices that the energy
is finite in a neighborhood of SO(3).

Membrane theories are obtained by considering the limit of the energy
per unit volume, i.e., the limit of the functionals h2Ih. The limiting model
allows for shearing and stretching of the body; a precise Γ–convergence re-
sult was first obtained by LeDret and Raoult [20, 21] for continuous energy
densities. Their work was extended to energy densities which are infinite if

2



the determinant of the deformation gradient is negative in [5, 4], based on
an adaption of Whitney’s ideas by Ben Belgacem and Bennequin.

For incompressible materials, i.e., for the much more rigid constraint
det∇u = 1, this was accomplished independently in [8] and in [26, 27],
partly motivated by [6]. In all these cases the limiting problem is again a
variational functional. The new energy density is obtained in two steps from
the original density: first one optimizes in the out-of-plane direction, then
one passes to the relaxation of this new energy. In view of this mechanism it
is not hard to verify the lower bound in the definition of Γ–convergence, and
the main difficulty is the construction of a recovery sequence. In the cases
with a constraint on the determinant, the key ingredient is Whitney’s char-
acterization of the fundamental singularity of smooth mappings u : R

2 → R
3.

It allows one to approximate a given function in the energy norm by a smooth
function whose gradient has full rank everywhere.

Plate theories arise instead if the energy per unit volume is scaled with
an additional factor of h−2, as we have done in our definition (1.1). Not
surprisingly, the result is also related to geometric questions. The response
of the plate is characterized by its bending rigidity and therefore the defor-
mations of the thin body are expected to be close to isometries. In the limit
it turns out that the energy is finite only on isometric immersions of the
two-dimensional domain ω into R

3 and that the elastic moduli are related to
the moduli of the corresponding linear theory.

In order to state our main theorem we define

Q3 = ∇2Wc(Id) , (1.4)

which we view as a quadratic map from M
3×3 into R, and

Q2(Ĝ) = min
d∈R3:Tr( eG|d)=0

Q3

(
π̃0(Ĝ)|d

)
, ∀Ĝ ∈ M

2×2 (1.5)

which is a quadratic map from M
2×2 into R. Here π̃0(Ĝ) ∈ M

3×2 denotes the

matrix with π̃0(Ĝ)ij = Ĝij , i, j = 1, 2 and π̃0(Ĝ)3j = 0, j = 1, 2, that is, π̃0

is the natural embedding of M
2×2 into M

3×2. Here and in the following we
emphasize the dimension of a matrix by using (̃·) for matrices in M

3×2. In

particular, we write ∇̃u for the in-plane gradient of a map u. Hence ∇u = ∇̃u
for a function u : ω ⊂ R

2 → R
3 that is defined on the cross-section of the

domain, and ∇̃u = (∂1u|∂2u) for a function u : Ωh ⊂ R
3 → R

3 defined on
the three-dimensional body.

Finally, the limiting energy is finite only if u has higher regularity and is
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given by

I0[u] =






1

24

∫

ω

Q2(IIu) dxp if u(x) = u(xp) and ∇̃u ∈W 1,2(ω; O(2, 3)) ,

∞ otherwise.

(1.6)
Here IIu : ω → M

2×2 is the second fundamental form of the isometry defined
by u, given by

IIu = (∇̃u)T ∇̃bu , bu = ∂1u ∧ ∂2u .

The unit vector field bu is normal to the surface described by u. In particular,
there is a gain of regularity in the limiting theory which is also reflected in the
fact that the topology in the definition of the Γ–limit is the strong topology
in W 1,p and not the weak topology as in the case of membrane theories.

It is a remarkable feature that in both the membrane theory and the plate
theory the constraint of incompressibility is relaxed in the limit to the extent
that the surface area of the cross-section does not need to be conserved. In
fact, the nonlinear constraint is reflected in the energy entering the limiting
plate theory through its linearization, in the sense that the minimum in (1.5)
is taken over all matrices with trace zero. Physically this corresponds to
the fact that the volume constraint can be enforced by usage of the out-of-
plane component of the deformation gradient (see Lemma 3.1). Precisely,

for any in-plane deformation gradient G̃ ∈ M
3×2 such that rank G̃ = 2 one

can find d ∈ R
3 such that the matrix (G̃|d) ∈ M

3×3 has determinant one.

A crucial observation is that, due to the thin-film geometry, if G̃ = ∇̃u :
ω → M

3×2 is an in-plane gradient then for any smooth d the matrix (G̃|d)
can be well approximated by a gradient (see Lemma 3.1), and therefore any

in-plane gradient field G̃ : ω → M
3×2 can be well approximated by the

first two columns of a volume-conserving gradient field ∇uh : Ωh → M
3×3.

This observation is at the basis of both the result for membrane theories
in [8, 26, 27] and the present one. In the case of the membrane theory
an essential difficulty was dealing with singularities (i.e., with points where

rank G̃ is less than 2). In the present case such singularities are excluded
by the kinematics of the limiting problem; however the construction of the
recovery sequence is more subtle since the derivation of a plate theory requires
a much finer control on the energy, and therefore more attention to the details
of the construction.

One key step in most Γ-convergence results is to prove density of a suit-
able class of “good” functions in the space defined by the limiting functional.
In the present case, smooth functions constitute the natural class of “good”
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functions to consider, and one is confronted with the question of approximat-
ing W 2,2 isometries with C∞ isometries (the main difficulty being the step
from W 2,2 to C2). This is a difficult geometric issue, since one is trying to
construct smooth isometries, which are developable surfaces and hence very
rigid.

In the following we say that a bounded Lipschitz domain ω ⊂ R
2 has

the approximation property for isometries if C∞(ω̄; R3) isometries are dense
in W 2,2(ω; R3) isometries with respect to the W 2,2 norm. As above, a map

u : ω → R
3 is an isometry if ∇̃u ∈ O(2, 3) a.e. The approximation prop-

erty for isometries was established by Pakzad [23] for convex domains, using
a method developed by Kirchheim [19] to show that W 2,2 isometries are
developable. In [23] only interior regularity is shown, but by a straightfor-
ward blow-up one can achieve regularity up to the boundary. The same
arguments can be extended to strictly star-shaped domains. On domains ω
whose boundary is C1 away from a closed null set (including in particular
piecewise C1 boundaries) the approximation property for isometries was re-
cently established by Hornung [18, 17]. Therefore Theorem 1.1 below holds
in a large class of domains. In order to make a clear separation between the
geometric argument entering the density estimate, and the analytic construc-
tion, we formulate our result in terms of Lipschitz domains which satisfy the
approximation property.

Finally we recall that the convergence of sequences of functions uh : Ωh →
R

3 on varying domains Ωh is understood as the convergence the rescaled
functions defined on the domain Ω1 of thickness one. The rescaling operator
Th is defined by

(Thu)(xp, x3) = u(xp, hx3) for xp ∈ ω and x3 ∈
(
−1

2
,
1

2

)
.

For the limiting map v : ω → R
3 the rescaling reduces to the extension

(T0v)(xp, x3) = v(xp). For simplicity we write T u and T v, if the appropriate
index is clear from the context.

The following theorem summarizes the main results in this paper. It was
announced in [9].

Theorem 1.1. Let ω ⊂ R
2 be an open and bounded Lipschitz domain which

satisfies the approximation property for isometries. Suppose that Wc is a
stored energy density with

Wc(F ) ≥ cmin
{
dist2(F, SO(3)), c

}
and Wc(F ) ≥ c|F |p − 1

c
∀F ∈ M

3×3,

(1.7)
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for some p ≥ 1 and c > 0. Moreover, assume that Wc(Id) = 0, that Wc is C2

smooth in a neighborhood of Id and that Wc is frame indifferent in the sense
of (1.3). Let W be defined by (1.2). Then the functionals Ih given by (1.1)
converge in the sense of Γ–convergence with respect to strong convergence
in W 1,p(Ω1; R

3) to the limiting functional I0 defined in (1.6). That is, the
following assertions are true:

(a) Compactness and lower bound: For every sequence uh ∈ W 1,p(Ωh; R
3)

with Ih[uh] < C <∞ there exists a subsequence uh and u ∈W 2,2(ω; R3) with

∇̃u ∈ O(2, 3) a.e., such that

Th

(
uh −

1

|Ωh|

∫

Ωh

uh dx

)
→ T0u

strongly in W 1,p(Ω1; R
3). Moreover, if the entire sequence converges in this

sense, then

I0[u] ≤ lim inf
h→0

Ih[uh].

(b) Upper bound: For any u ∈W 2,2(ω; R3) with ∇̃u ∈ O(2, 3) a.e. there ex-
ists a family uh ∈ C1(Ωh; R

3) such that Thuh → T0u strongly in W 1,p(Ω1; R
3)

and

lim sup
h→0

Ih[uh] ≤ I0[u].

Note that the constraint of incompressibility has been relaxed since changes
in the surface area of the cross-section can be accommodated by changes in
the thickness of the plate.

The idea of the proof for the compactness result and for the lower bound
is to replace the constraint det∇u = 1 by a penalization, and to use the
corresponding assertions in the derivation of the plate theory by Friesecke,
James and Müller [14]. The details are carried out in Section 2. The results
in [14] require quadratic growth at infinity and we present in Section 4 an
extension of their theory to the case 1 ≤ p < 2 (see Theorem 4.1).

The proof of the upper bound has two main ingredients. Since ω has
the approximation property for isometries, it suffices to consider smooth
isometries u (see also the discussion preceding the statement of the theorem).
Then one needs an explicit construction for the recovery sequence in the case
that u is smooth. The details are presented in Section 3. We enforce the
determinant constraint by a suitable change of coordinates in the out-of-
plane direction, following the approach developed for membrane theories in
[8].
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Notation: Throughout this paper we assume that ω ⊂ R
2 and we set

Ωh = ω × (−h/2, h/2). The points x ∈ Ωh are also written as x = (xp, x3)
with xp = (x1, x2). The Euclidean norm of a matrix is denoted by |F |2 =
Tr(F TF ) where F T is the transpose of the matrix F and Tr(F ) the trace of

a square matrix F . The symbol ∇̃ stands for the in-plane derivatives, i.e.,
∇̃ = (∂1, ∂2). Throughout the paper we write Ĝ for 2× 2 matrices and G̃ for
3 × 2 matrices, respectively.

2 Compactness and lower bound

The first part in the proof of the Γ–convergence result is the verification of
compactness of families of deformations uh with Ih[uh] ≤ C <∞ and of the
lower bound: if T uh → T u in W 1,p(Ωh; R

3), then

I[u] ≤ lim inf
h→0

Ih[uh].

These properties will follow from the corresponding results for the plate the-
ory in [14] by introducing an approximation of Ih from below. We define, for
k ≥ 0,

W k(F ) = Wc(F ) +
k

2
(detF − 1)2

and

Ik
h [u] =

1

h3

∫

Ωh

W k(∇u) dxp dx3.

In order to exploit the lower bound from [14] we consider the quadratic form
associated with W k given by

Qk
3(F ) = ∇2W k(Id)(F, F ) = Q3(F ) + k(TrF )2 (2.1)

and the corresponding reduced forms

Qk
2(Ĝ) = min

d∈R3

Qk
3(G̃|d) , with G̃ = π̃0(Ĝ) (2.2)

see the discussion following (1.5). The minimum on the right-hand side is

attained and positive unless Ĝ is a skew-symmetric matrix. The next lemma
provides a quantitative comparison of Q2 and Qk

2.

Lemma 2.1. Let Q3 be the quadratic form on M
3×3 defined in (1.4). Then

the forms Q2 and Qk
2, defined via (1.5), (2.1), and (2.2) satisfy

Q2(Ĝ) − c√
k
‖Ĝ‖2 ≤ Qk

2(Ĝ) ≤ Q2(Ĝ) , ∀Ĝ ∈ M
2×2 .

Here c depends only on Q3.
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Proof. We observe that for any Ĝ ∈ M
2×2

Qk
2(Ĝ) = min

d∈R3

Qk
3(G̃|d) ≤ min

d∈R3: Tr( eG|d)=0
Qk

3(G̃|d)

= min
d∈R3: Tr( eG|d)=0

Q3(G̃|d) = Q2(Ĝ)

and this establishes the second estimate. To prove the first one, fix Ĝ ∈
M

2×2, and note that we may assume that ‖Ĝ‖ = 1 since the inequality is
homogeneous of degree two. Let d, dk be vectors that realize the minimum
in the definition of Q2 and Qk

2 (recall the notation following (1.5)),

Q2(Ĝ) = Q3(G̃|d) Tr(G̃|d) = 0,

Qk
2(Ĝ) = Qk

3(G̃|dk) where G̃ = π̃0(Ĝ) .

Since Q3 is strictly positive definite on symmetric matrices we conclude that

‖d‖ ≤ c ‖Ĝ‖ ≤ c (2.3)

where the constant c depends only on Q3. The condition Tr(G̃|d) = 0 implies

d3 = −Ĝ11 − Ĝ22 and thus

dk
3 − d3 = Tr(G̃|dk) .

Moreover,
k(Tr(G̃|dk))2 ≤ Qk

2(Ĝ) ≤ Q2(Ĝ) ≤ c .

This proves that

|dk
3 − d3| ≤

c√
k
. (2.4)

We define d = (dk
1, d

k
2, d3) and obtain with G̃ = π̃0(Ĝ)

Qk
2(Ĝ) = Q3(G̃|dk) + k

(
Tr(G̃|dk)

)2

≥ Q3(G̃|d) +Q3(G̃|dk) −Q3(G̃|d) (2.5)

≥ Q3(G̃|d) − c |d3 − dk
3| .

Indeed, the terms in the difference Q3(G̃|dk)−Q3(G̃|d) that do not contain dk
3

and d3 cancel. The terms that are linear in these variables are estimated by
c|d3 −dk

3|, where as above the constant c depends only on Q3. The quadratic
term is bounded by the same expression in view of (2.3) and (2.4). These
two inequalities imply that |d3 + dk

3| is bounded by a constant that depends

only on ‖Ĝ‖. Finally, since Tr(G̃|d) = 0, we obtain

Q2(Ĝ) ≤ Q3(G̃|d) ≤ Qk
2(Ĝ) + c |d3 − dk

3|
which concludes the proof.
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After these preparations we are in a position to verify the lower bound in
the Γ–convergence statement.

Proof of Theorem 1.1, Part (a). Let h → 0 and uh ∈ W 1,p(Ωh; R
3) be such

that Ih[uh] ≤ C for all h. In order to prove compactness, we fix a value k > 0
(k = 1 will do) and observe that, for all h,

Ik
h [uh] ≤ Ih[uh] ≤ C .

In view of Theorem 4.1 in [14] (for p ≥ 2) or of Theorem 4.1 below (for
1 ≤ p < 2) there exists a subsequence (not relabeled) and a u ∈W 2,2(ω; R3)

with ∇̃u ∈ O(2, 3) a.e., such that

Th

(
uh −

1

|Ωh|

∫

Ωh

uh dx

)
→ T0u in W 1,p(Ω1; R

3) . (2.6)

This concludes the proof of compactness.
In order to verify the lower bound, we can assume that the entire sequence

converges in the sense of (2.6). Then we obtain from Theorem 4.1 in [14] (for
p ≥ 2) or from Theorem 4.1 below (for 1 ≤ p < 2) that for all k > 0

Ik
0 [u] ≤ lim inf

h→0
Ik
h [uh] ≤ lim inf

h→0
Ih[uh] ,

where

Ik
0 [u] =





1

24

∫

ω

Qk
2(IIu) dxp if ∇̃u ∈W 1,2(ω; O(2, 3)),

∞ otherwise.

Therefore
lim inf

h→0
Ih[uh] ≥ sup

k>0
Ik
0 [u] .

To determine the supremum on the right-hand side, we observe that in view
of the estimates in Lemma 2.1 we have

Ik
0 [u] = I0[u] +

1

24

∫

ω

(Qk
2 −Q2)

(
IIu

)
dxp

≥ I0[u] −
1

24

c√
k

∫

ω

|IIu|2 dxp ≥ I0[u] −
C√
k

and taking the limit k → ∞ establishes the assertion.
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3 Upper bound

The construction of the recovery sequence is more subtle. Given an isometry
u : ω → R

3 we need to extend u to a function uh : Ωh → R
3 with the

following objectives in mind:

(a) ∇uh is pointwise close to the set of rotations SO(3);

(b) the incompressibility condition det∇uh = 1 is satisfied pointwise;

(c) the leading-order correction in the expansion of ∇uh−R, R ∈ SO(3), in
the plate thickness realizes asymptotically as h → 0 the minimization
in the passage from Q3 to Q2.

In order to achieve these goals we exploit a variation of the traditional con-
struction technique for compressible materials, which goes back to Kirchhoff,
coupled with a smoothing of the internal variables which respects the lin-
earized incompressibility constraint and which allows us to enforce nonlinear
incompressibility through the nonlinear change of the independent variables
introduced in [8]. Since we are dealing with domains having the approxima-
tion property for isometries we can focus on smooth deformations u.

Lemma 3.1. Let ω ⊂ R
2 be bounded and Lipschitz, u ∈ C3(ω̄; R3), with

∇̃u ∈ O(2, 3), let b = ∂1u ∧ ∂2u, and suppose that d ∈ C2(ω̄; R3) is a vector
field such that

Tr
[
(∇̃u|b)T (∇̃b|d)

]
= 0 . (3.1)

Then there exists for every sequence hj → 0 a sequence uj ∈ C1(Ωhj
; R3)

such that T uj → T u strongly in W 1,p and

lim sup
j→∞

Ihj
[uj] ≤

1

24

∫

ω

Q3

(
(∇̃u|b)T (∇̃b|d)

)
dxp .

Proof. We use the Kirchhoff construction, modified as in [8] in order to en-
force the nonlinear constraint on the determinant. We define

v(xp, x3) = u(xp) + x3b(xp) +
1

2
x2

3d(xp) ,

and calculate

∇v = (∇̃u|b) + x3(∇̃b|d) +
1

2
x2

3(∇̃d|0) .
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By the definition of b and since ∇̃u ∈ O(2, 3) we have R = (∇̃u|b) ∈ SO(3).
The determinant of the deformation gradient can be computed by

det∇v = det(RT∇v)

= det
(
Id + x3R

T (∇̃b|d) +
1

2
x2

3R
T (∇̃d|0)

)

= 1 + x3 Tr(RT (∇̃b|d)) + x2
3E(x3, b, d, ∇̃u, ∇̃b, ∇̃d)

where E is a polynomial in its arguments. By (3.1) the linear term vanishes,
and under our regularity assumptions we obtain

| det∇v − 1| + |∂1 det∇v| + |∂2 det∇v| ≤ C|x3|2 , (3.2)

where C depends only on the C2 norm of u, b and d. As in [8], we define
w = v ◦ Φ, with Φ(xp, x3) = (xp, ϕ(xp, x3)), and we determine ϕ so that

det∇w = (det∇v ◦ Φ) det∇Φ = (det∇v ◦ Φ) ∂3ϕ = 1 .

This implies that ϕ has to be a solution of the ODE

∂3ϕ(xp, x3) =
1

det∇v(xp, ϕ(xp, x3))

subject to the initial condition ϕ(xp, 0) = 0. By the theory of families of
solutions of parameter dependent ordinary differential equations (see, e.g.,
[28]) there exists an h0 > 0 such that one can find a unique solution ϕ ∈
C1(Ωh0

). The bounds (3.2) on det∇v imply that

|ϕ(xp, x3) − x3| ≤ Cx3
3 ,

|∂3ϕ(xp, x3) − 1| ≤ Cx2
3 ,

|∂iϕ(xp, x3)| ≤ Cx3
3 , i = 1, 2 .

Therefore the function w is C1 smooth on Ωh0
, and obeys det∇w = 1. We

now estimate how close ∇w = ∇(v ◦ Φ) is to a rotation. By the chain rule,

∇w = ∇
(
u+ ϕb+

1

2
ϕ2d

)

= (∇̃u | b ∂3ϕ) + ϕ(∇̃b | d ∂3ϕ) +
1

2
ϕ2(∇̃d|0) + (b+ ϕd) ⊗ (∂1ϕ, ∂2ϕ, 0)T

= (∇̃u | b) + x3(∇̃b | d)
+ (0 | b)(∂3ϕ− 1) + (ϕ− x3)(∇̃b | d) + ϕ(0 | d

(
∂3ϕ− 1)

)

+
1

2
ϕ2(∇̃d|0) + (b+ ϕd) ⊗ (∇̃ϕ|0).
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We conclude with R = (∇̃u | b) that

RT∇w = Id + x3R
T (∇̃b | d) +O(x2

3)

where O(x2
3) represents terms which are uniformly bounded by constants

(depending on u, b, d and their derivatives) times x2
3. We conclude that

Wc(∇w) = Wc(R
T∇w) ≤ 1

2
x2

3Q3

(
RT (∇̃b|d)

)
+O(x3

3) + o(x2
3)

where o(x2
3) represents the remainder in the Taylor series ofWc at the identity.

This implies

1

h3

∫

Ωh

Wc(∇w) dxp dx3

≤ 1

h3

∫ h/2

−h/2

1

2
x2

3 dx3

∫

ω

Q3

(
RT (∇̃b|d)

)
dxp +

O(h3) + o(h2)

h2
.

Computing the integral in x3 and taking the limit h → 0 concludes the
proof.

The next step concerns the incorporation of the minimization step in the
passage from Q3 to Q2.

Lemma 3.2. Let u ∈ C4(ω̄; R3), with ∇̃u ∈ O(2, 3), and suppose that hj →
0. Then there exists a sequence uj ∈ C1(Ωhj

; R3) with T uj → T u such that

lim sup
j→∞

Ihj
[uj] ≤ I0[u] .

Proof. Let b = ∂1u ∧ ∂2u, and R = (∇̃u|b). Since IIu = ∇̃uT ∇̃b, we have

ĨIu = RT ∇̃b. Let d0 : ω̄ → R
3 be a measurable vector field such that

Q2(IIu) = Q3(R
T ∇̃b|d0) , Tr

[
RT ∇̃b|d0

]
= 0 .

By (2.3) we have ‖d0‖ ≤ C‖∇̃b‖, where C depends only onQ3. The condition
on the trace is equivalent to

d0
3 = −Tr IIu = −Tr(RT ∇̃b|0) = −∂1u · ∂1b− ∂2u · ∂2b . (3.3)

This implies that the third component d0
3 is in C2(ω̄; R3). For i = 1, 2 let

dj
i ∈ C2(ω̄; R3) be a sequence which converges to d0

i in L2(ω̄; R3). We define
dj

3 = d0
3, and observe that dj fulfills automatically (3.3) for any j. Thus

lim
j→∞

∫

ω

Q3(R
T ∇̃b|dj) dxp =

∫

ω

Q2(IIu) dxp .

We now apply the previous Lemma to (u, b, Rdj), and take a diagonal se-
quence.
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After these preparations we are in a position to establish the upper bound
in the statement of the theorem.

Proof of Theorem 1.1, Part (b). Since the cross-section ω has the approxi-
mation property for isometries we may find a sequence of smooth functions
uk that approximate u in the W 2,2 norm. This implies that

uk → u , I0[uk] → I0[u] .

For each of these functions we apply Lemma 3.2 to obtain a sequence uk,j

such that as j → ∞

Thj
uk,j → T0uk , Ihj

[uk,j] → I0[uk] .

We finally choose a suitable diagonal sequence uk(j),j → u such that Ihj
[uk(j),j] →

I0[u], and conclude the proof.

4 A plate theory for compressible materials

with p growth at infinity

The derivation of a plate theory (without the constraint of incompressibility)
in [14] assumed the energy density to grow at least quadratically at infinity.
It is clear that this hypothesis covers the case of p growth with p ≥ 2 as
well. In this section we extend the argument to the case of p-growth with
p ∈ [1, 2), and show that the result is false for p < 1.

Theorem 4.1. Let ω ⊂ R
2 be an open and bounded Lipschitz domain. Sup-

pose that Wc is a stored energy density which satisfies (1.3), (1.7), Wc(Id) =
0, and is C2 smooth in a neighborhood of Id. Then the functionals

Ic
h[u] =

1

h3

∫

Ωh

Wc(∇̃u) dx

converge in the sense of Γ-convergence with respect to strong convergence in
W 1,p(Ω1; R

3) to

Ic
0[u] =





1

24

∫

ω

Qc
2(IIu) dxp if u(x) = u(xp) and ∇̃u ∈W 1,2(ω; O(2, 3)) ,

∞ otherwise.

Here
Qc

2(Ĝ) = min
d∈R3

Q3

(
π̃0(Ĝ)|d

)
, (4.1)

13



and Q3 = ∇2Wc(Id), as in (1.4); π̃0 was defined after (1.5). More precisely,

(a) Compactness and lower bound: For every sequence uh ∈ W 1,p(Ωh; R
3)

with Ic
h[uh] < C < ∞ there exist a subsequence uh and u ∈ W 2,2(ω; R3) with

∇̃u ∈ O(2, 3) a.e., such that

Th

(
uh −

1

|Ωh|

∫

Ωh

uh dx

)
→ T0u

strongly in W 1,p(Ω1; R
3). Moreover, if the entire sequence converges in this

sense, then

Ic
0[u] ≤ lim inf

h→0
Ic
h[uh].

(b) Upper bound: For any u ∈W 2,2(ω; R3) with ∇̃u ∈ O(2, 3) a.e. there ex-
ists a family uh ∈W 1,2(Ωh; R

3) such that Thuh → T0u strongly in W 1,p(Ω1; R
3)

and

lim sup
h→0

Ic
h[uh] ≤ Ic

0[u].

In particular, the form Q3 is the same for both the compressible and the
incompressible theory. The passage to Q2 is however different, in the incom-
pressible case (see (1.5)) the minimum is taken over all vectors d such that
the resulting matrix has trace equal to zero, in the present compressible case
(see (4.1)) one minimizes over all vectors d ∈ R

3. Although in this section
only compressible energies are used, we keep for consistency of notation with
the previous section the apex c on W , Q2 and I.

One key point in proving this theorem is to perform an appropriate trun-
cation. This will be done using the following result.

Proposition 4.2 (See Sect. 6.6.2 of [12] and Prop. A.1 of [16]). Let m, n ≥ 1
and let 1 ≤ p < ∞. Suppose that U ⊂ R

n is a bounded Lipschitz domain.
Then there exists a constant C(U,m, n, p) with the following property. For
each u ∈ W 1,p(U ; Rm) and each λ > 0 there exists a v ∈ W 1,∞(U ; Rm) such
that

(i) ‖∇v‖L∞(U ;Rm) ≤ Cλ,

(ii)
∣∣{x ∈ U : u(x) 6= v(x)

}∣∣ ≤ C

λp

∫

{x∈U :|∇u|(x)>λ}

|∇u|p dx.

Since the constant in Proposition 4.2 depends on the domain, we cannot
use it directly with U = Ωh. An application of Proposition 4.2 to Thuh on the

14



fixed domain Ω1 is appropriate only for the tangential derivatives. Indeed,
by chain rule, ∂3Thuh = hTh∂3uh. Thus, if we replace Thuh by some Lipschitz
continuous sequence Thvh we merely obtain a bound of the form c/h for ∂3vh.

For these reasons, we use the truncation on subdomains. We consider the
parallelepipeds of the type

Ta,h = (a1 − 3
2
h, a1 + 3

2
h) × (a2 − 3

2
h, a2 + 3

2
h) × (−1

2
h, 1

2
h) , a ∈ hZ

2.
(4.2)

On the sets Ta,h contained in Ωh we can construct a Lipschitz approximation
va,h to uh. Since all parallelepipeds have the same shape, the constants in the
estimates do not depend on a and h. However, the function ∇va,h constructed
in this way is only locally a gradient field, not globally. Therefore in the entire
argument one has to keep track of both va,h, on which “good” (i.e., L2) local
estimates hold, and of ∇uh, on which “bad” (i.e., Lp) global estimates hold.

Proof of Theorem 4.1. Part (b), i.e., the upper bound, follows directly from
Th. 6.1(ii) of [14], since the growth from below is not relevant. We remark
that for domains with the approximation property a straightforward adap-
tation of the proof of the construction used for Theorem 1.1(b) (eliminating
the parts related to the isochoric constraint) allows one to construct directly
sequences uh ∈ C∞, avoiding the subtle truncation arguments used in [14].

We split the proof of Part (a) into two steps, dealing first with the com-
pactness statement and then with the lower bound. In both proofs the key
point is to define a suitable truncation of the sequence uh; since the domain
depends on h this has to be done locally in order to obtain uniform estimates.
After the truncation the proof follows the outline of the proof of Theorem 6.1
in [14], which is carried out in parallel on the truncated sequence (on sub-
domains, but obtaining L2 estimates) and on the original sequence (which is
defined globally, but obeys only Lp estimates), taking care to keep track of
the link between the two.

(i) Compactness. In order to obtain convergence of the whole sequence
we have to normalize any additive constants. In order to be able to ap-
ply Poincaré’s inequality on subdomains of ω we fix a ball B(z, 2R) ⊂ ω.
Without loss of generality we may assume that the integral of uh on Bh =
B(z, R) × (−h/2, h/2) is equal to zero.

In order to truncate uh, we consider the squares

Sa,h = a+

(
−h

2
,
h

2

)2

, a ∈ hZ
2 .

Let λ be fixed such that Wc(F ) ≥ c|F |p for |F | ≥ λ. This implies that
Wc(F ) ≥ cdist2(F, SO(3)) for all |F | ≤ λ. In the following, all constants may
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depend on the choice of λ, as well as on the constants in the growth conditions
for Wc, but not on h or uh; the specific value may change from line to line.
For each a ∈ hZ

2 such that Sa,3h ⊂ ω, we define Ta,h = Sa,3h×(−h/2, h/2) as
in (4.2) and va,h ∈W 1,∞(Ta,h; R

3) as a truncation of uh restricted to Ta,h on
a scale λ, in the sense of Proposition 4.2. By scaling the constants appearing
in Proposition 4.2 do not depend on h. We estimate

∫

Ta,h

dist2(∇va,h, SO(3)) dx

≤
∫

Ta,h∩{va,h=uh}

dist2(∇va,h, SO(3)) dx+ c |Ta,h ∩ {va,h 6= uh}| .

On the set where va,h = uh, we have ∇va,h = ∇uh and |∇uh| ≤ λ a.e.,
hence dist2(∇uh, SO(3)) ≤ cWc(∇uh) for some constant c > 0. From (ii) of
Proposition 4.2 we have

|Ta,h ∩ {va,h 6= uh}| ≤ c

∫

Ta,h∩{|∇uh|>λ}

|∇uh|p dx ≤ c

∫

Ta,h

Wc(∇uh) dx .

We conclude
∫

Ta,h

dist2(∇va,h, SO(3)) dx ≤ c

∫

Ta,h

Wc(∇uh) dx .

Analogously, we have

∫

Ta,h

|∇va,h −∇uh|p dx =

∫

Ta,h∩{va,h 6=uh}

|∇va,h −∇uh|p dx

≤ cλp |Ta,h ∩ {va,h 6= uh}| + c

∫

Ta,h∩{va,h 6=uh}∩{|∇uh|≥λ}

|∇uh|p dx

≤ c

∫

Ta,h

Wc(∇uh) dx . (4.3)

By the quantitative Liouville rigidity theorem [14, Th. 3.1], for every Ta,h ⊂
Ωh there is Ra,h ∈ SO(3) such that

∫

Ta,h

|∇va,h − Ra,h|2 dx ≤ c

∫

Ta,h

dist2(∇va,h, SO(3)) dx

≤ c

∫

Ta,h

Wc(∇uh) dx . (4.4)
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Again, by scaling one sees that the constants do not depend on h. We now
assert that for all a, b ∈ hZ

2 such that Ta,h, Tb,h ⊂ Ωh and |a− b| < 2h, one
has

|Ta,h| |Ra,h − Rb,h|2 ≤ c

∫

Ta,h∪Tb,h

Wc(∇uh) dx . (4.5)

To prove the assertion, we define

Ga,b,h = {x ∈ Ta,h ∩ Tb,h : |∇uh|(x) < λ} .

We observe
∫

Ga,b,h

|∇uh −∇va,h|2 dx ≤ c|Ta,h ∩ {uh 6= va,h}| ≤ c

∫

Ta,h

Wc(∇uh) dx ,

and the same for b. Therefore, recalling (4.3) and (4.4),

c|Ga,b,h| |Ra,h −Rb,h|2

≤
∫

Ga,b,h

|Ra,h −∇va,h|2 dx+

∫

Ga,b,h

|Rb,h −∇vb,h|2 dx

+

∫

Ga,b,h

|∇uh −∇va,h|2 dx+

∫

Ga,b,h

|∇uh −∇vb,h|2 dx

≤ c

∫

Ta,h∪Tb,h

Wc(∇uh) dx .

If |Ga,b,h| ≥ h3/10, the assertion is proven. In the converse case we have

∫

Ta,h∪Tb,h

Wc(∇uh) dx ≥ c|(Ta,h ∪ Tb,h) \ Ga,b,h| ≥ ch3 ≥ ch3|Ra,h −Rb,h|2 ,

since Ra,h, Rb,h ∈ SO(3). This concludes the proof of the assertion (4.5).
Equation (4.5) is a discrete W 1,2 estimate for Ra,h. It implies, in an

appropriate sense, strong convergence of Ra,h in L2. To make this statement
precise, we define functions Rh : ω → M

3×3 by

Rh(xp) =

{
Ra,h if xp ∈ Sa,h ⊂ Sa,3h ⊂ ω for some a ∈ hZ

2 ,

0 otherwise.

Then (4.5) implies that after taking a subsequence the sequence Rh converges
strongly in L2(ω; M3×3) to a function R : ω → SO(3). This argument is
completely analogous to the case of quadratic growth, we refer to the final
part of the proof of Th. 4.1 in [14] (starting with the estimate (4.8) which
corresponds to (4.5) here) for details.
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It remains to show that there exists a u ∈W 2,2(ω; R3) such that Rei = ∂iu
for i = 1, 2, and that Thuh → T0u strongly in W 1,p(Ω1; R

3). For h > 0 and
j ∈ N \ {0} let Cj(h) be the set of centers defined by

Cj(h) =
{
a ∈ jhZ

2, Sa,3h ⊂ ω
}
.

We define the function vh ∈ Lp(Ωh; R
3) by

vh(x) =

{
va,h(x) if x ∈ Sa,h × (−h/2, h/2), a ∈ C1(h) ,

0 otherwise.

By definition, vh ∈ W 1,p(Sa,h × (−h/2, h/2); R3) for all h and all a ∈ C1(h),
and vh ∈ SBV (Ωh; R

3). Let Dvh be its distributional gradient, and ∇vh be
the part which is absolutely continuous with respect to the Lebesgue measure
(the rest is concentrated on the boundaries of the Sa,h×(−h/2, h/2)). Clearly

∇vh(x) =

{
∇va,h(x) if x ∈ Sa,h × (−h/2, h/2), a ∈ C1(h),

0 otherwise .

Analogous statements hold for the rescaling Thvh. For any ω̃ ⊂⊂ ω with
B(z, R) ⊂ ω̃ there exists an h0 > 0 such that ω̃ is contained in the union of
the squares Sa,h with a ∈ C1(h), for all h < h0. We conclude from (4.3) that

for h ∈ (0, h0) and Ω̃1 = ω̃ × (−1/2, 1/2)
∫

eΩ1

|∂1Thuh − ∂1Thvh|p dx =
1

h

∫

eω×(−h/2,h/2)

|∂1uh − ∂1vh|p dx

≤ c

h

∫

Ωh

Wc(∇uh) dx ≤ ch2Ic
h[uh] .

Analogously, and using (4.4),
∫

eΩ1

|∂1Thvh − Rhe1|p dx ≤ |Ω̃1|(2−p)/2
(∫

eΩ1

|∂1Thvh − Rhe1|2 dx
)p/2

≤ c
(1

h

∫

Ωh

Wc(∇uh) dx
)p/2

≤ chp
(
Ic
h[uh]

)p/2
.

This implies that ∂1Thuh → Re1 in Lp(Ω̃1; R
3), and the same for ∂2Thuh and

Re2.
We now turn to the normal component. By definition, ∂3Thuh = hTh∂3uh

and |∂3Thva,h| ≤ ch, and we obtain recalling (4.3)
∫

eΩ1

|∂3Thuh|p dx ≤ c

∫

eΩ1

|∂3Thvh|p dx+ chp

∫

eΩ1

|Th(∂3uh − ∂3vh)|p dx

≤ chp + chp−1

∫

Ωh

Wc(∇uh) dx ≤ chp + chp+2Ic
h[uh] .
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Therefore ∇Thuh is uniformly bounded in Lp(Ω̃1; M
3×3), and since by as-

sumption uh (and hence Thuh) have average zero on Bh ⊂ Ω̃h, we get that

Thuh is uniformly bounded in W 1,p(Ω̃1; R
3). This implies that Thuh has a

subsequence which converges strongly in Lp and weakly in W 1,p to a limit
U . At the same time the partial derivatives ∂1,2Thuh converge strongly in
Lp to Re1,2, and ∂3Thuh to zero. By uniqueness of the weak limit we obtain

∂1,2U = Re1,2, ∂3U = 0, and Thuh → U strongly in W 1,p(Ω̃1; R
3). Since this

holds for any ω̃ ⊂⊂ ω, and R ∈ L∞(ω), we conclude that there exists a
u ∈W 1,p(ω; R3) such that U = T u. The higher regularity for u follows from
(4.5) as in [14]. In order to prove strong convergence in W 1,p(Ω1), we observe

lim sup
h→0

∫

Ω1

|Th∇uh − Th∇u|p dx

≤c|Ω1 \ Ω̃1| + c lim sup
h→0

∫

Ω1\eΩ1

Wc(Th∇uh) dx

+ lim sup
h→0

∫

eΩ1

|Th∇uh − Th∇u|p dx

≤c|Ω1 \ Ω̃1| = c|ω \ ω̃|

for any ω̃ ⊂⊂ ω, which implies the assertion.
For future reference we observe that (4.3) and (4.4) imply additionally

convergence for the rescaled gradient h−1∂3Thuh = Th∂3uh. Indeed,

∫

eΩ1

∣∣Th∇vh − Th∇uh

∣∣p dx ≤ c

h

∫

Ωh

Wc(∇uh) dx

and
∫

eΩ1

∣∣Th∇vh − Rh

∣∣2 dx ≤ c

h

∫

Ωh

Wc(∇uh) dx .

In particular, Th∇uh − Rh → 0 strongly in Lp(Ω̃1; M
3×3) and in view of the

strong convergence of Rh to R : Ω1 → SO(3) we deduce, arguing as above,

Th∇uh → R = (∇̃u, ∂1u ∧ ∂2u) in Lp(Ω1; M
3×3). (4.6)

(ii) Lower bound. The general strategy is to prove first a lower bound,

lim inf
h→0

1

h3

∫

Ωh

Wc(∇uh) dx ≥ 1

2

∫

Ω1

Q2(Ĝ) dx (4.7)
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and to show that Ĝ is affine in x3. The assertion then follows from integration
in x3 using that Q2 is quadratic and from a characterization of Ĝ in terms
of ∇̃u. In order to define G and prove (4.7) we consider the fields

gh(x) =





RT
a,h∇uh(x) − Id

h
if x ∈ Ta,h, a ∈ C3(h) ,

0 otherwise

and

ḡh(x) =





RT
a,h∇va,h(x) − Id

h
if x ∈ Ta,h, a ∈ C3(h) ,

0 otherwise

where Ra,h is the rotation in (4.4). Note that we choose a ∈ 3hZ
2 in order

to ensure that the Ta,h are disjoint. We assert next that there exists a G ∈
L2(Ω1; M

3×3) such that, up to a subsequence,

Thgh⇀G in Lp(Ω1; M
3×3) (4.8)

and
Thḡh⇀G in L2(Ω1; M

3×3) . (4.9)

To show this, note first that by (4.4),

1

h

∫

Ωh

|ḡh|2 dx =
1

h3

∑

a∈C3(h)

∫

Ta,h

|∇va,h −Ra,h|2 dx

≤ c

h3

∫

Ωh

Wc(∇uh) dx ≤ C . (4.10)

Thus Thḡh is bounded in L2(Ω1; M
3×3) and there exists a subsequence that

converges weakly to a limit G, and (4.9) is proven. At the same time, by
(4.3)

1

h

∫

Ωh

|ḡh − gh|p dx =
1

hp+1

∑

a∈C3(h)

∫

Ta,h

|∇va,h −∇uh|p dx

≤ c

hp+1

∫

Ωh

Wc(∇uh) dx ≤ Ch2−p .

Therefore Thḡh − Thgh → 0 in Lp. Since both weak convergence in L2 and
strong convergence in Lp imply weak convergence in Lp, (4.8) follows.

We now define

χh(x) =

{
1 if |gh|(x) ≤ h−1/2 ,

0 otherwise,

20



and observe that Thχh → 1 in measure and |χh| ≤ 1. Therefore

Th(χhgh)⇀G in Lp(Ω1; M
3×3) . (4.11)

Indeed, for any ψ ∈ Lp′ (as usual 1/p′ = 1 − 1/p, p′ = ∞ if p = 1) we have

∫

Ω1

Th(χhgh)ψ dx =

∫

Ω1

(Thχh − 1)(Thgh)ψ dx+

∫

Ω1

(Thgh)ψ dx.

By (4.8) the weakly converging sequence gh is equi-integrable, hence the
first term can be made arbitrarily small. The second term converges by the
definition of weak convergence, and (4.11) is proven.

We now estimate, recalling (4.3),

∫

Ωh

(χhgh − χhḡh)
2 dx ≤ 1

h2

∑

a∈C3(h)

∫

Ta,h∩{uh 6=va,h}

χh|∇uh −∇va,h|2 dx

≤ c

h2

∑

a∈C3(h)

∫

Ta,h∩{uh 6=va,h}

|∇uh −∇va,h|p dx

≤ c

h2

∫

Ωh

Wc(∇uh) dx ≤ Ch .

By (4.9) Thχhḡh is bounded in L2, hence we conclude

1

h

∫

Ωh

|χhgh|2 dx ≤ C .

Recalling (4.11), by uniqueness of the weak limit we obtain

Th(χhgh)⇀G in L2(Ω1; M
3×3) . (4.12)

We now expand Wc in a Taylor series about the identity matrix, and
obtain

Wc(Id + A) ≥ 1

2
Q3(A) − ω(|A|) ,

with ω(t)/t2 → 0 as t→ 0. Then by frame indifference

1

h3

∫

Ωh

Wc(∇uh) dx ≥ 1

h3

∫

Ωh

χhWc(R
T
h∇uh) dx

≥ 1

h

∫

Ωh

1

2
χhQ3(gh) dx− 1

h3

∫

Ωh

χhω(h|gh|) dx .
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We first show that the last term converges to zero. On the support of
χh we have h|gh| ≤ h1/2; therefore χhω(h|gh|)/(h|gh|)2 → 0 in L∞, and
h−1

∫
Ωh
χh|gh|2 dx is bounded by (4.12). We conclude that

lim inf
h→0

1

h3

∫

Ωh

Wc(∇uh) dx ≥ lim inf
h→0

1

h

∫

Ωh

1

2
Q3(χhgh) dx

= lim inf
h→0

∫

Ω1

1

2
Q3(Thχhgh) dx.

Since Q3 is a positive semidefinite quadratic form it is convex, and hence
weakly lower semicontinuous. Recalling (4.12) we obtain

lim inf
h→0

1

h3

∫

Ωh

Wc(∇uh) dx ≥
∫

Ω1

1

2
Q3(G) dx . (4.13)

The final part of the proof follows closely the lines of [14], with minor changes
to take care of the weaker convergences. For the convenience of the reader
we give a brief account of the argument in the present notation. Since Q3

does not depend on the skew-symmetric part of G, we may assume that
G31 = G32 = 0 for all x and we conclude from the definition of Q2 that
Q3(G) ≥ Q2(Ĝ) where Ĝ ∈ M

2×2 corresponds to the in-plane variables in G.
This concludes the proof of (4.7).

We shall now prove that Ĝ is affine in x3. We define the difference quotient
H̃h of Thg̃h in the x3 direction,

H̃h(xp, x3) =
1

z

(
Thg̃h(xp, x3 + z) − Thg̃h(xp, x3)

)

=
1

hz
RT

h

(
∇̃Thuh(xp, x3 + z) − ∇̃Thuh(xp, x3)

)
,

where the notation with a tilde indicates as before that we consider a 3 × 2
matrix, that is, G̃ = (Ge1, Ge2) for the 3 × 2-matrix formed by the first two
columns of any matrix G ∈ M

3×3.
Let Ω̃ ⊂⊂ Ω1 and choose |z| < dist(Ω̃1, ∂Ω1) so that the difference quo-

tients are well defined. By (4.8) we have

H̃h⇀H̃ =
1

z

(
G̃(xp, x3 + z) − G̃(xp, x3)

)
in Lp(Ω̃1; M

3×2).

It follows from (4.6) that the bounded sequence Rh converges to R in measure

and that the limit is given by R = (∇̃U |b) ∈ W 1,2(Ω; M3×3) with b = ∂1U ∧
∂2U . Hence

1

hz

(
∇̃Thuh(xp, x3 + z) − ∇̃Thuh(xp, x3)

)
= RhH̃h⇀(∇̃U |b)H̃ in Lp(Ω̃1; M

3×2).
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In order to identify H̃ we rewrite the left-hand side as

∇̃
( 1

hz

∫ x3+z

x3

∂3Thuh(xp, s) ds
)
.

In view of the strong convergence (4.6) we conclude that

1

hz

∫ x3+z

x3

∂3Thuh(xp, s) ds→ 1

z

∫ x3+z

x3

b(xp, s) ds = b(xp) in Lp(Ω̃1; R
3) ,

since b is independent of x3. Hence

1

hz

(
∇̃Thuh(xp, x3 + z) − ∇̃Thuh(xp, x3)

)
→ ∇̃b ∈ D′(Ω).

By the uniqueness of the distributional limit we deduce that ∇̃b = (∇̃U |b)H̃ ∈
Lp, and hence b ∈ W 1,p(Ω; R3). Additionally we deduce the representation
formulas

H̃ = (∇̃U |b)T ∇̃b, G̃(xp, x3) = G̃(xp, 0) + x3H̃(xp).

This implies for the 2 × 2-matrix Ĝ that

Ĝ(xp, x3) = Ĝ(xp, 0) + x3II(xp), II(xp) = (∇̃U)T ∇̃b.

Since Ω̃1 was an arbitrary subset, the foregoing identities are true in Ω1.
Finally, from the inequality (4.13) and the trivial bound Q3(G) ≥ Qc

2(Ĝ)
we obtain

lim inf
h→0

1

h3

∫

Ωh

Wc(∇uh) dx ≥ 1

2

∫

Ω1

Q3(G) dx ≥ 1

2

∫

Ω1

Qc
2(Ĝ) dx .

Since Ĝ is affine in x3, and Qc
2 is a quadratic form, we conclude that

lim inf
h→0

1

h3

∫

Ωh

Wc(∇uh) dx ≥ 1

2

∫

Ω1

(
Qc

2(Ĝ(xp, 0)) + x2
3Q

c
2(II(xp))

)
dx

(the linear term vanishes after integration in x3). This implies the assertion
in Theorem 4.1 since the quadratic from Qc

2 is nonnegative.

It is interesting to note that the compactness statement fails if p < 1.
This is due to the fact that one can approximate a discontinuous function,
which corresponds to breaking the plate, by piecewise affine functions with
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Figure 1: Sketch of the construction in (4.14).

bounded energy, see Figure 1 for a sketch of the situation. Precisely, let
p ∈ (0, 1), and assume for simplicity

Wc(F ) = min
{
dist2(F, SO(3)), distp(F, SO(3))

}
.

We work on ω = (0, 1)2, and set, for a given α > 0 to be chosen later,

uh(x) =






x if x1 < 1/2 ,

x+
x1 − 1/2

hα
e2 if 1/2 < x1 < 1/2 + hα ,

x+ e2 otherwise.

(4.14)

The energy of the system is concentrated on the small part of width hα (and
volume hα+1) where the plate is sheared and the corresponding deformation
gradient is given by

∇uh =




1 0 0
h−α 1 0
0 0 1



 .

The total energy is thus bounded by

Ih[uh] = Ic
h[uh] ≤

1

h3

∫

Ωh

distp(∇uh, SO(3)) dx ≤ 1

h3
hα hh−αp = hα(1−p)−2 ,

which is uniformly bounded provided α ≥ 2/(1−p). It is clear that the limit
configuration is discontinuous and thus not in W 2,2.
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Acad. Sci. Paris 317 (1993), 221–226.

[21] , The nonlinear membrane model as a variational limit of nonlin-
ear three-dimensional elasticity, J. Math. Pures Appl. 73 (1995), 549–
578.

[22] R. W. Ogden, Non-linear elastic deformations, John Wiley, 1984.

[23] M. R. Pakzad, On the Sobolev space of isometric immersions, J. Diff.
Geom. 66 (2004), 47–69.

[24] O. Pantz, Une justification partielle du modèle de plaque en flexion par
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