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Abstract. We study the stability of a sequence of integral functionals on divergence-free matrix
valued fields following the direct methods of Γ-convergence. We prove that the Γ-limit is an integral
functional on divergence-free matrix valued fields. Moreover, we show that the Γ-limit is also stable
under volume constraint and various type of boundary conditions.
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1. Introduction

In the setting of continuum mechanics and electromagnetism it is interesting to consider variational models
involving integral functionals depending on fields which satisfy a differential constraint.

In many applications the constraint of being a solenoidal field is of particular interest. This is the type of
functionals we have in mind:

F (U,Ω) =

⎧⎨⎩
∫

Ω

f(x, U) dx U ∈ Lp(Ω; Md×n), DivU = 0 in Ω

+∞ otherwise,
(1.1)

where the function f is a Carathéodory function satisfying the following growth condition

α‖Σ‖p − 1
α

≤ f(x,Σ) ≤ β(‖Σ‖p + 1), (1.2)

for every x ∈ Ω and Σ ∈ Md×n, and DivU denotes the differential constraint which acts on a d × n matrix
valued function by computing the divergence of each row. Functionals of this type arise naturally from problems
in elasticity or, more generally by duality, from problems depending on gradient fields, as for instance in the
study of bounds for effective properties of composite materials (see for instance [11–13]).

The problem of characterizing the lower semicontinuity and the relaxation for functionals of type (1.1) has
been addressed by [7] and [5] in the context of A-quasiconvexity; i.e., for more general differential constraints
AU = 0, where A is a first order linear partial differential operator of constant rank (see Murat [9] and Tartar
[14]).
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The particular case A = div (with d = 1) has been considered in [10]. In [5] it is also proved an homogenization
result in terms of Γ-convergence of functionals

Fε(U,Ω) =

⎧⎨⎩
∫

Ω

f
(x
ε
, U
)

dx U ∈ Lp(Ω; RN ), AU = 0 in Ω

+∞ otherwise
(1.3)

with a general first order differential operator A of constant rank.
The approach in [5] is very general and is given in terms of Young measures. A key argument relies on a

result of decomposition of converging sequences due to [7] in the spirit of the equintegrability result of Acerbi
and Fusco [1] and Fonseca, Müller and Pedregal [8].

Our aim is to show that in case of divergence free fields this approach can be simplified and a more explicit
construction can be given. Our method is based on a localization and representation technique and can be
used more generally for the study of Γ-convergence of an arbitrary sequence of functionals of type (1.1) and not
only in case of homogenization. In order to use a representation argument, as usual, it is essential to prove the
additivity and the inner regularity of the limit functional with respect to the domain. To this end the main
difficulty is to glue two divergence free fields by keeping the divergence constraint. We do this by modifying the
fields in a nonlocal manner by means of an auxiliary system of partial differential equations. This construction
implicitly is done in abstract in [5] and [7], however we believe that it can be interesting to give it explicitly. In
particular, the explicit construction permits to deal with additional constraints as boundary conditions.

The plan of the paper is the following. In Section 2 we briefly recall the notions of Div-quasiconvexity and
Γ-convergence and we state the main result of the paper.

Section 3 is devoted to the main step in our proof, the so called fundamental estimate, that permits to prove,
in Section 4, the compactness and integral representation results and analyze, in Section 5, various boundary
value problems.

Finally, we conclude showing that the special case of homogenization can be obtained as a particular case of
our general Γ-convergence result.

2. Notation, preliminaries and the main result

Let Ω be a bounded open subset of Rn. Let Σ ∈ Md×n, where Md×n stands for the space of d × n real
matrices, we denote ‖Σ‖ =

∑d
i=1 |(Σ)i|, where (Σ)i is the ith row of Σ and |(Σ)i| its euclidean norm. We

use (z)i also to denote the ith component of a vector z. The notation Σ · a stands for the matrix Σ ∈ Md×n

that acts on the vector a ∈ Rn while 〈·, ·〉 denotes the scalar product between two vectors. Finally, we define
Div Σ : Ω �→ Rd such that

(Div Σ)i = div(Σ)i

for every i = 1, . . . , d.

Our aim is to study the asymptotic behaviour of sequences of integral functionals on divergence free matrix
valued fields of the following type

Fj(U) =

⎧⎨⎩
∫

Ω

fj(x, U) dx U ∈ Lp(Ω; Md×n), DivU = 0 in Ω

+∞ otherwise,
(2.4)

where fj : Ω × Md×n �→ [0,∞) is a sequence of Borel functions satisfying the following conditions:

∃ α, β > 0 such that α‖Σ‖p − 1
α

≤ fj(x,Σ) ≤ β(‖Σ‖p + 1) (2.5)
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for every j ∈ N, x ∈ Ω and Σ ∈ Md×n;

|fj(x,Σ1) − fj(x,Σ2)| ≤ ω(‖Σ1 − Σ2‖,Σ1,Σ2) (2.6)

for every j ∈ N, x ∈ Ω and Σ1,Σ2 ∈ Md×n, with

ω(‖Σ1 − Σ2‖,Σ1,Σ2) = γ ‖Σ1 − Σ2‖(‖Σ1‖p−1 + ‖Σ2‖p−1 + 1)

for a given γ > 0.
The notion of convergence, that we will use for {Fj}, is the, by now classic, notion of Γ-convergence introduced

by De Giorgi. Together with a compactness result for sequences with equibounded energies this is the suitable
notion in order to get convergence of minima and minimizing sequences (for a comprehensive study of Γ-
convergence see for instance [6] or [3]). Therefore in view of the a priori bound (2.5) the natural topology use
in the study of the Γ-limit of {Fj} is the weak Lp topology.

Our main result is that the class of functionals of the type (1.1) is closed under the Γ-convergence with
respect to the weak Lp convergence. Namely, we show that given the sequence of functionals defined by (2.4)
there exist a subsequence (still labelled with {Fj}) and a functional F of the same type, such that for every
U ∈ Lp(Ω,Md×n), with DivU = 0, the following conditions are satisfied:

(i) for every sequence {Uj}, with DivUj = 0, converging to U weakly in Lp we have

F (U) ≤ lim inf
j→+∞

Fj(Uj);

(ii) there exists a sequence {Uj}, with DivUj = 0, converging to U weakly in Lp such that

F (U) ≥ lim sup
j→+∞

Fj(Uj).

It is well known that a Γ-limit with respect to a given topology is always lower semicontinuous in that topology.
The lower semicontinuity and the relaxation have been characterized in [7] and [5] in the general case of integral
functionals satisfying a differential constraint given by a first order linear partial differential operator A of
constant rank (see Murat [9] and Tartar [14]).

In the particular case of divergence constraint the necessary and sufficient condition for the lower semicon-
tinuity of functionals of type (1.1) is given by the Div-quasiconvexity of f(x, ·) for a.e. x ∈ Ω. We say that a
function g : Md×n �→ R, satisfying α‖Σ‖p − 1/α ≤ g(Σ) ≤ β(‖Σ‖p + 1) for some α, β > 0, is Div -quasiconvex if
for every Σ ∈ Md×n

g(Σ) = inf
{∫

Q

g(Σ + V (x)) dx : V ∈ Lp
#,Div (Q; Md×n),

∫
Q

V dx = 0
}
,

where
Lp

#,Div (Q; Md×n) = {U ∈ Lp
loc(R

n,Md×n) : Q-periodic, DivU = 0 in Rn},
and Q denotes the unit cube in Rn.

A necessary condition for the Div-quasiconvexity is given by the rank-(n− 1) convexity (see [7], Prop. 3.4).
Here we say that a function g : Md×n �→ R (d ≥ n) is rank-(n− 1) convex if for all Σ1,Σ2 ∈ Md×n such that
rank (Σ1 − Σ2) ≤ (n− 1)

g(tΣ1 + (1 − t)Σ2) ≤ tg(Σ1) + (1 − t)g(Σ2) (2.7)
for all t ∈ (0, 1).

Remark 2.1. If d < n the notion of rank-(n− 1) convexity coincides with convexity.
Moreover, if d = 1 the div-quasiconvexity reduces to convexity. In this case, the relaxation of a functional

of the form (1.1) is represented by the convex envelope of f with respect to the second variable; i.e., the
div-quasiconvex envelope Qdivf(x, ·) coincides with f∗∗(x, ·) (see [5] and [10] and also Rem. 3.5 (iv) in [7]).
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Our main result can be stated as follows.

Theorem 2.2. For any sequence of functionals {Fj} defined by (2.4) and satisfying (2.5) and (2.6) there exist
a subsequence {Fjk

} and a Borel function ϕ : Ω × Md×n �→ [0,+∞), Div-quasiconvex in the second variable,
satisfying the condition

α‖Σ‖p − 1
α

≤ ϕ(x,Σ) ≤ β(1 + ‖Σ‖p) (2.8)

such that {Fjk
} Γ-converges with respect to the weak Lp topology to

F (U) =

⎧⎨⎩
∫

Ω

ϕ(x, U) dx U ∈ Lp(Ω; Md×n), DivU = 0 in Ω

+∞ otherwise.
(2.9)

Remark 2.3. Note that we assume the Lipschitz condition (2.6) in order to simplify the argument, but this is
not at all restrictive. Indeed in the study of the Γ-limit of {Fj} it is always possible to assume that Fj are lower
semicontinuous with respect to the weak Lp topology (if not we can replace the sequence {Fj} with the sequence
of the corresponding relaxed functionals). Thus, in view of the characterization of the lower semicontinuous
functionals, we may always assume that {fj} are Div -quasiconvex, hence rank-(n − 1) convex. This implies
that the growth condition fj(x,Σ) ≤ β(1 + ‖Σ‖p) is sufficient to conclude the Lipschitz condition

|fj(x,Σ1) − fj(x,Σ2)| ≤ γ ‖Σ1 − Σ2‖(‖Σ1‖p−1 + ‖Σ2‖p−1 + 1)

for every Σ1,Σ2 ∈ Md×n and x ∈ Ω with γ depending on β and p (see e.g. [4], Rem. 4.13 (iii)).

For the proof of Theorem 2.2 we will use the classical strategy of localization and integral representation. To
this end it is convenient to introduce an explicit dependence of our functionals on the domain. We denote by
A(Ω) the family of all open subsets of Ω and for every j ∈ N we consider the functionals Fj : Lp(Ω; Md×n) ×
A(Ω) → R given by

Fj(U,A) =

⎧⎨⎩
∫

A

fj(x, U) dx U ∈ Lp(Ω; Md×n), DivU = 0 in Ω

+∞ otherwise.
(2.10)

Let us finally recall that this strategy also requires the characterization of the Γ-convergence in terms of the
lower and upper Γ-limit, i.e.,

F ′(U,A) = Γ- lim inf
j→+∞

Fj(U,A) = inf
{
lim inf
j→+∞

Fj(Uj , A) : Uj ⇀ U
}
,

and
F ′′(U,A) = Γ- lim sup

j→+∞
Fj(U,A) = inf

{
lim sup
j→+∞

Fj(Uj , A) : Uj ⇀ U
}
.

Thus the equality F ′(U,A) = F ′′(U,A) is equivalent to the existence of the Γ-limit F (U,A) = Γ-limj→+∞ Fj(U,A).
In the sequel the letter c will denote a positive constant, independent of the parameters under consideration,

whose value may vary from line to line.

3. The fundamental estimate

In this section we prove the main tool for our Γ-convergence result: the fundamental estimate.

Proposition 3.1 (fundamental estimate). Let p > 1 and let {Fj} be a sequence of functionals defined by (2.10)
and satisfying conditions (2.5) and (2.6). For every σ > 0, for all A,A′, B ∈ A(Ω) with A′ ⊂⊂ A and
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dist (A′, B \ A) > 0, for every Uj ⇀ U and Vj ⇀ U in Lp(Ω; Md×n) with DivUj = Div Vj = DivU = 0, there
exists a sequence {Wj} ⊆ Lp(Ω; Md×n), with DivWj = 0, weakly converging to U in Lp(Ω; Md×n) such that

Fj(Wj , A
′ ∪B) ≤ Fj(Uj , A) + Fj(Vj , B) + σ + o(1) (3.1)

as j → +∞.

Proof. Let δ = dist (A′, ∂A), we fix N ∈ N. For any k ∈ {1, . . . , N} we define the set

Ak = {x ∈ A : Ndist (x,A′) < kδ}

and A0 = A′. Let ϕk be a cut-off function between Ak−1 and Ak; i.e., ϕk ∈ C∞
0 (Ak) and ϕk = 1 on Ak−1. In

general Div (ϕkUj + (1 − ϕk)Vj) �= 0, but we can modify ϕkUj + (1 − ϕk)Vj adding a non local perturbation
such that the new sequence is divergence free. More precisely, we define

(W k
j )i = ϕk(Uj)i + (1 − ϕk)(Vj)i + |D(gk

j )i|p′−2D(gk
j )i

for i = 1, . . . , d, where gk
j : Ω → Rd is the solution of the Neumann system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−div
(
|D(gk

j )i|p′−2D(gk
j )i

)
= 〈(Uj − Vj)i, Dϕ

k〉 on Ω

∂(gk
j )i

∂ν
= 0 on ∂Ω i = 1, . . . , d

∫
Ω

gk
j dx = 0,

(3.2)

where ν is the outer normal on ∂Ω and 1/p+ 1/p′ = 1. If p′ < 2 we use the convention

|D(gk
j )i|p′−2D(gk

j )i =

{
|D(gk

j )i|p′−2D(gk
j )i if |D(gk

j )i| > 0
0 if |D(gk

j )i| = 0.

Note that (Uj − Vj) ·Dϕk = Div (ϕkUj + (1 − ϕk)Vj) and the solution of (3.2) exists in view of the fact that∫
Ω

〈(Uj − Vj)i, Dϕ
k〉dx =

∫
∂Ω

〈(Vj)i, ν〉dHn−1 = 0

for every i = 1, . . . , d, since Div Vj = 0. Hence, by (3.2) we have that DivW k
j = 0.

By (2.5) and (2.6), we get that∫
A′∪B

fj(x,W k
j ) dx

≤
∫

A′∪B

fj(x, ϕkUj + (1 − ϕk)Vj) dx+
∫

A′∪B

ωk
j (x) dx

=
∫

A′∪(B∩Ak−1)

fj(x, Uj) dx+
∫

B\Ak

fj(x, Vj) dx+
∫

A′∪B

ωk
j (x) dx +

∫
Ck∩B

fj(x, ϕkUj + (1 − ϕk)Vj) dx

≤ Fj(Uj , A) + Fj(Vj , B) +
∫

A′∪B

ωk
j (x) dx +

∫
Ck∩B

β + β2p−1(‖Uj‖p + ‖Vj‖p) dx, (3.3)
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where Ck = Ak \Ak−1 and

ωk
j (x) = ω

(
d∑

i=1

|D(gk
j )i|p′−1,W k

j , (ϕ
kUj + (1 − ϕk)Vj)

)
.

We now choose k such that the last term of the inequality (3.3) is small. Indeed, since {Uj} and {Vj} are
bounded in Lp(Ω; Md×n), we note that

N∑
k=1

∫
Ck∩B

β + β2p−1(‖Uj‖p + ‖Vj‖p) dx ≤
∫

(A∩B)\A′
β + β2p−1(‖Uj‖p + ‖Vj‖p) dx ≤ c̃

and therefore there exists kj ∈ {1, . . . , N} such that∫
Ckj

∩B

β + β2p−1(‖Uj‖p + ‖Vj‖p) dx ≤ 1
N

∫
(A∩B)\A′

β + β2p−1(‖Uj‖p + ‖Vj‖p) dx ≤ c̃

N
· (3.4)

With this choice of kj , we define

Wj := W
kj

j gj := g
kj

j ϕj := ϕkj ωj = ω
kj

j .

Summarizing, we have
(Wj)i = ϕj(Uj)i + (1 − ϕj)(Vj)i + |D(gj)i|p′−2D(gj)i

for i = 1, . . . , d, where ϕj ∈ C∞
0 (A) is a cut-off function between A′ and A and gj is the solution of the Neumann

system ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∆p′(gj)i = 〈(Uj − Vj)i, Dϕj〉 on Ω

∂(gj)i

∂ν
= 0 on ∂Ω i = 1, . . . , d

∫
Ω

gj dx = 0,

(3.5)

where 1/p+ 1/p′ = 1, ∆p′u = div(|Du|p′−2Du) and ν is the outer normal on ∂Ω.
From (3.3), in view of (3.4), for every σ > 0, if we fix N ∈ N such that c̃/N < σ, we get

Fj(Wj , A
′ ∪B) ≤ Fj(Uj , A) + Fj(Vj , B) + σ +

∫
A′∪B

ωj(x) dx.

It remains to prove that

lim
j→∞

(∫
A′∪B

ωj(x) dx
)

= 0. (3.6)

By (3.5) and by Hölder’s and Poincaré’s inequalities, since {Uj} and {Vj} are bounded in Lp(Ω; Md×n), we have
that ∫

Ω

|D(gj)i|p′
dx =

∫
Ω

〈(Uj − Vj)i, Dϕj〉 (gj)i dx

≤
(∫

Ω

|〈(Uj − Vj)i, Dϕj〉|p dx
)1/p(∫

Ω

|(gj)i|p′
dx
)1/p′

≤ c
(∫

Ω

|D(gj)i|p′
dx
)1/p′
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for every i = 1, . . . , d. It follows that {gj} is bounded in the Sobolev space W 1,p′
(Ω; Md×n) and, up to a

subsequence, it converges strongly in Lp′
(Ω; Md×n). Moreover, since ϕj varies in the finite set {ϕ1, . . . , ϕN}, all

converging subsequences of {ϕj} are stationary and thus, since (Uj − Vj) ⇀ 0 in Lp(Ω; Md×n), we deduce that

lim
j→∞

∫
Ω

‖Dgj‖p′
dx = 0 (3.7)

and hence the strong convergence of {gj} to zero in W 1,p′
(Ω; Md×n). Since

ωj(x) ≤ c ‖Dgj‖p′−1(1 + ‖Uj‖p−1 + ‖Vj‖p−1 + ‖Dgj‖),

by Hölder’s inequality we have that∫
Ω

ωj(x) dx ≤ c
(∫

Ω

‖Dgj‖p′
dx+

(∫
Ω

‖Dgj‖p′
dx
)1/p)

;

which, in view of (3.7), gives (3.6).
Finally, by the strong convergence of {gj} and the fact that {ϕj} varies in a finite set of functions, we also

deduce that Wj ⇀ U in Lp(Ω; Md×n).

Remark 3.2. Using the fundamental estimate, by classical arguments, it is possible to prove that the Γ-lim inf,
F ′(U, ·), and the Γ-lim sup, F ′′(U, ·), are inner regular increasing set functions and, in particular, F ′′(U, ·) is
also subadditive (see e.g. [4], Props. 11.5 and 11.6).

In view of the future application of the fundamental estimate to the study of the stability of the Γ-convergence
under average conditions (see Prop. 5.1 and Rem. 5.2) it is convenient to note the following fact.

Remark 3.3. We can restate the fundamental estimate adding a condition on the average. More precisely, for
every σ > 0, for all A,A′, B ∈ A(Ω) with A′ ⊂⊂ A and dist (A′, B \ A) > 0, taking {Uj}, {Vj} and U as in
Proposition 3.1, we can construct a sequence {Wj} such that⎧⎪⎪⎨⎪⎪⎩

Wj ⇀ U in Lp(Ω; Md×n)
DivWj = 0

−
∫

Ω

Wj dx = −
∫

Ω

U dx
(3.8)

and
Fj(Wj , A

′ ∪B) ≤ Fj(Uj , A) + Fj(Vj , B) + σ + o(1) (3.9)
as j → +∞. The sequence {Wj} is explicitly given by

(Wj)i := ϕj(Uj)i + (1 − ϕj)(Vj)i + |D(gj)i|p′−2D(gj)i − (mj)i, (3.10)

for i = 1, . . . , d, where ϕj ∈ C∞
0 (A) is a cut-off function between A′ and A, gj is the solution of the Neumann

system (3.5) and mj ∈ Md×n, given by

(mj)i := −
∫

Ω

(
ϕj(Uj)i + (1 − ϕj)(Vj)i + |D(gj)i|p′−2D(gj)i − (U)i

)
dx

for i = 1, . . . , d, converges to zero as j → +∞.
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4. Compactness and integral representation

In this section we prove that any sequence {Fj} of functionals of the form (2.10) is compact with respect
to the Γ-convergence (Prop. 4.1) and that the Γ-limit can be represented as an integral functional of the same
form (Th. 4.2).

We recall that the compactness of the Γ-convergence is well known in case of separable metric spaces (see
e.g. [4], Th. 7.9). Since we are studying the Γ-convergence in the Lp-space with respect to the weak topology,
we cannot make use directly of this result.

The proof of the existence of a subsequence {Fjk
(·, R)} which Γ-converges to the functional F (·, R) for every

R ∈ R(Ω) (union of open cubes contained in Ω and with vertices in Qn) is due to Braides, Fonseca and Leoni
(see [5], Lem. 5.3). Fixed R ∈ R(Ω), they essentially use the fact that since p > 1, the dual of Lp(R; Md×n) is
separable and hence the space

lB = {V ∈ Lp(R; Md×n) : ‖V ‖Lp ≤ l},
with l ∈ N, endowed with the weak topology is metrizable. They consider the metric dl which generates the Lp-
weak topology in lB and apply the compactness result for separable metric spaces to the sequence of functionals
{Fj(·, R)} restricted to the space (lB ∩ {Div = 0}, dl). By a recursive procedure on l and a diagonalization
process they prove that there exists a subsequence jk such that {Fjk

(·, R)} Γ-converges for every R ∈ R(Ω).
In the following proposition we show that, using the fundamental estimate (Prop. 3.1), we can easily extend

this compactness result from R(Ω) to every open set A ∈ A(Ω).

Proposition 4.1 (compactness). Let {Fj} be a sequence of functionals defined by (2.10). Then there exists a
subsequence {Fjk

} such that the Γ-limit

F (U,A) = Γ- lim
k→+∞

Fjk
(U,A)

exists for all U ∈ Lp(Ω; Md×n) with DivU = 0 and A ∈ A(Ω). Moreover, F (U, ·) is the restriction of a Borel
measure to A(Ω).

Proof. Consider the family R(Ω) of all finite unions of open cubes contained in Ω and with vertices in Qn. By
Lemma 5.3 in [5], there exists a subsequence {jk} such that the Γ-limit

F (U,R) = Γ- lim
k→+∞

Fjk
(U,R)

exists for all R ∈ R(Ω) and U ∈ Lp(Ω; Md×n) with DivU = 0.
Now the extension of the Γ-convergence of Fjk

(U, ·) to every open set A ∈ A(Ω) is a consequence of the inner
regularity of F ′(U, ·) and F ′′(U, ·) (see Rem. 3.2) taking into account that if B ⊂⊂ A ⊆ Ω then there exists
R ∈ R(Ω) such that B ⊂⊂ R ⊂⊂ A.

Finally, to conclude that F (U, ·) is the restriction of a Borel measure to A(Ω) it is enough to recall that
F (U, ·) is an increasing inner regular set function, subadditive and superadditive (see Rem. 3.2) and then to
apply the Measure property criterion due to De Giorgi and Letta (see Th. 10.2 in [4]).

Theorem 4.2 (integral representation). Let {fj} be a sequence of Borel functions with fj : Ω×Md×n �→ [0,+∞)
satisfying (2.6) and the growth condition (2.5). Then, there exist a subsequence jk → +∞ and a Borel function
ϕ : Ω × Md×n �→ [0,+∞), Div-quasiconvex in the second variable, satisfying the condition

α‖Σ‖p − 1
α

≤ ϕ(x,Σ) ≤ β(1 + ‖Σ‖p) (4.1)
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such that {Fjk
}, defined by (2.10), Γ-converges to

F (U,A) =

⎧⎨⎩
∫

A

ϕ(x, U) dx U ∈ Lp(Ω; Md×n), DivU = 0 in Ω,

+∞ otherwise,
(4.2)

for all A ∈ A(Ω).

Proof. By Proposition 4.1 there exists a subsequence {Fjk
} which Γ-converges to F . Moreover, by (2.5), F (U, ·)

can be extended to a Borel measure on Ω absolutely continuous with respect to the Lebesgue measure. Hence,
it remains to deduce the integral representation (4.2). This will be done in several steps. The first three steps
use standard arguments that we repeat and adapt to our context for the reader convenience.

Step 1. Definition of ϕ.

Let Σ ∈ Md×n, we denote by gΣ ∈ L1(Ω) the density of F (Σ, ·) with respect to the Lesbegue measure; i.e.,

F (Σ, A) =
∫

A

gΣ(x) dx

for all A ∈ A(Ω). If we define
ϕ(x,Σ) = gΣ(x)

for all x ∈ Ω and Σ ∈ Md×n, by (2.5), we get that

α‖Σ‖p − 1
α

≤ ϕ(x,Σ) ≤ β(1 + ‖Σ‖p)

for a.e. x ∈ Ω.

Step 2. Integral representation on piecewise constant functions.

Let A ∈ A(Ω) and let U ∈ Lp(Ω; Md×n) be a piecewise constant function in A, with DivU = 0; i.e.,

U |A =
N∑

j=1

χAj Σ
j

where the sets Aj are disjoint open sets with |A \⋃N
j=1Aj | = 0, Σj ∈ Md×n for j = 1, . . . , N . By Step 1

F (U,A) =
N∑

j=1

F (U,Aj) =
N∑

j=1

F (Σj , Aj) =
N∑

j=1

∫
Aj

ϕ(x,Σj) dx =
N∑

j=1

∫
Aj

ϕ(x, U) dx

=
∫

A

ϕ(x, U) dx.

Step 3. Rank-(n− 1) convexity of ϕ.

By Step 1 we have that

ϕ(x,Σ) = lim sup
ρ→0+

F (Σ, Bρ(x))
|Bρ(x)|
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for all x ∈ Ω and Σ ∈ Md×n. In view of (2.7) we prove the rank-(n− 1) convexity in the second variable of ϕ
if, for Bρ(x) ⊂ Ω, we show that

F (tΣ1 + (1 − t)Σ2, Bρ(x)) ≤ tF (Σ1, Bρ(x)) + (1 − t)F (Σ2, Bρ(x))

for all t ∈ (0, 1) and for every Σ1 �= Σ2 ∈ Md×n with rank (Σ1 − Σ2) ≤ (n− 1).
As a consequence of the rank property of Σ1 and Σ2 we have that there exists a unit vector ν ∈ Rn such that

(Σ1 − Σ2) · ν = 0. Hence, if we define V : Rn �→ {Σ1,Σ2} as

V (y) =

{
Σ1 y ∈ A1

Σ2 y ∈ A2

with

A1 = {y ∈ Rn : j < 〈y, ν〉 < j + t, j ∈ Zn},
A2 = {y ∈ Rn : j + t < 〈y, ν〉 < j + 1, j ∈ Zn}

and t ∈ (0, 1), we clearly have Div V = 0. Roughly speaking, A1 ∪ A2 represents a lamination of Rn with
proportion t and 1− t, respectively, in the direction orthogonal to ν. We now define Uh(y) = V (hy) for y ∈ Rn.
It is easy to show that

Uh ⇀ (tΣ1 + (1 − t)Σ2) weak∗ in L∞, as h→ ∞.

Moreover, denoting Ah
1 = (1/h)A1 and Ah

2 = (1/h)A2 we have

χAh
1
⇀ t and χAh

2
⇀ (1 − t) weak∗ in L∞, as h→ ∞.

By Step 2 and the lower semicontinuity of F we have

F (tΣ1 + (1 − t)Σ2, Bρ(x)) ≤ lim inf
h→∞

F (Uh, Bρ(x))

= lim inf
h→∞

(∫
Ah

1∩Bρ(x)

ϕ(y,Σ1) dy +
∫

Ah
2∩Bρ(x)

ϕ(y,Σ2) dy
)

= t

∫
Bρ(x)

ϕ(y,Σ1) dy + (1 − t)
∫

Bρ(x)

ϕ(y,Σ2) dy

= t F (Σ1, Bρ(x)) + (1 − t)F (Σ2, Bρ(x)),

which implies that ϕ is rank-(n − 1) convex in the second variable for all x ∈ Ω. In particular, by (4.1), ϕ is
continuous in the second variable (see Rem. 2.3).

Step 4. Integral representation on balls.

Let B be an open ball such that B ⊂ Ω and let U ∈ C∞(Ω; Md×n) with DivU = 0 in Ω. We first show that it
is possible to extend the integral representation from piecewise constant functions (see Step 2) to C∞-functions
using a suitable approximation of U by piecewise constant divergence free fields. More precisely, since B is a
starshaped domain, by Poincaré Lemma, there exists a function Φ ∈ C∞(B; Md×N ) with N = n(n− 1)/2, such
that

U |B = LΦ,

for a suitable first order linear differential operator L satisfying DivLψ = 0 for every ψ ∈ C1(B; Md×N ) (e.g. if
d = 1 and n = 3 then L = curl and Φ is the potential vector of U ; i.e., U = curlΦ).
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Now Φ can be approximated by a sequence {Φh} of piecewise affine functions which converges strongly to Φ
in W 1,p(B; Md×N ). Hence, {LΦh} is a sequence of piecewise constant function with DivLΦh = 0 and strongly
converging to LΦ = U in Lp(B; Md×n). Since F is lower semicontinuous, by (4.1) and Steps 2 and 3 we get

F (U,B) ≤ lim inf
h→∞

F (LΦh, B) = lim
h→∞

∫
B

ϕ(x,LΦh) dx =
∫

B

ϕ(x, U) dx.

We now prove the reverse inequality. We define

G(V,B) = F (U + V,B)

where U, V ∈ C∞(Ω; Md×n) with DivU = Div V = 0. Up to now we have proved that there exists a
Carathéodory functions ψ rank-(n− 1) convex in the second variable and satisfying (4.1) such that

G(V,B) ≤
∫

B

ψ(x, V ) dx. (4.3)

Note that, in (4.3) the equality holds if V is a piecewise constant function. Hence, since LΦh → U in
Lp(B; Md×n) we have ∫

B

ψ(x, 0) dx = G(0, B) = F (U,B)

≤
∫

B

ϕ(x, U) dx = lim
h→∞

∫
B

ϕ(x,LΦh) dx

= lim
h→∞

F (LΦh, B) = lim
h→∞

G(LΦh − U,B)

≤ lim
h→∞

∫
B

ψ(x,LΦh − U) dx =
∫

B

ψ(x, 0) dx

and, in particular,

F (U,B) =
∫

B

ϕ(x, U) dx (4.4)

for all U ∈ C∞(Ω; Md×n), with DivU = 0 in Ω.
It remains to extend the integral representation result on B for C∞-functions to all Lp-functions by con-

volution. Let U ∈ Lp(Ω; Md×n) with DivU = 0 in Ω and let ρj ∈ C∞
c (Rn) such that

∫
Rn ρj dx = 1 and

spt ρj ⊂ B(0, 1/j) where 1/j < dist (B,Rn \ Ω). Then ρj ∗ U ∈ C∞(B; Md×n), with Div (ρj ∗ U) = 0 in B, and

Uj := ρj ∗ U → U in Lp(B; Md×n).

By (4.4) we have

F (U,B) ≤ lim inf
j→∞

F (Uj , B) = lim
j→∞

∫
B

ϕ(x, Uj) dx =
∫

B

ϕ(x, U) dx.

The reverse inequality follows using the previous argument with {ρj ∗ U} in place of {LΦh}.

Step 5. Integral representation on A ∈ A(Ω).

Let A ∈ A(Ω), by the Vitali Covering Theorem, there exists a disjoint sequence {Bj} of closed balls, subsets
of A, such that |A \⋃j Bj | = 0. Since F is a Borel measure absolutely continuous with respect to the Lesbegue
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measure, by Step 4 we have that

F (U,A) =
∑

j

F (U,Bj) =
∑

j

∫
Bj

ϕ(x, U) dx =
∫

A

ϕ(x, U) dx

which gives the integral representation of F for every open set A ∈ A(Ω).
Finally, by the lower-semicontinuity of F , we have that ϕ is also Div -quasiconvex which concludes the

proof.

5. Boundary conditions and volume constraints

In this section we study the stability of the Γ-convergence result, obtained in Section 4, under average,
periodicity and boundary conditions. The main tool is again the fundamental estimate that allows us to modify
the optimal sequence for the Γ-limit in a new sequence that matches additional conditions. This study is also
motivated by the possible application of our general Γ-convergence result to the case of homogenization (see
Sect. 6).

We recall that

Lp
#,Div (Q; Md×n) = {U ∈ Lp

loc(R
n; Md×n) : Q-periodic, DivU = 0 in Rn},

where Q denotes the unit cube in Rn.

Proposition 5.1 (average and periodicity condition). Let {Fj} be a sequence of functionals defined by (2.10)
and satisfying the conditions (2.5), (2.6), such that

F (U,Q) = Γ- lim
j→+∞

Fj(U,Q)

for all U ∈ Lp(Q; Md×n) with DivU = 0 in Q. Then, the sequence of functionals

Gj(U,Q) =

⎧⎨⎩Fj(U,Q) U ∈ Lp
#,Div (Q; Md×n), −

∫
Q

U dx = m

+∞ otherwise

Γ-converges to

G(U,Q) =

⎧⎨⎩F (U,Q) U ∈ Lp
#,Div (Q; Md×n), −

∫
Q

U dx = m

+∞ otherwise

with m ∈ Md×n.

Proof. Let U ∈ Lp
#,Div (Q; Md×n), with −∫Q U dx = m. By the Γ-convergence of {Fj(·, Q)} to F (·, Q), there exists

a sequence {Uj} weakly converging to U in Lp(Q; Md×n), with DivUj = 0, such that

G(U,Q) = F (U,Q) = lim
j→∞

Fj(Uj , Q).

Let K be a compact set and A′ ∈ A(Q) such that K ⊂ A′ ⊂⊂ Q. By Remark 3.3 with Vj = U , A = Q and
B = Q \K, there exists a sequence {Wj}, defined as in (3.10), such that⎧⎨⎩Wj ⇀ U in Lp(Q; Md×n)

Wj ∈ Lp
#,Div (Q; Md×n), −

∫
Q

Wj dx = −
∫

Q

U dx = m
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and
Fj(Wj , Q) ≤ Fj(Uj , Q) + Fj(U,Q \K) + σ + o(1)

as j → +∞. Note that, the periodicity of the sequence {Wj} follows from the periodicity assumption on U .
By (2.5), we can choose K such that Fj(U,Q \K) ≤ σ. Then

Gj(Wj , Q) = Fj(Wj , Q) ≤ Fj(Uj , Q) + 2σ + o(1),

and hence
lim sup

j→∞
Gj(Wj , Q) ≤ lim

j→∞
Fj(Uj , Q) + 2σ = G(U,Q) + 2σ.

By the arbitrariness of σ we get the lim sup inequality; i.e.,

Γ- lim sup
j→+∞

Gj(U,Q) ≤ G(U,Q).

The lim inf inequality is trivially satisfied since

Γ- lim inf
j→+∞

Gj(U,Q) ≥ Γ- lim inf
j→+∞

Fj(U,Q)

for every U ∈ Lp
#,Div (Q; Md×n) with −∫Q U dx = m.

Remark 5.2 (average conditions). Clearly, reasoning as in Proposition 5.1, we can also prove that given {Fj}
as above, the sequence of functionals

Gj(U,A) =

⎧⎨⎩Fj(U,A) U ∈ Lp(A; Md×n), DivU = 0, −
∫

A

U dx = m

+∞ otherwise

Γ-converges to

G(U,A) =

⎧⎨⎩F (U,A) U ∈ Lp(A; Md×n), DivU = 0, −
∫

A

U dx = m

+∞ otherwise

with m ∈ Md×n and A ∈ A(Ω).

We conclude this section by considering a natural boundary condition for this problem. Recall that for every
U ∈ Lp(Ω; Md×n), satisfying DivU = 0 in Ω, it is possible to define the normal trace U · ν on ∂Ω, whenever ∂Ω
is Lipschitz regular. In particular, the trace belongs to the space W− 1

p ,p(∂Ω,Rd) (see e.g. [2] and [15]).

Proposition 5.3 (boundary condition). Let {Fj} be a sequence of functionals defined by (2.10) and satisfying
the conditions (2.5), (2.6) such that

F (U,A) = Γ- lim
j→+∞

Fj(U,A)

for all U ∈ Lp(A; Md×n) with DivU = 0 in A and A ∈ A(Ω) with Lipschitz boundary. Then, for every
g ∈W− 1

p ,p(∂Ω,Rd) the sequence of functionals

Gj(U,A) =

{
Fj(U,A) U ∈ Lp(A; Md×n), DivU = 0, U · ν = g on ∂A

+∞ otherwise
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Γ-converges to

G(U,A) =

{
F (U,A) U ∈ Lp(A; Md×n), DivU = 0, U · ν = g on ∂A

+∞ otherwise
where ν is the outer normal on ∂A.

In particular, for every U ∈ Lp(A; Md×n), with DivU = 0, there exists a sequence {Wj} ⊆ Lp(Rn; Md×n)
weakly converging to 0 in Lp(Rn; Md×n) such that DivWj = 0 in Rn, Wj = 0 in Rn \A,

∫
A
Wj dx = 0 and

F (U,A) = lim
j→+∞

Fj(U +Wj , A).

Proof. Let U ∈ Lp(A; Md×n) with DivU = 0 on A and U · ν = g on ∂A. By assumption there exists a sequence
{Uj} ⊆ Lp(A; Md×n) weakly converging to U in Lp(A; Md×n), with DivUj = 0, such that

G(U,A) = F (U,A) = lim
j→∞

Fj(Uj , A).

Let K be a compact set and A′ ∈ A(Ω) such that K ⊂ A′ ⊂⊂ A. Reasoning as in the proof of the fundamental
estimate (with Vj = U and B = A \K) we can show that for every σ > 0 there exists a sequence {W̃j} such
that

Fj(W̃j , A) ≤ Fj(Uj , A) + Fj(U,A \K) + σ + o(1)
as j → +∞, where ⎧⎪⎪⎪⎨⎪⎪⎪⎩

(W̃j)i = ϕj(Uj)i + (1 − ϕj)(U)i + |D(gj)i|p′−2D(gj)i i = 1, . . . , d
W̃j ⇀ U in Lp(A; Md×n)
W̃j · ν = U · ν on ∂A
Div W̃j = 0 onA,

(5.5)

ϕj ∈ C∞
0 (A) is a suitable cut-off function between A′ and A and gj is the solution of the Neumann system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∆p′(gj)i = 〈(Uj − U)i, Dϕj〉 on A

∂(gj)i

∂ν
= 0 on ∂A i = 1, . . . , d

∫
A

gj dx = 0.

Note that if a vector field v : A → Rn satisfies div v = 0 in A and 〈v, ν〉 = 0 on ∂A, then
∫

A
v dx = 0. In

fact, applying the divergence theorem to the function (x)i v, where (x)i is the ith component of x for every
i = 1, . . . , n, we get ∫

A

(v)i dx =
∫

A

div ((x)i v) dx =
∫

∂A

(x)i〈v, ν〉dHn−1 = 0.

Then, as a consequence of (5.5), we have that∫
A

W̃j dx =
∫

A

U dx. (5.6)

By (2.5), we can choose K such that Fj(U,A \K) ≤ σ and hence

Gj(W̃j , A) = Fj(W̃j , A) ≤ Fj(Uj , A) + 2σ + o(1).
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By the arbitrariness of σ, we get the lim sup inequality

Γ- lim sup
j→∞

Gj(U,A) ≤ G(U,A).

The lim inf inequality is trivially satisfied since

Γ- lim inf
j→+∞

Gj(U,Q) ≥ Γ- lim inf
j→+∞

Fj(U,Q) ;

hence, we get the Γ-convergence result.
Note that, in particular, we have proved that for every U ∈ Lp(A; Md×n), with DivU = 0 in A, there exists

a sequence {W̃j} as in (5.5) such that

lim
j→+∞

Fj(W̃j , A) = F (U,A).

We now define Wj = W̃j − U . Since Wj · ν = 0 on ∂A we can extend it equal to zero outside A keeping the
divergence constraint in Rn. Hence, we can rewrite

lim
j→+∞

Fj(U +Wj , A) = F (U,A),

where, by (5.5) and (5.6), {Wj} ⊆ Lp(Rn; Md×n) satisfies the following properties⎧⎪⎪⎨⎪⎪⎩
Wj ⇀ 0 in Lp(Rn; Md×n)
DivWj = 0 in Rn

Wj = 0 in Rn \A,
∫

A

Wj dx = 0.

6. Homogenization

We can apply our general Γ-convergence result to the case of homogenization. In this section we propose an
alternative proof to the one due to Braides, Fonseca and Leoni in [5] of the homogenization formula describing
the integrand function ϕ.

Theorem 6.1. Let f : Rn × Md×n �→ [0,+∞) be a Borel function, Q-periodic in the first variable, satisfying
(2.5) and (2.6) with f in place of fj. Let us consider the family of functionals {Fε} defined by

Fε(U,Ω) =

⎧⎨⎩
∫

Ω

f
(x
ε
, U
)

dx U ∈ Lp(Ω; Md×n), DivU = 0 in Ω

+∞ otherwise.

Then, we have

Γ- lim
ε→0

Fε(U,Ω) =
∫

Ω

fhom(U) dx,

for every U ∈ Lp(Ω; Md×n) with DivU = 0 in Ω, where fhom : Md×n �→ [0,+∞) is a Div -quasiconvex function
described by the following homogenization formula

fhom(Σ) = lim
t→+∞

1
tn

inf
{∫

tQ

f(y,Σ + V (y)) dy : V ∈ Lp
#,Div (tQ; Md×n),

∫
tQ

V dy = 0
}

for every Σ ∈ Md×n with Q = (−1/2, 1/2)n.
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Moreover, if d = 1 then fhom is convex and it is given by the cell-problem formula

fhom(ξ) = inf
{∫

Q

f(y, ξ + v(y)) dy : v ∈ Lp
#,div (Q; Rn),

∫
Q

v dy = 0
}

for every ξ ∈ Rn.

Proof. We recall that, by Theorem 4.2, for every sequence {εj} converging to 0 there exist a subsequence of {εj}
(not relabeled) and a function ϕ : Ω × Md×n �→ [0,+∞), Div -quasiconvex in the second variable, such that

Γ- lim
j→+∞

Fεj (U,A) =
∫

A

ϕ(x, U) dx (6.7)

for all U ∈ Lp(Ω; Md×n) with DivU = 0 in Ω and A ∈ A(Ω).

Step 1. ϕ does not depend on x.
It is sufficient to prove that if Σ ∈ Md×n, y, z ∈ Rn and ρ > 0 then

Γ- lim
j→+∞

Fεj (Σ, Bρ(y)) = Γ- lim
j→+∞

Fεj (Σ, Bρ(z)).

The proof that follows is a classical argument in homogenization. We briefly repeat it for the reader convenience
(see e.g. [4], Prop. 14.3). By Proposition 5.3 there exists a sequence Uj ⇀ 0 in Lp(Rn; Md×n), with DivUj = 0
in Rn and Uj = 0 in Rn \Bρ(y), such that

Γ- lim
j→+∞

Fεj (Σ, Bρ(y)) = lim
j→∞

Fεj (Σ + Uj , Bρ(y)).

Let
(τj)i = εj

[zi − yi

εj

]
, Vj(x) = Uj(x − τj)

for i = 1, . . . , n, then
Fεj (Σ + Vj , τj +Bρ(y)) = Fεj (Σ + Uj, Bρ(y)).

Moreover, Vj = 0 in Rn \
(
τj +Bρ(y)

)
, with Div Vj = 0 and Vj ⇀ 0 in Lp(Brρ(z); Md×n) for r > 1. Hence,

Γ- lim
j→+∞

Fεj (Σ, Bρ(z)) ≤ Γ- lim
j→+∞

Fεj (Σ, Brρ(z))

≤ lim inf
j→+∞

Fεj (Σ + Vj , Brρ(z)) ≤ lim inf
j→+∞

Fεj (Σ + Uj , Bρ(y)) + β(1 + ‖Σ‖p) |Brρ \Bρ|
= Γ- lim

j→+∞
Fεj (Σ, Bρ(y)) + β(1 + ‖Σ‖p) |Brρ \Bρ|.

Passing to the limit as r → 1 we have that

Γ- lim
j→+∞

Fεj (Σ, Bρ(z)) ≤ Γ- lim
j→+∞

Fεj (Σ, Bρ(y)).

By symmetry we obtain the reverse inequality.

Step 2. Asymptotic formula.
We first prove that the following limit exists

lim
t→+∞ inf

{ 1
tn

∫
tQ

f(y,Σ + V (y)) dy : V ∈ Lp(tQ; Md×n), Div V = 0, V · ν = 0 on ∂(tQ)
}
. (6.8)
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Fixed Σ ∈ Md×n, for t > 0 we define

gt =
1
tn

inf
{∫

tQ

f(y,Σ + V (y)) dy : V ∈ Lp(tQ; Md×n), Div V = 0, V · ν = 0 on ∂(tQ)
}

;

hence, there exists Vt ∈ Lp(tQ; Md×n), with Div Vt = 0 and Vt · ν = 0 on ∂(tQ), such that

1
tn

∫
tQ

f(y,Σ + Vt(y)) dy ≤ gt +
1
t
·

Let s > t, we denote by I = {i ∈ Zn : 0 ≤ ([t] + 1)|(i)j | < (s/2), j = 1, . . . , n} and we define the function

Vs(x) =

{
Vt(x− i) if x ∈ i+ tQ, i ∈ I

0 otherwise,

and the set Qs = sQ \ ⋃i∈I

(
i + tQ

)
. Note that Vs ∈ Lp(sQ; Md×n), Div Vs = 0 and Vs · ν = 0 on ∂(sQ);

moreover,

gs ≤ 1
sn

∫
sQ

f(x,Σ + Vs(x)) dx =
1
sn

(∑
i∈I

∫
tQ+i

f(x,Σ + Vt(x− i)) dx+
∫

Qs

f(x,Σ)dx
)

≤ 1
sn

(∑
i∈I

∫
tQ

f(y,Σ + Vt(y)) dy + c |Qs|
)
≤ tn

([t] + 1)n

(
gt +

1
t

)
+ c

|Qs|
sn

,

where |Qs| denotes the Lesbegue measure of Qs. Taking first the lim sup as s → +∞ and then the lim inf as
t→ +∞ we get

lim sup
s→+∞

gs ≤ lim inf
t→+∞ gt,

which concludes the proof of the existence of the limit in (6.8).
Since ϕ is Div -quasiconvex we have

ϕ(Σ) = inf
{∫

Q

ϕ(Σ + V (y)) dy : V ∈ Lp
#,Div (Q; Md×n),

∫
Q

V dy = 0
}

≤ inf
{∫

Q

ϕ(Σ + V (y)) dy : V ∈ Lp(Q; Md×n), Div V = 0, V · ν = 0 on ∂Q
}

≤ ϕ(Σ),

where the last inequality is obtained choosing as test function V = 0. Hence, by (6.7), Proposition 5.3, (6.8)
and the convergence of the minimum problems assured by the Γ-convergence, we have that

ϕ(Σ) = inf
{∫

Q

ϕ(Σ + V (y)) dy : V ∈ Lp(Q; Md×n), Div V = 0, V · ν = 0 on ∂Q
}

= lim
j→∞

inf
{∫

Q

f
( x
εj
,Σ + V (x)

)
dx : V ∈ Lp(Q; Md×n), Div V = 0, V · ν = 0 on ∂Q

}
= lim

t→+∞
1
tn

inf
{∫

tQ

f(y,Σ + V (y)) dy : V ∈ Lp(tQ; Md×n), Div V = 0, V · ν = 0 on ∂(tQ)
}
.



826 N. ANSINI AND A. GARRONI

Step 3. Γ-convergence of the whole family {Fε}.
From Step 2 we can, in particular, deduce that ϕ does not depend on {εj}; hence, the whole family {Fε}

Γ-converges; i.e.,

Γ- lim
ε→0

Fε(U,A) =
∫

A

ϕ(U) dx

for all U ∈ Lp(Ω; Md×n), with DivU = 0 in Ω, and A ∈ A(Ω).

Step 4. Homogenization formula.
We finally prove that ϕ coincides with

fhom(Σ) := lim
t→+∞

1
tn

inf
{∫

tQ

f(y,Σ + V (y)) dy : V ∈ Lp
#,Div (tQ; Md×n),

∫
tQ

V dy = 0
}

for every Σ ∈ Md×n, with Q = (−1/2, 1/2)n. By Step 2 the inequality ϕ(Σ) ≥ fhom(Σ) is trivial. We then deal
with the reverse inequality.

For every Σ ∈ Md×n we define

f t
hom(Σ) =

1
tn

inf
{∫

tQ

f(y,Σ + V (y)) dy : V ∈ Lp
#,Div (tQ; Md×n),

∫
tQ

V dy = 0
}
.

For t > 0, let Vt ∈ Lp
#,Div (tQ; Md×n) with

∫
tQ
Vt dy = 0 such that

1
tn

∫
tQ

f(y,Σ + Vt(y)) dy ≤ f t
hom(Σ) +

1
t
·

We extend Vt by periodicity to the whole Rn and define Vj(x) := Vt(x/εj). Then Vj ⇀ 0 in Lp(Q; Md×n), as
j → +∞, and Div Vj = 0. Moreover, by Step 3 we may fix εj = 1/jt; hence,

ϕ(Σ) ≤ lim inf
j→+∞

∫
Q

f
( x
εj
,Σ + Vj(x)

)
dx = lim inf

j→+∞
1

(jt)n

∫
jtQ

f(y,Σ + Vt(y)) dy

=
1
tn

∫
tQ

f(y,Σ + Vt(y)) dy ≤ f t
hom(Σ) +

1
t
·

Passing to the limit as t tends to +∞ we get the reverse inequality which concludes the proof of the homoge-
nization formula.

Step 5. Homogenization formula for d = 1.
If d = 1, then ϕ coincides with

fhom(ξ) := inf
{∫

Q

f(y, ξ + v(y)) dy : v ∈ Lp
#,div (Q; Rn),

∫
Q

v dy = 0
}

for every ξ ∈ Rn.
In fact, by Step 4 we have that

ϕ(ξ) = lim
t→+∞

1
tn

inf
{∫

tQ

f(y, ξ + v(y)) dy : v ∈ Lp
#,div (tQ; Rn),

∫
tQ

v dy = 0
}

;

hence, the inequality ϕ(ξ) ≤ fhom(ξ) is trivial.
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We fix εj = 1/j. By Step 3 and Proposition 5.1 there exists a sequence {uj} ⊆ Lp
#,div (Q; Rn) weakly

converging to 0 in Lp(Q; Rn) with div uj = 0 and
∫

Q uj dx = 0 such that

ϕ(ξ) = lim
j→+∞

∫
Q

f(jx, ξ + uj) dx.

By Remark 2.1 and Proposition 5.1 we have that

inf
{∫

jQ

f∗∗(y, ξ + v(y)) dy : v ∈ Lp
#,div (jQ; Rn),

∫
jQ

v dy = 0
}

= inf
{∫

jQ

f(y, ξ + v(y)) dy : v ∈ Lp
#,div (jQ; Rn),

∫
jQ

v dy = 0
}

(6.9)

for every j ∈ N. Hence, by (6.9), we have that

ϕ(ξ) = lim
j→∞

1
jn

inf
{∫

jQ

f(y, ξ + v(y)) dy : v ∈ Lp
#,div (jQ; Rn),

∫
jQ

v dy = 0
}

= lim
j→∞

1
jn

inf
{∫

jQ

f∗∗(y, ξ + v(y)) dy : v ∈ Lp
#,div (jQ; Rn),

∫
jQ

v dy = 0
}
. (6.10)

Fix η > 0 and consider vj ∈ Lp
#,div (jQ; Rn), with

∫
jQ
vj dy = 0, such that

∫
jQ

f∗∗(y, ξ + vj(y)) dy ≤ inf
{∫

jQ

f∗∗(y, ξ + v(y)) dy : v ∈ Lp
#,div (jQ; Rn),

∫
jQ

v dy = 0
}

+ η. (6.11)

We now define the convex combination

v�
j(y) =

1
jn

∑
i∈Ij

vj(y + i)

where Ij = {0, . . . , (j − 1)}n. The sequence {v�
j} is Q-periodic with div v�

j = 0 and
∫

Q v
�
j dy = 0. Then, we get

∫
jQ

f∗∗(y, ξ + vj(y)) dy =
∑
i∈Ij

1
jn

∫
jQ

f∗∗(y, ξ + vj(y + i)) dy

≥
∫

jQ

f∗∗(y, ξ + v�
j(y)) dy = jn

∫
Q

f∗∗(y, ξ + v�
j(y)) dy

≥ jn inf
{∫

Q

f∗∗(y, ξ + v(y)) dy : v ∈ Lp
#,div (Q; Rn),

∫
Q

v dy = 0
}

= jn fhom(ξ).

By (6.10), (6.11) and by the arbitrariness of η, passing to the limit as j → +∞, we prove that ϕ(ξ) ≥ fhom(ξ)
which concludes the proof of the homogenization formula for d = 1.
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