
International Journal of Pure and Applied Mathematics

Volume 105 No. 4 2015, 727-743
ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version)
url: http://www.ijpam.eu
doi: http://dx.doi.org/10.12732/ijpam.v105i4.13

PA
ijpam.eu

G-FRAMES IN HILBERT PRO-C*-MODULES

N. Haddadzadeh

Department of Mathematics
Abadan Branch

Islamic Azad University
Abadan, IRAN

Abstract: G-frames are generalized frames which include ordinary frames,
bounded invertible linear operators, as well as many recent generalizations of
frames, e.g., bounded quasi-projectors and frames of subspaces. G-frames are
natural generalizations of frames which provide more choices on analyzing func-
tions from frame expansion coefficients. First, they were defined in Hilbert
spaces and then generalized on C*-Hilbert modules. In this paper, we first gen-
eralize the concept of g-frames to Hilbert modules over pro-C*-algebras. Then,
we introduce the g-frame operators in such spaces and show that they share
many useful properties with their corresponding notions in Hilbert spaces. We
also show that, by having a g-frame and an invertible operator in this spaces, we
can produce the corresponding dual g-frame. Finally we introduce the canoni-
cal dual g-frames and provide a reconstruction formula for the elements of such
Hilbert modules.
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1. Introduction

Frames that are a generalization of bases in Hilbert space, were introduced
by Duffin and Schaeffer [9] in 1952. They have many applications, such as:
study and characterization of function spaces [8], signal and image processing,
wireless communications, transceiver design, data compression and so on. we
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refer to [2, 3, 6, 7, 11, 12, 21] for an introduction to the frame theory and its
applications. Diverse applications of frame theory in science and engineering,
led to the theory, should be extended to diferent forms. G-frames are natural
generalizations of frames in Hilbert space [20]. In this paper, we generalize the
concept of g-frame into a general space is called, Hilbert module over a Pro-C*-

algebra. We also introduce the g-frame transforms and study their properties.
we show that many of the properties and the main results of frame theory in the
Hilbert space, in this case is also true. Finally, we introduce the canonical dual
g-frames and provide a reconstraction formula of the elements of such spaces.

2. Hilbert Pro-C*-Modules

In this section, we recall some of the basic definitions and properties of pro-C*-
algebras and Hilbert modules over them from [13, 18, 19].

A pro-C*-algebra is a complete Hausdorff complex topological ∗-algebra A
whose topology is determined by its continuous C*-seminorms in the sense that
a net {aλ} converges to 0 iff p(aλ) → 0 for any continuous C*-seminorm p on
A and we have:

1) p(ab) ≤ p(a)p(b)

2) p(a∗a) = p(a)2

for all C*-seminorm p on A and a, b ∈ A.
If the topology of a pro-C*-algebra is determined by only countably many

C*-seminorms, then it is called a σ-C*-algebra.
Let A be a unital pro-C*-algebra with unit 1A and let a ∈ A. Then, the

spectrum sp(a) of a ∈ A is the set {λ ∈ C : λ1A − a is not invertible}. If A
is not unital, then the spectrum is taken with respect to its unitization Ã.

If A+ denotes the set of all positive elements of A, then A+ is a closed convex
cone such that A+ ∩ (−A+) = 0. We denote by S(A), the set of all continuous
C*-seminorms on A. For p ∈ S(A), we put ker(p) = {a ∈ A : p(a) = 0}; which
is a closed ideal in A. For each p ∈ S(A), Ap = A/ ker(p) is a C*-algebra in the
norm induced by p which defined as;

‖a+ ker(p)‖Ap
= p(a), p ∈ S(A).

We have A = lim
←−
p

Ap (see [19]).

The canonical map from A onto Ap for p ∈ S(A), will be denoted by πp and
the image of a ∈ A under πp will be denoted by ap. Hence l2(Ap) is a Hilbert
Ap-module (see [14]), with the norm, defined as:
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‖(πp(ai))i∈N‖p = [ p(
∑

i∈N aiai
∗)]1/2, p ∈ S(A), (πp(ai))i∈N ∈ l2(Ap).

Example 2.1. Every C*-algebra is a pro-C*-algebra.

Example 2.2. A closed ∗-subalgebra of a pro-C*-algebra is a pro-C*-
algebra.

Example 2.3([19]) Let X be a locally compact Hausdorff space and let
A = C(X) denotes all continuous complex-valued functions on X with the
topology of uniform convergence on compact subsets of X. Then A is a pro-
C*-algebra.

Example 2.4([19]) A product of C*-algebras with the product topology is
a pro-C*-algebra.

Notation 2.5. a ≥ 0 denotes a ∈ A+ and a ≤ b denotes a− b ≥ 0.

Proposition 2.6([13]) Let A be a unital pro-C*-algebra with an identity
1A. Then for any p ∈ S(A), we have:

1. p(a) = p(a∗) for all a ∈ A

2. p(1A) = 1

3. If a, b ∈ A+ and a ≤ b, then p(a) ≤ p(b)

4. a ≤ b iff ap ≤ bp

5. If 1A ≤ b, then b is invertible and b−1 ≤ 1A

6. If a, b ∈ A+ are invertible and 0 ≤ a ≤ b, then 0 ≤ b−1 ≤ a−1

7. If a, b, c ∈ A and a ≤ b, then c∗ac ≤ c∗bc

8. If a, b ∈ A+ and a2 ≤ b2, then 0 ≤ a ≤ b.

Definition 2.7. A pre-Hilbert module over pro-C*-algebra A is a complex
vector space E which is also a left A-module compatible with the complex
algebra structure, equipped with an A-valued inner product 〈., .〉 : E × E → A
which is C-and A-linear in its first variable and satisfies the following conditions:

1. 〈x, y〉∗ = 〈y, x〉

2. 〈x, x〉 ≥ 0
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3. 〈x, x〉 = 0 iff x = 0

for every x, y ∈ E. We say that E is a Hilbert A-module (or Hilbert pro-C*-
module over A) if E is complete with respect to the topology determined by
the family of seminorms

p̄E(x) =
√
p(〈x, x〉) x ∈ E, p ∈ S(A).

Let E be a pre-Hilbert A-module. By [Lemma 2.1]{[22]}, for every p ∈ S(A)
and for all x, y ∈ E, the following Cauchy-Bunyakovskii inequality holds

p(〈x, y〉)2 ≤ p(〈x, x〉)p(〈y, y〉).

Consequently, for each p ∈ S(A), we have:

p̄E(ax) ≤ p(a)p̄E(x), a ∈ A, x ∈ E.

If E is a Hilbert A-module and p ∈ S(A), then ker(p̄E) = {x ∈ E :
p(〈x, x〉) = 0} is a closed submodule of E and Ep = E/ ker(p̄E) is a Hilbert
Ap-module with scalar product

ap.(x+ ker(p̄E)) = ax+ ker(p̄E) a ∈ A, x ∈ E

and inner product

〈 x+ ker(p̄E) , y + ker(p̄E) 〉 = 〈x, y〉p x, y ∈ E.

By [Proposition 4.4]{[19]}, we have E ∼= lim
←−
p

Ep.

Example 2.8. If A is a pro-C*-algebra, then it is a Hilbert A-module with
respect to the inner product defined by :

〈a, b〉 = ab∗ a, b ∈ A.

Example 2.9 (see [Remark 4.8]{[19]}) Let l2(A) be the set of all sequences
(an)n∈N of elements of a pro-C*-algebra A such that the series

∑∞
i=1 aiai

∗ is
convergent in A. Then l2(A) is a Hilbert module over A with respect to the
pointwise operations and inner product defined by:

〈 (ai)i∈N, (bi)i∈N 〉 =∑∞i=1 aibi
∗.

Example 2.10. Let Ei for i ∈ N, be a Hilbert A-module with the topology
induced by the family of continuous seminorms {p̄i}p∈S(A) defined as:
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p̄i(x) =
√

p(〈x, x〉) , x ∈ Ei.

Direct sum of {Ei}i∈N is defined as follows:
⊕

i∈NEi = {(xi)i∈N : xi ∈ Ei ,
∑∞

i=1〈xi, xi〉 is convergent in A}.
It has been shown (see [Example 3.2.3]{[17]}) that the direct sum

⊕
i∈NEi is

a Hilbert A-module with A-valued inner product 〈x, y〉 = ∑∞
i=1〈xi, yi〉, where

x = (xi)i∈N and y = (yi)i∈N are in
⊕

i∈NEi, pointwise operations and a topology
determined by the family of seminorms

p̄(x) =
√

p(〈x, x〉) , x ∈⊕i∈NEi , p ∈ S(A).

The direct sum of a countable copies of a Hilbert module E is denoted by l2(E).
We recall that an element a in A (x in E) is bounded, if

‖a‖∞ = sup{p(a) ; p ∈ S(A)} < ∞,

(‖x‖∞ = sup{p̄E(x) ; p ∈ S(A)} < ∞).

The set of all bounded elements in A (in E) will be denoted by b(A) (b(E)).
We know that b(A) is a C*-algebra in the C*-norm ‖.‖∞ and b(E) is a Hilbert
b(A)-module ([Proposition 1.11]{[19]} and [Theorem 2.1]{[22]}).

Let M ⊂ E be a closed submodule of a Hilbert A-module E and let

M⊥ = {y ∈ E : 〈x, y〉 = 0 for all x ∈ M}.
Note that the inner product in a Hilbert modules is separately continuous,
hence M⊥ is a closed submodule of the Hilbert A-module E. Also, a closed
submodule M in a Hilbert A-module E is called orthogonally complementable
if E = M ⊕ M⊥. A closed submodule M in a Hilbert A-module E is called
topologically complementable if there exists a closed submodule N in E such
that M ⊕N = E, N ∩M = {0}.

Let A be a pro-C*-algebra and let E and F be two Hilbert A-modules. An
A-module map T : E → F is said to bounded if for each p ∈ S(A), there is
Cp > 0 such that:

p̄F (Tx) ≤ Cp.p̄E(x) (x ∈ E),

where p̄E , respectively p̄F , are continuous seminorms on E, respectively F .
A bounded A-module map from E to F is called an operator from E to F .
We denote the set of all operators from E to F by HomA(E,F ), and we set
HomA(E,E) = EndA(E).

Let T ∈ HomA(E,F ). We say T is adjointable if there exists an operator
T ∗ ∈ HomA(F,E) such that:
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〈Tx, y〉 = 〈x, T ∗y〉

holds for all x ∈ E , y ∈ F .

We denote by Hom∗A(E,F ), the set of all adjointable operators from E to
F and End∗A(E) = Hom∗A(E,E).

By a little modification in the proof of [Lemma 3.2]{[22]}, we have the
following result:

Proposition 2.11. Let T : E → F and T ∗ : F → E be two maps such
that the equality

〈x, T ∗y〉 = 〈Tx, y〉

holds for all x ∈ E , y ∈ F . Then T ∈ Hom∗A(E,F ).

It is easy to see that for any p ∈ S(A), the map defined by:

p̂E,F (T ) = sup{ p̄F (Tx) : x ∈ E , p̄E(x) ≤ 1} , T ∈ HomA(E,F ),

is a seminorm on HomA(E,F ). Moreover HomA(E,F ) with the topology de-
termined by the family of seminorms {p̂E,F}p∈S(A) is a complete locally convex
space ([Proposition 3.1]{[15]}). Moreover using [Lemma 2.2]{[22]}, for each
y ∈ F and p ∈ S(A), we can write:

p̄E(T
∗y) = sup{p〈T ∗y, x〉 : p̄E(x) ≤ 1}

= sup{p〈Tx, y〉 : p̄E(x) ≤ 1}
≤ sup{p̄F (Tx) : p̄E(x) ≤ 1}.p̄F (y)
= p̂(T )p̄F (y).

Thus for each p ∈ S(A), we have p̂F,E(T
∗) ≤ p̂E,F (T ) and since T ∗∗ = T , by

replacing T with T ∗, for each p ∈ S(A), we obtain:

p̂F,E(T
∗) = p̂E,F (T ). (1)

By [Proposition 4.7]{[19]}, we have the canonical isomorphism

HomA(E,F ) ∼= lim
←−
p

HomAp
(Ep, Fp).

Consequently, End∗A(E) is a pro-C*-algebra for any Hilbert A-module E and
its topology is obtained by {p̂E}p∈S(A) ([22]). By [Proposition 3.2]{[22]}, T is
a positive element of End∗A(E) if and only if 〈Tx, x〉 ≥ 0 for any x ∈ E.
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Definition 2.12. Let E and F be two Hilbert modules over pro-C*-algebra
A. Then the operator T : E → F is called uniformly bounded(below), if there
exists C > 0 such that for each p ∈ S(A) and x ∈ E,

p̄F (Tx) ≤ Cp̄E(x). (2)

(Cp̄E(x) ≤ p̄F (Tx)) (3)

The number C in (2) is called an upper bound for T and we set:

‖T‖∞ = inf{C : C is an upper bound for T}.

Clearly, in this case we have:

p̂(T ) ≤ ‖T‖∞ , ∀p ∈ S(A).

Let T be an invertible element in End∗A(E) such that both are uniformly
bounded. Then by [Proposition 3.2]{[1]}, for each x ∈ E we have the following
inequality:

‖T−1‖−2∞ 〈x, x〉 ≤ 〈Tx, Tx〉 ≤ ‖T‖2∞〈x, x〉. (4)

The following proposition will be used in the next section.

Proposition 2.13. Let T be an uniformly bounded below operator in
HomA(E,F ). then T is closed and injective.

Proof. Let Tx = 0, then by (3) we have p̄E(x) = 0, for all p ∈ S(A). Therefore
x = 0. It follows that T is injective.

Now we show that T is closed. Let M be a closed subset of E and {Txα}α a
net in TM such that converges to y ∈ F and so is a Cauchy net. By assumptions
of the theorem, there exists C > 0 such that for each p ∈ S(A),

Cp̄E(xβ − xα) ≤ p̄F (Txβ − Txα).

Hence {xα}α is a Cauchy net in the closed subsetM and so converges to x ∈ M .
Since T is cotinuous, {Txα}α converges to Tx. But F is a Hausdorff space and
the convergent net in these spaces has a unique limit.Thus we have y = Tx.
Therefore TM is closed in F . Consequently T is closed.



734 N. Haddadzadeh

3. G-Frames in Hilbert Modules

Throughout this section, A is a pro-C*-algebra, X and Y are two Hilbert A-
modules. also {Yi}i∈I is a countable sequence of closed submodules of Y .

Definition 3.1. A sequence Λ = {Λi ∈ Hom∗A(X,Yi)}i∈I is called a g-
frame for X with respect to {Yi}i∈I if there are two positive constants C and
D such that for every x ∈ X,

C〈x, x〉 ≤
∑

i∈I

〈Λix,Λix〉 ≤ D〈x, x〉.

The constants C and D are called g-frame bounds for Λ. The g-frame is called
tight if C = D and called a Parseval if C = D = 1. If in the above we only
need to have the upper bound, then Λ is called a g-Bessel sequence. Also if for
each i ∈ I, Yi = Y , we call it a g-frame for X with respect to Y .

Example 3.2. Let {xi}i∈I be a frame for X with bounds, C and D. Then
by definition for each x ∈ X,

C〈x, x〉 ≤
∑

i∈I

〈x, xi〉〈xi, x〉 ≤ D〈x, x〉.

Now for i ∈ I define the operator Λxi
as follows:

Λxi
: X → A , Λxi

(x) = 〈x, xi〉.

Clearly Λxi
is a bounded operator in HomA(X,A) and has adjoint as follows:

Λ∗xi
: A → X , Λ∗xi

(a) = axi.

Hence Λxi
∈ Hom∗A(X,A), i ∈ I. Also for each x ∈ X,

C〈x, x〉 ≤
∑

i∈I

〈x, xi〉〈xi, x〉 =
∑

i∈I

〈Λix,Λix〉 ≤ D〈x, x〉.

Therefore Λ = {Λxi
}i∈I is a g-frame for X with respect to A.

Let Λ = {Λi ∈ Hom∗A(X,Yi)}i∈I be a g-frame for X with respect to {Yi}i∈I
and bounds C , D. We define the corresponding g-frame transform as follows:

TΛ : X →
⊕

i∈I

Yi , TΛ(x) = {Λix}i∈I .



G-FRAMES IN HILBERT PRO-C*-MODULES 735

Since Λ is a g-frame, hence for each x ∈ X we have:

C〈x, x〉 ≤
∑

i∈I

〈Λix,Λix〉 ≤ D〈x, x〉 .

So TΛ is well-defined. Also for any p ∈ S(A) and x ∈ X the following inequality
is obtained:

√
C p̄X(x) ≤ p̄⊕iYi

(TΛx) ≤
√
D p̄X(x) .

Frome the above, it follows that the g-frame transform is an uniformly bounded
below operator in HomA(X,

⊕
i∈I Yi). Thus by Proposition 2.13, TΛ is closed

and injective.
Also, we define the synthesis operator for g-frame Λ as follows:

T ∗Λ :
⊕

i∈I

Yi → X , T ∗Λ({yi}i) =
∑

i∈I

Λ∗i (yi) . (5)

Where Λ∗i is the adjoint operator of Λi.

Proposition 3.3. The synthesis operator defined by (5) is well-defined,
uniformly bounded and adjoint of the transform operator.

Proof. Since Λ = {Λi : i ∈ I} is a g-frame for X with respect to {Yi}i∈I ,
there exist positive constants C and D such that for any x ∈ X,

C〈x, x〉 ≤
∑

i∈I

〈Λix,Λix〉 ≤ D〈x, x〉 .

Let J be an arbitrary finite subset of I. Using Cauchy-Bunyakovskii inequality
and [Lemma 2.2]{[22]}, for any p ∈ S(A) and (yi)i ∈ ⊕i∈IYi we have:

p̄X(
∑

i∈J

Λ∗i (yi)) = sup{p〈
∑

i∈J

Λ∗i (yi), x〉 : x ∈ X , p̄X(x) ≤ 1}

= sup{p(
∑

i∈J

〈yi,Λix〉) : x ∈ X , p̄X(x) ≤ 1}

≤ sup
p̄X(x)≤1

(
p(
∑

i∈J

〈yi, yi〉)
)1/2(

p(
∑

i∈J

〈Λix,Λix〉)
)1/2

≤ sup
p̄X(x)≤1

(
√
D p̄X(x)(p

∑

i∈J

〈yi, yi〉)1/2
)
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≤
√
D

(
p(
∑

i∈J

〈yi, yi〉)
)1/2

.

Now, since the series
∑

i∈I〈yi, yi〉 converges in A, the above inequality shows
that

∑
i∈I Λ

∗
i (yi) is convergent. Hence T ∗Λ is well-defined. On the other hand

for any x ∈ X and (yi)i ∈ ⊕i∈IYi , we have:

〈TΛ(x), (yi)i〉 = 〈(Λix)i, (yi)i〉
=
∑

i∈I

〈Λix, yi〉

=
∑

i∈I

〈x,Λ∗i yi〉

= 〈x,
∑

i∈I

Λ∗i yi〉

= 〈x, T ∗Λ(yi)i〉 .

Therefore by Proposition 2.11 it follows that the synthesis operator is adjoint
of the transform operator. Also, for any p ∈ S(A) we have:

p̄X(T ∗Λ(y)) ≤
√
D p̄⊕i∈IYi

(y) , y = (yi)i ∈ ⊕i∈IYi

Hence the synthesis operator is uniformly bounded.

Let Λ = {Λi , i ∈ I} be a g-frame for X with respect to {Yi}i∈I . Define
the corresponding g-frame operator SΛ as follows:

SΛ = T ∗ΛTΛ : X → X , SΛ(x) =
∑

i∈I

Λi
∗Λix .

Since SΛ is a combination of two bounded operators, it is a bounded operator.

Theorem 3.4. Let Λ = {Λi}i∈I be a g-frame for X with respect to {Yi}i∈I
and with bounds C, D. Then SΛ is invertible positive operator. Also it is a
self-adjoint operator such that:

CIX ≤ SΛ ≤ DIX . (6)

Here IX is the identity function on X.

Proof. According to the definition of the transform operator, for any x ∈ X we
can write:

〈TΛ(x), TΛ(x)〉 = 〈{Λix}i∈I , {Λix}i∈I〉 =
∑

i∈I

〈Λix,Λix〉 .
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Since Λ is a g-frame for X with bounds C and D, for each x ∈ X it follows
that:

C〈x, x〉 ≤ 〈TΛ(x), TΛ(x)〉 ≤ D〈x, x〉 .

On the other hand,

〈SΛ(x), x〉 = 〈T ∗ΛTΛ(x), x〉 = 〈TΛ(x), TΛ(x)〉 = 〈x, T ∗ΛTΛ(x)〉 = 〈x, SΛ(x)〉 .

Consequently, SΛ is a self-adjoint operator. Also for any x ∈ X, we obtain:

C〈x, x〉 ≤ 〈SΛ(x), x〉 ≤ D〈x, x〉 .

From the above, it follows that the g-frame operator is positive and (6) is
obtained too. Moreover by Proposition 2.6 it follows that SΛ is invertible.

By previous discussions, we have the following useful result.

Remark 3.5. According to (6) and Proposition 2.6 it follows that:

D−1IX ≤ S−1Λ ≤ C−1IX .

Hence the g-frame operator and its inverse belong to End∗A(X).

Now we are able to generalize [Theorem 3.2]{[4]} to g-frames in Hilbert
modules.

Theorem 3.6. For each i ∈ I let Λi ∈ Hom∗A(X,Yi) and {xij : j ∈ Ji} be
a frame in Yi with frame bounds Ci and Di. Suppose that:

0 < C = inf
i
Ci ≤ D = sup

i
Di < ∞

Then the following conditions are equivalent.

1. {Λ∗i xij : j ∈ Ji, i ∈ I} is a frame for X.

2. {Λi : i ∈ I} is a g-frame for X with respect to {Yi}i∈I .

Proof. Since for each i ∈ I, {xij : j ∈ Ji} is a frame for Yi with bounds Ci and
Di , we obtain:

Ci〈Λix,Λix〉 ≤
∑

j∈Ji

〈Λix, xij〉〈xij ,Λix〉 ≤ Di〈Λix,Λix〉 .
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Therefore for each x ∈ X we have:

C
∑

i∈I

〈Λix,Λix〉 ≤
∑

i∈I

Ci〈Λix,Λix〉

≤
∑

i∈I

∑

j∈Ji

〈Λix, xij〉〈xij ,Λix〉

≤
∑

i∈I

Di〈Λix,Λix〉

≤ D
∑

i∈I

〈Λix,Λix〉 .

Since each Λi is adjointable, the above inequality can be summarized as follows:

C
∑

i∈I

〈Λix,Λix〉 ≤
∑

i∈I

∑

j∈Ji

〈x,Λ∗i xij〉〈Λ∗i xij, x〉 ≤ D
∑

i∈I

〈Λix,Λix〉 , (7)

which shows that {Λ∗i xij : j ∈ Ji, i ∈ I} is a frame for X if and only if {Λi : i ∈
I} is a g-frame for X.

Our next result is analog to [Theorem 3.1]{[20]}.
Corollary 3.7. For each i ∈ I let Λi ∈ Hom∗A(X,Yi) and {xij : j ∈ Ji} be

a Parseval frame for Yi. Then we have the followings:

1. {Λi : i ∈ I} is a g-frame (resp. g-Bessel sequence, tight g-frame) for X if̃f
{Λ∗i xij : j ∈ Ji, i ∈ I} is a frame (resp. Bessel sequence, tight frame) for
X.

2. The g-frame operator of Λ = {Λi : i ∈ I} is the frame operator of F =
{Λ∗i xij : j ∈ Ji, i ∈ I}.

Proof. In the previous Theorem, let Ci = Di = 1. Then (7) will be as follows,

∑

i∈I

∑

j∈Ji

〈x,Λ∗i xij〉〈Λ∗i xij , x〉 =
∑

i∈I

〈Λix,Λix〉 .

From this, we conclude the first result. For the second result, let SΛ and SF
be the frame operators for Λ and F respectively. Then by definition, for any
x ∈ X,

SΛ(x) =
∑

i∈I

Λ∗iΛix , SF (x) =
∑

i∈I

∑

j∈Ji

〈x,Λ∗i xij〉Λ∗i xij .
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On the other hand for any i ∈ I and x ∈ X we have:

Λix =
∑

j∈Ji

〈Λix, xij〉xij ,

because Λix ∈ Yi and the above equality is the recostruction formula for Λix
with respect to Parseval frame {xij : j ∈ Ji}. So for each x ∈ X,

SF (x) =
∑

i∈I

∑

j∈Ji

〈x,Λ∗i xij〉Λ∗ixij

=
∑

i∈I

∑

j∈Ji

〈Λix, xij〉Λ∗i xij

=
∑

i∈I

Λ∗i


∑

j∈Ji

〈Λix, xij〉xij




=
∑

i∈I

Λ∗iΛix

= SΛ(x) .

The proof is complete.

The next result is a generalization of [Theorem 3.5]{[16]} to Hilbert Pro-
C*-modules.

Theorem 3.8. Let Λ = {Λi ∈ Hom∗A(X,Yi)}i∈I be a g-frame for X with
bounds C, D and g-frame operator SΛ. If T ∈ End∗A(X) is an invertible
operator such that both are uniformly bounded then {ΛiT : i ∈ I} is also a
g-frame for X with respect to {Yi : i ∈ I} and with g-frame operator T ∗SΛT .

Proof. Note that ΛiT ∈ Hom∗A(X,Yi). Also by (4), for each x ∈ X we have:

‖T−1‖−2∞ 〈x, x〉 ≤ 〈Tx, Tx〉 ≤ ‖T‖2∞〈x, x〉 .

Since {Λi : i ∈ I} is a g-frame with bounds C and D, for each x ∈ X we can
write:

C‖T−1‖−2∞ 〈x, x〉 ≤ C〈Tx, Tx〉
≤
∑

i∈I

〈ΛiTx,ΛiTx〉

≤ D〈Tx, Tx〉
≤ D‖T‖2∞〈x, x〉 .
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Therefore the sequence {ΛiT : i ∈ I} is a g-frame for X with respect to {Yi :
i ∈ I} and bounds C‖T−1‖−2∞ , D‖T‖2∞ . Also for any x ∈ X we have:

T ∗SΛT (x) = T ∗
∑

i∈I

Λ∗iΛiT (x) =
∑

i∈I

T ∗Λ∗iΛiT (x) =
∑

i∈I

(ΛiT )
∗(ΛiT )x ,

which shows that T ∗SΛT is the g-frame operator for {ΛiT : i ∈ I}.

As a result we can introduce a reconstruction formula for elements of a
Hilbert pro-C*-module.

Corollary 3.9. Let Λ = {Λi ∈ Hom∗A(X,Yi)}i∈I be a g-frame for X with

bounds C, D and g-frame operator SΛ. For each i ∈ I, let Λ̃i = ΛiS
−1
Λ . Then

Λ̃ = {Λ̃i : i ∈ I} is a g-frame for X with respect to {Yi : i ∈ I} and bounds
C/D2, D/C2 and g-frame operator S−1Λ . Also for each x ∈ X we have the
following reconstruction formula:

x =
∑

i∈I

(Λ̃i)
∗Λix =

∑

i∈I

Λ∗i Λ̃ix .

Λ̃ is called the canonical dual g-frame of Λ.

Proof. In the above theorem let T = S−1Λ . So we conclude that {Λ̃i = ΛiS
−1
Λ :

i ∈ I} is a g-frame for X with respect to {Yi : i ∈ I} and g-frame operator as
follows:

T ∗SΛT = S−1Λ SΛS
−1
Λ = S−1Λ .

Moreover by Remark 3.5 we have:

D−1IX ≤ S−1Λ ≤ C−1IX .

Here IX is the identity operator on X. Hence we obtain:

D−2IX ≤ S−2Λ ≤ C−2IX .

According to this and that Λ is a g-frame, for each x ∈ X we have:

∑

i∈I

〈Λ̃ix, Λ̃ix〉 =
∑

i∈I

〈ΛiS
−1
Λ x,ΛiS

−1
Λ x〉

≤ D〈S−1Λ x, S−1Λ x〉
≤ D〈S−2Λ x, x〉
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≤ DC−2〈x, x〉 .

Similarly, for each x ∈ X it follows:

CD−2〈x, x〉 ≤
∑

i∈I

〈Λ̃ix, Λ̃ix〉 .

Therefore C/D2 and D/C2 are the bounds for Λ̃. Moreover for any x ∈ X we
can write:

x = S−1Λ SΛx = S−1Λ

∑

i∈I

Λ∗iΛix =
∑

i∈I

S−1Λ Λ∗iΛix =
∑

i∈I

(Λ̃i)
∗Λix ,

Similarly,

x = SΛS
−1
Λ x =

∑

i∈I

Λ∗iΛi(S
−1
Λ x) =

∑

i∈I

Λ∗i Λ̃ix .

This completes the proof.
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