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Abstract. We are concerned with a quasilinear elliptic equation of the form:

−∆u + a(x)u − ∆(|u|α)|u|α−2u = h(u) in RN ,

where α > 1 and N ≥ 1. By using variational approaches, we prove the existence
of at least one positive solution of the above equation under suitable conditions
on a(x) and h. Especially, we are interested in the situation that a(x) is invariant
under the finite group action G.
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1. Introduction

In this paper we consider the existence of positive solutions for the following quasilinear
elliptic problem:

−∆u + a(x)u − ∆(|u|α)|u|α−2u = h(u) in RN , (1.1)

where α > 1, N ≥ 1 and h behaves like pure power nonlinearities. Solutions of (1.1) are
related to standing wave solutions for the following Schrödinger equation:

i
∂

∂t
z = −∆z + V (x)z − h(|z|2)z − κ∆(|z|α)|z|α−2z, (t, x) ∈ (0,∞) × RN , (1.2)
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where κ > 0 is a constant. Functions of the form z(t, x) = u(x)e−iλt satisfy (1.2) if and only
if u(x) satisfies (1.1) (with a(x) = V (x) − λ, κ = 1). Quasilinear term −κ∆(|z|α)|z|α−2z

derives from a superfluid film equation in plasma physics, which was introduced in Kurihara
[19]. See also [10, 11, 16, 20] for physical backgrounds. However, very few results are
known about the existence of solutions for (1.1).

We are looking for positive solutions of (1.1) in the setting of G-invariant potential.
We denote the orthogonal group in RN by O(N) and let G ⊂ O(N) be a finite subgroup
which satisfies for all x ∈ SN−1 = {x ∈ RN ; |x| = 1}, there exists at least one g ∈ G such
that gx ̸= x. We put

m = min
x∈SN−1

card{gx; g ∈ G} (≥ 2)

and choose x0 ∈ SN−1 such that card{gx0; g ∈ G} = m. We also put

{gx0; g ∈ G} = {e1, · · · , em} and λ0 = min
i ̸=j

|ei − ej | ∈ (0, 2]. (1.3)

Our conditions on potential a(x) ∈ C(RN , R) are as follows.

(a1) There exists a∞ > 0 such that lim
|x|→∞

a(x) = a∞.

(a2) There exists a0 > 0 such that inf
x∈RN

a(x) ≥ a0.

(a3) a(gx) = a(x) for all x ∈ RN and g ∈ G.
(a4) There exist λ > λ0 and c0 > 0 such that a∞ − a(x) ≥ −c0e

−λ|x| for all x ∈ RN .

For nonlinear term h ∈ C1(R+, R), we assume h(s) ≡ 0 for s ≤ 0 and

(h1) There exists η > 0 such that lim
s→0+

h(s)
s1+η

= 0.

(h2) There exist c > 0 and 2α− 1 ≤ p < ∞ for N = 1, 2, 2α− 1 ≤ p <
(2α − 1)N + 2

N − 2
for

N ≥ 3 such that h(s) ≤ c(|s| + |s|p) for all s ≥ 0.
(h3) There exists θ ≥ 2α − 1 such that 0 < θh(s) ≤ h′(s)s for all s ≥ 0.

Our main result is the following

Theorem 1.1. Assume α ≥ 3
2
, (a1)–(a4) and (h1)–(h3). Further we assume either

(i) (h3) holds for θ > 2α − 1 or

(ii) (h3) holds for θ = 2α − 1 and (h2) holds for 2α − 1 ≤ p <
(2α − 1)N + 4

N
if N ≥ 4.

If N = 3, (h2) holds for
2α − 1 ≤ p ≤ 5 if

3
2

< α ≤ 7
3
,

2α − 1 ≤ p <
6α + 1

3
if α >

7
3
.
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Then (1.1) has at least one positive solution u0 ∈ H1(RN ) which is invariant under the

group action G on x, that is, u0(gx) = u0(x) for all x ∈ RN and g ∈ G.

Remark 1.2. (i) λ in (a4) corresponds to a convergent rate from below in the setting of
(a1) and λ > λ0 plays an essential role in our main result.
(ii) Since α ≥ 3

2 , condition (h2) implies that h may have a supercritical growth in the sense
of Sobolev embedding.

(iii) It follows from (h3) that
H(s)
sq+1

,
h(s)
sq

are non-decreasing for all 1 ≤ q ≤ θ and s ≥ 0.

(iv) When θ = 2α − 1 in (h3), we require either 2α − 1 ≤ p ≤ N+2
N−2 or 2α − 1 ≤ p <

(2α−1)N+4
N . Since we assume α ≥ 3

2 , it follows N+2
N−2 ≤ (2α−1)N+4

N for N ≥ 4.

When h(s) = sp, we need no restriction with respect to p (see Remark 4.6 below).
More precisely, we have the following

Theorem 1.3. Assume α ≥ 3
2
, (a1)–(a4) and h(s) = sp, 2α−1 ≤ p < ∞ for N = 1, 2 and

2α − 1 ≤ p <
(2α − 1)N + 2

N − 2
for N ≥ 3. Then problem (1.1) has a G-invariant positive

solution.

Equation (1.1) has a variational structure, that is, one can obtain solutions of (1.1)
as critical points of the associated functional J : H1(RN ) → R defined by

J(u) =
1
2

∫
RN

|∇u|2 + a(x)u2 dx +
α

2

∫
RN

|∇u|2|u|2α−2 dx −
∫

RN

H(u) dx. (1.4)

We remark that nonlinear functional
∫

RN

|∇u|2|u|2α−2 dx is not defined on all H1(RN )

except for N = 1. Thus it is very difficult to handle (1.4) directly. In [27], which is first
existence result for (1.1) up to our knowledge, they overcome this difficulty by restricting
themselves to N = 1 or radially symmetric case. In [21], they used a constrained minimiza-
tion argument and obtained a positive solution only up to unknown Lagrange multiplier.
We also mention to the result of [23] in which they made a change of variables and worked
on a suitable Orlicz space. On the other hand in [13], they used of a change of unknown
function that they called dual approach and introduced an associated semilinear equation
in the case of α = 2. We also refer [12, 22, 24] for other results on (1.1). Especially
in [22], they studied autonomous case of (1.1) on the annulus and obtained multi-bump
positive solutions whose bumps have group symmetries.

In this paper, we adapt dual approach introduced in [13] to our setting α > 1. More
precisely, we will show that for some suitable function f(t) (f(t) depends on α > 1), if
v ∈ H1(RN ) is a solution of the following semilinear problem:

−∆v + a(x)f(v)f ′(v) = h(f(v))f ′(v) in RN , (1.5)
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then u = f(v) is a solution of (1.1). Thus to obtain solutions of quasilinear equation (1.1),
it suffices to show the existence of solutions of semilinear equation (1.5). The functional
associated to (1.5) is defined by

I(v) =
1
2

∫
RN

|∇v|2 + a(x)f(v)2 dx −
∫

RN

H(f(v)) dx. (1.6)

As we will see in Section 2, I(v) is well-defined for all v ∈ H1(RN ) under (h2). Not only
we can convert our quasilinear problem into a semilinear problem, but also we have the
following adequacy of our dual approach. By the form of J(u), a natural function space
which corresponds to (1.1) seems to be

X := {u ∈ H1(RN ) ;
∫

RN

|∇u|2|u|2α−2dx < ∞}. (1.7)

We will see that X is equal to

Y := {u ∈ H1(RN ) ; there exists v ∈ H1(RN ) such that u = f(v)}

= {f(v) ; v ∈ H1(RN )}. (1.8)

We will also observe if u = f(v), then

J(u) = I(v) and J ′(u)u = I ′(v)
f(v)
f ′(v)

. (1.9)

These relations tell us two facts: Firstly the transformation f does not change the energy
level. Secondly since f(v)

f ′(v) = 0 if and only if v = 0 (see Section 2 for the definition of f),
any nontrivial critical point u of J(u) can be written by u = f(v) for some v ∈ H1(RN )
with I ′(v) = 0. Moreover relation (1.9) enables us to use both J(u) and I(v) to find a
positive solution of (1.1). We also mention that another dual approach has been used in
the study of periodic solutions of nonlinear wave equations. For this topic, we refer [9, 14,
26].

A further difficulty is caused by a lack of compactness for corresponding functional
J(u) or I(v). In the earlier results mentioned above, they assumed

(a5) a(x) ≤ a∞ for all x ∈ RN .

It is well-known that in the semilinear case, the mountain pass minimax value for corre-
sponding functional is attained under the assumption (a5). However without any order
relation between a(x) and a∞, the mountain pass minimax value is not attained in gen-
eral. We remark that in some sense, this is still valid in our quasilinear case. We make a
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combination of concentration compactness principle and interaction estimate to overcome
this difficulty. These arguments appear, for instance, in [1, 4, 5, 17] and the references
there in. Such kinds of arguments also appear when we study inhomogeneous elliptic prob-
lems (see [2, 3, 28, 29]). We modify these arguments according to our setting and obtain
the existence of a positive solution without assuming (a5). To make use of concentra-
tion compactness principle and interaction estimate, it is important to study the following
autonomous equation as a limit case of (1.1):

−∆u + a∞u − ∆(|u|α)|u|α−2u = h(u) in RN . (1.10)

As to (1.10), we have the following result.

Theorem 1.4. Assume α > 1 and (h1)–(h3). Then (1.10) has at least one solution w(x)
having the following properties:

(i) w ∈ C2(RN , R) and w(x) > 0 for all x ∈ RN .

(ii) w is radially symmetric: w(x) = w(|x|) and decreases with respect to r = |x|.
(iii) There exist c, c′ > 0 such that

lim
|x|→∞

e
√

a∞|x|(|x| + 1)
N−1

2 w(x) = c, lim
r→∞

e
√

a∞r(r + 1)
N−1

2
∂w

∂r
= −c′.

(iv) w is a least energy solution of (1.10), that is,

J∞(w) = c∞ := inf{J∞(u); J ′
∞(u) = 0, u ∈ X \ {0}},

where J∞ is the associated functional defined by

J∞(u) =
1
2

∫
RN

|∇u|2 + a∞u2 dx +
α

2

∫
RN

|∇u|2|u|2α−2 dx −
∫

RN

H(u) dx. (1.11)

We remark that [13] obtained a similar result as Theorem 1.4 in the case α = 2. However,
they do not mention to the property (iv). As to the proof of Theorem 1.4, we also use
dual approach and consider the corresponding semilinear equation:

−∆v + a∞f(v)f ′(v) = h(f(v))f ′(v) in RN (1.12)

for some suitable f(t). To study (1.12), we define the associated functional to (1.12) by

I∞(v) =
1
2

∫
RN

|∇v|2 + a∞f2(v) dx −
∫

RN

H(f(v)) dx. (1.13)
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In the following sections, we prove Theorem 1.1 and Theorem 1.4 by variational ap-
proaches. Our paper is organized as follows. In Section 2, we explain the dual approach
introduced in [13]. We also give some properties on f(t). In Section 3, we mention some
known results of (1.12) and prove Theorem 1.4. In Section 4, we show several properties
on I(v) to find a nontrivial critical point. In Section 5, we establish an interaction esti-
mate which is a key of our existence result. Finally in Section 6, we complete the proof of
Theorem 1.1.

Notation. Throughout this paper, C, C ′, C1, C2, etc. denote various positive constants
which is not essential to our problem.

2. Dual approach and functional framework

2.1. Dual approach

From now on, we always assume α > 1. Let f be a solution of the following ODE:

f ′(t) =
1√

1 + αf(t)2α−2
on t ∈ [0,∞), f(0) = 0. (2.1)

We put f(t) = −f(−t) on t ∈ (−∞, 0]. By the standard theory of ODE, we can easily see
that f is uniquely determined, of class C∞(R, R) and invertible on all R. We notice that
f ′′(t) = −α(α− 1)|f(t)|2α−4f(t)(f ′(t))4. Especially f is concave for t ≥ 0. Using function
f(t), we have the following lemma.

Lemma 2.1. Let v ∈ H1(RN ) be a nontrivial critical point of I(v) and put u = f(v).
Then u is a positive solution of (1.1).

Proof. We can easily see that if v ∈ H1(RN ) is a nontrivial critical point of I(v), then v

is a solution of (1.5). For v = f−1(u) (f−1 denotes the inverse of f), we have

∇v = (f−1)′(u)∇u, ∆v = (f−1)′′(u)|∇u|2 + (f−1)′(u)∆u.

Moreover direct calculations yield

(f−1)′(t) =
1

f ′(f−1(t))
=

√
1 + α|f(f−1(t))|2α−2 =

√
1 + α|t|2α−2,

(f−1)′′(t) =
α(α − 1)|t|2α−4t√

1 + α|t|2α−2
.

Thus we have
∆v =

α(α − 1)|u|2α−4u√
1 + α|u|2α−2

|∇u|2 +
√

1 + α|u|2α−2∆u.
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Consequently from (1.5), we can observe that u satisfies

−
√

1 + α|u|2α−2∆u − α(α − 1)|u|2α−4u√
1 + α|u|2α−2

|∇u|2 +
a(x)u√

1 + α|u|2α−2
=

h(u)√
1 + α|u|2α−2

,

or equivalently,

−∆u − α|u|2α−2∆u − α(α − 1)|u|2α−4u|∇u|2 + a(x)u = h(u). (2.2)

On the other hand, it follows from

∆(|u|α) = div (α|u|α−2u∇u)

= α|u|α−2u∆u + ∇u · ∇(α|u|α−2u)

= α|u|α−2u∆u + ∇u · (α(α − 1)|u|α−2∇u)

= α|u|α−2u∆u + α(α − 1)|u|α−2|∇u|2

that
∆(|u|α)|u|α−2u = α|u|2α−2∆u + α(α − 1)|u|2α−4u|∇u|2. (2.3)

Thus from (2.2) and (2.3), we see that if v is a solution of (1.5), then u = f(v) is a solution
of (1.1).

Finally we show that u is positive. Testing u− = max{−u, 0} in (1.1), we have

0 =
∫

RN

|∇u−|2 + a(x)u2
− dx + α(α − 1)

∫
RN

|∇u|2|u|2α−2|u−|2 dx

+ α

∫
RN

|∇u−|2|u|2α−2 dx −
∫

RN

h(u)u− dx

≥
∫

RN

|∇u−|2 + a0u
2
− dx ≥ 0.

Thus it follows u− ≡ 0. By the maximum principle, we obtain u > 0.

As to asymptotic behaviours on the unique solution f of (2.1), we have the following

Lemma 2.2. It follows

(i) lim
t→0

f(t)
t

= 1.

(ii) lim
t→∞

f(t)
t

1
α

= α
1
2α .

(iii) |f(t)| ≤ |t|, |f ′(t)| ≤ 1, |f ′′(t)| ≤ α(α − 1)|t|2α−3 for all t ∈ R.

Proof. We have from (2.1)

t =
∫ √

1 + αf(t)2α−2 df + C0, (2.4)
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where C0 is a constant which satisfies f(0) = 0. By the l’Hôspital’s rule,

lim
t→0+

f(t)
t

= lim
t→0+

f(t)∫ √
1 + αf(t)2α−2 df + C0

= lim
t→0+

f ′(t)√
1 + αf(t)2α−2f ′(t)

= 1.

Since f(t) = −f(−t) on t ∈ (−∞, 0], we obtain lim
t→0

f(t)
t

= 1. Similarly we have from (2.4)

lim
t→∞

f(t)
t

1
α

= lim
t→∞

f(t)(∫ √
1 + αf(t)2α−2 df + C0

) 1
α

= lim
t→∞

f ′(t)

1
α

(∫ √
1 + αf(t)2α−2 df + C0

) 1−α
α √

1 + αf(t)2α−2f ′(t)

= lim
t→∞

α


∫ √

1 + αf(t)2α−2 df + C0

(1 + αf(t)2α−2)
α

2(α−1)


α−1

α

. (2.5)

Moreover

lim
t→∞

∫ √
1 + αf(t)2α−2 df + C0

(1 + αf(t)2α−2)
α

2(α−1)
= lim

t→∞

√
1 + αf(t)2α−2

α2f(t)2α−3(1 + αf(t)2α−2)
2−α

2(α−1)

= lim
t→∞

1
α2

(
1 + αf(t)2α−2

f(t)4α−6(1 + αf(t)2α−2)
2−α

(α−1)

) 1
2

= lim
t→∞

1
α2

(
f(t)−2α+2 + α

(f(t)−2α+2 + α)
2−α
α−1

) 1
2

=
1
α2

(
α

α
2−α
α−1

) 1
2

= α
1−2α

2(α−1) . (2.6)

Thus from (2.5) and (2.6), we have

lim
t→∞

f(t)
t

1
α

= αα
1−2α

2(α−1)
α−1

α = α
1
2α .

The proof of (iii) is standard. Thus we omit the proof here.

Lemma 2.3. It follows

1
α
|f(t)| ≤ |t||f ′(t)| ≤ |f(t)| for all t ∈ R .
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Proof. Since f(t) is an odd function, it suffices to show that

1
α

f(t) ≤ t√
1 + αf(t)2α−2

≤ f(t) for all t ≥ 0.

We claim that
F (t) := f(t)

√
1 + αf(t)2α−2 − t ≥ 0 for all t ≥ 0.

Indeed we see F (0) = 0 and by (2.1)

F ′(t) =
α(α − 1)f(t)2α−2

1 + αf(t)2α−2
> 0.

Thus F (t) ≥ 0 for all t ≥ 0, that is,

t√
1 + αf(t)2α−2

≤ f(t) for all t ≥ 0

is proved. The other inequality is also shown in a similar way.

2.2. Functional framework.

In what follows, we denote the unique global solution of (2.1) by f . We also denote the
inverse of f by f−1. Hereafter in this paper, we use the following notation:

∥v∥2
H1 =

∫
RN

|∇v|2 + v2 dx, v ∈ H1(RN ) .

Lemma 2.4. Assume α > 1, (a1), (a2) and (h2). Then I(v) (I∞(v)) is well-defined on

H1(RN ) and of class C1(H1(RN ), R).

Proof. By (iii) of Lemma 2.2 and (h2), it follows

I(v) ≤
∫

RN

|∇v|2 +a(x)f(v)2 dx+
∫

RN

cf(v)2 + cf(v)p+1 dx ≤ C∥v∥H1 + c

∫
RN

f(v)p+1 dx.

By Lemma 2.2 (i) and (ii), we have

f(v) ≤ C1χ|v|≤1v + C2χ|v|≥1|v|
1
α , f(v)p+1 ≤ C1v

2 + C2|v|
p+1

α

where χ is the characteristic function. Since p+1
α < 2N

N−2 , I(v) is well-defined on H1(RN ).
In a standard way, we can show I(v) ∈ C1(H1(RN ), R).

By Lemma 2.1, it suffices to show the existence of a nontrivial critical point of I(v)
(I∞(v)) to obtain a positive solution of (1.1) ((1.10) respectively). As introduced in Section
1, the natural function space associated to (1.1) is X defined in (1.7). The next lemma
gives another characterization of the function space.
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Lemma 2.5. It follows X = Y , where Y is defined in (1.8).

Proof. First we show Y ⊂ X. For v ∈ H1(RN ), we put u = f(v). Then we have

|∇f(v)|2 = |f ′(v)|2|∇v|2 =
1

1 + α|f(v)|2α−2
|∇v|2.

By (iii) of Lemma 2.2 and (2.1), we obtain∫
RN

|∇u|2 + u2 dx + α

∫
RN

|∇u|2|u|2α−2 dx =
∫

RN

|∇v|2 + f(v)2 dx ≤ C∥v∥2
H1 < ∞. (2.7)

Thus it follows Y ⊂ X.

To show X ⊂ Y , it suffices to show f−1(u) ∈ H1(RN ) for all u ∈ X. For u ∈ X, we
put v = f−1(u). Then it follows∫

RN

|∇v|2 dx =
∫

RN

|(f−1)′(u)|2|∇u|2 dx =
∫

RN

(1 + α|u|2α−2)|∇u|2 dx < ∞.

Next by (i) and (ii) of Lemma 2.2, it follows

lim
s→0

f−1(s)
s

= 1, lim
s→∞

f−1(s)
sα

= c

for some c > 0. Thus there exist constants C1, C2 > 0 such that

|f−1(s)| ≤ C1χ|s|≤1|s| + C2χ|s|≥1|s|α for all s ∈ R .

Then we have

|v|2 ≤ C1χ|u|≤1|u|2 + C2χ|u|≥1|u|2α ≤ C1|u|2 + C2|u|
2Nα
N−2 .

By Sobolev’s inequality, we obtain∫
RN

|v|2 dx ≤ C1

∫
RN

|u|2 dx + C2

∫
RN

|u|
2Nα
N−2 dx

≤ C1

∫
RN

|u|2 dx + C ′
2

(∫
RN

α2|∇u|2|u|2α−2 dx

) N
N−2

< ∞.

Thus it follows X ⊂ Y and hence X = Y .

Remark 2.6. It follows from Lemma 2.5 that J(u) (and J∞(u)) is well-defined on all Y .
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Lemma 2.7. For any v ∈ H1(RN ), we put u = f(v). Then we have

(i) J(u) = I(v),

(ii) J ′(u)u = I ′(v)
f(v)
f ′(v)

.

Proof. Firstly we prove that
f(v)
f ′(v)

∈ H1(RN ) for all v ∈ H1(RN ). Since

∇
(

f(v)
f ′(v)

)
=

1 + α2|f(v)|2α−2

1 + α|f(v)|2α−2
∇v ≤ α∇v,

we see that ∫
RN

∣∣∣∣∇(
f(v)
f ′(v)

)∣∣∣∣2 dx ≤ α2

∫
RN

|∇v|2 dx for all v ∈ H1(RN ).

Moreover from Lemma 2.3, we have
|f(v)|
|f ′(v)|

≤ α|v|. Thus we observe that

∫
RN

∣∣∣∣ f(v)
f ′(v)

∣∣∣∣2 dx ≤ α2

∫
RN

|v|2 dx for all v ∈ H1(RN ).

Therefore we obtain ∥∥∥∥ f(v)
f ′(v)

∥∥∥∥
H1

≤ α∥v∥H1 for all v ∈ H1(RN ). (2.8)

Next we substitute u = f(v) into J(u). Then it follows

J(u) =
1
2

∫
RN

|∇f(v)|2 + a(x)f(v)2 dx +
α

2

∫
RN

|∇f(v)|2|f(v)|2α−2 dx −
∫

RN

H(f(v)) dx

=
1
2

∫
RN

|∇v|2(1 + α|f(v)|2α−2)|f ′(v)|2 + a(x)f(v)2 dx −
∫

RN

H(f(v)) dx

=
1
2

∫
RN

|∇v|2 + a(x)f(v)2 dx −
∫

RN

H(f(v)) dx

= I(v)

and we obtain (i).
Finally we are going to show (ii). We observe that for ϕ ∈ Y ,

J ′(u)ϕ =
∫

RN

∇u · ∇ϕ + a(x)uϕ dx + α(α − 1)
∫

RN

|∇u|2|u|2α−4uϕ dx

+ α

∫
RN

∇u · ∇ϕ|u|2α−2 dx −
∫

RN

h(u)ϕ dx,

11



and for ϕ ∈ H1(RN ),

I ′(v)ϕ =
∫

RN

∇v · ∇ϕ + a(x)f(v)f ′(v)ϕdx −
∫

RN

h(f(v))f ′(v)ϕdx.

We substitute u = f(v) into J ′(u)u. Then it follows

J ′(u)u =
∫

RN

|∇v|2(1 + α2f2α−2(v))|f ′(v)|2 + a(x)f2(v) dx −
∫

RN

h(f(v))f(v) dx

Since

∇v · ∇
(

f(v)
f ′(v)

)
=

1 + α2|f(v)|2α−2

1 + α|f(v)|2α−2
|∇v|2 = |∇v|2(1 + α2|f(v)|2α−2)|f ′(v)|2,

we have J ′(u)u = I ′(v)
f(v)
f ′(v)

for all v ∈ H1(RN ).

Remark 2.8. (i) We can easily see that J∞(u) and I∞(v) satisfy the same relation as in
Lemma 2.7, that is, for u = f(v),

J∞(u) = I∞(v), J ′
∞(u)u = I ′∞(v)

f(v)
f ′(v)

.

(ii) As we have shown in Lemma 2.1, if I ′(v) = 0, then u = f(v) is a critical point of J(u).
Lemma 2.5 and 2.7 imply the converse holds, that is, if u ∈ X satisfies J ′(u) = 0, then
v = f−1(u) is a critical point of I(v).

3. Some properties on the limit equation and proof of Theorem 1.4

In this section, we give a proof of Theorem 1.4. To this aim, we define a least energy level
for I∞(v) by

c̃∞ = inf{I∞(v) ; I ′∞(v) = 0, v ∈ H1(RN ) \{0}}.

Proposition 3.1. Assume (h1) and (h2). Then semilinear problem (1.12) has at least

one solution w̃(x) which has the following properties:

(i) w̃ ∈ C2(RN , R) and w̃(x) > 0 for all x ∈ RN .

(ii) w̃(x) = w̃(|x|) and
∂w̃

∂r
< 0.

(iii) There exist c, δ > 0 such that |Dkw̃(x)| ≤ ce−δ|x| for all x ∈ RN and |k| ≤ 2.

(iv) w̃ is a least energy solution of (1.12), that is, I∞(w̃) = c̃∞.

Proof. We claim that
lim

s→∞

h(f(s))f ′(s)

s
N+2
N−2

= 0.

12



Indeed from (h2) and (ii) of Lemma 2.2, we see

lim
s→∞

h(f(s))f ′(s)

s
N+2
N−2

= lim
s→∞

(
s

2α−2
α

1 + αf(s)2α−2

) 1
2

h(f(s))

f(s)
(2α−1)N+2

N−2

(
f(s)
s

1
α

) (2α−1)N+2
N−2

= 0.

Hence h(f(s))f ′(s) has a subcritical growth as s → ∞. Then we can easily see that the
existence of a least energy solution w̃ having the above properties (i)–(iv) follows directly
from fundamental results due to Berestycki-Lions [8] and Berestycki-Gallouët-Kavian [7].
We omit the details here.

Remark 3.2. As in [13], we can prove Proposition 3.1 under very weaker conditions on
h(s). More precisely, we only require

(h1′) lim
s→0+

h(s)
s

= 0.

(h2′) There exist c > 0 and 1 < p + 1 < ∞ for N = 1, 2, 1 < p <
(2α − 1)N + 2

N − 2
for N ≥ 3

such that h(s) ≤ c(1 + |s|p) for all s ≥ 0.

We remark that it follows from Lemma 2.1 that w = f(w̃) is a positive solution of
(1.10). Moreover we can easily see that w = f(w̃) also satisfies (i)–(iii) of Proposition 3.1
(see Lemma 3.6 below). At this stage, to prove Theorem 1.4, we only show w = f(w̃)
satisfies (iii) and (iv) of Theorem 1.4. As we have observed in Lemma 2.7, we know that
I∞(w̃) = J∞(w). This implies c∞ ≤ c̃∞. In order to prove the reverse inequality, we need
the following lemma.

Lemma 3.3. Assume (h1)–(h3). Let J ′
∞(u) = 0 and u ̸≡ 0. Then J∞(su) ≤ J∞(u) for

all s ≥ 0. Moreover for any T > 1, there exists c = c(T ) > 0 such that

J∞(u) − J∞(su) ≥ c(s − 1)2 for all s ∈ [0, T ].

Proof. We put

k(s) := J∞(su) =
s2

2

∫
RN

|∇u|2 + a∞u2 dx +
α

2
s2α

∫
RN

|∇u|2|u|2α−2 dx −
∫

RN

H(su) dx.

Then we have

k′(s) = s

∫
RN

|∇u|2 + a∞u2 dx + α2s2α−1

∫
RN

|∇u|2|u|2α−2 dx −
∫

RN

h(su)u dx.

Since J ′
∞(u) = 0, it follows

k′(s) = α2(s − s2α−1)
∫

RN

|∇u|2|u|2α−2 dx +
∫

RN

h(u)su − h(su)u dx.

13



From (h3), it follows

h(su)
su

<
h(u)

u
for s < 1,

h(su)
su

>
h(u)

u
for s > 1.

Thus we have k′(s) = 0 if and only if s = 0, 1, k′(s) > 0 for 0 < s < 1 and k′(s) < 0 for
s > 1. Thus we obtain k(s) ≤ k(1) for all s ≥ 0 and hence J∞(su) ≤ J∞(u).

Next it follows from

0 = J ′
∞(u)u =

∫
RN

|∇u|2 + a∞u2 dx + α2

∫
RN

|∇u|2|u|2α−2 dx −
∫

RN

h(u)u dx

that

J∞(u) − J∞(su) =
1 − s2

2

∫
RN

|∇u|2 + a∞u2 dx +
α

2
(1 − s2α)

∫
RN

|∇u|2|u|2α−2 dx

+
∫

RN

H(su) − H(u) dx

=
(

α − 1
2α

− s2

2
+

s2α

2α

) ∫
RN

|∇u|2 + a∞u2 dx

+
∫

RN

H(su) − H(u) +
1
2α

h(u)u − s2α

2α
h(u)u dx.

We put

k1(s) :=
α − 1
2α

− s2

2
+

s2α

2α
.

We claim that for any T > 1, there exists c(T ) > 0 such that

k1(s) ≥ c(s − 1)2 for all s ∈ [0, T ]. (3.1)

We take δ > 0 so that [1 − δ, 1 + δ] ⊂ [0, T ]. By Taylor’s expansion, we have

k1(s) =
α − 1

2
(s − 1)2 + O((s − 1)3), s ∈ [1 − δ, 1 + δ].

Thus taking δ > 0 smaller if necessary, it follows k1(1−δ) > 0 and k1(1+δ) > 0. Choosing
small c > 0, we obtain

k1(s) ≥ c(s − 1)2 for all s ∈ [1 − δ, 1 + δ]. (3.2)

Moreover we observe that k′
1(s) = −s + s2α−1. Then k′

1(s) ≤ 0 for s ∈ [0, 1 − δ] and
k′
1(s) > 0 for s ∈ [1 + δ, T ]. Thus we have k1(s) ≥ min{k1(1 − δ), k1(1 + δ)}. Finally we

take c(T ) > 0 so that

min{k1(1 − δ), k1(1 + δ)} ≥ max{c(T ), c(T )(T − 1)2}.
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Then we see
k1(s) ≥ c(s − 1)2 for all s ∈ [0, 1 − δ] ∪ [1 + δ, T ]. (3.3)

Thus (3.1) follows from (3.2) and (3.3).
Next we put

k2(s) := H(su) − H(u) +
1
2α

h(u)u − s2α

2α
h(u)u.

We claim that k2(s) ≥ 0 for all s ≥ 0. From (h3), we can see that

k′
2(s) = h(su)u − s2α−1h(u)u = s2α−1uθ+1

(
sθ−2α+1 h(su)

(su)θ
− h(u)

uθ

){
≥ 0 for s > 1
≤ 0 for s < 1.

Since k2(0) = −H(u) + 1
2αh(u)u > 0 and k2(1) = 0, we have k2(s) ≥ 0 for all s ≥ 0.

Lemma 3.4. Assume (h1)–(h3). Then it follows c∞ = c̃∞. Especially w̃ is a least energy

solution of (1.12) if and only if w = f(w̃) is a least energy solution of (1.10).

Proof. Firstly we show that c∞ is well-defined and positive. In fact for any u ̸≡ 0 with
J ′
∞(u) = 0, it follows from (h3) that

J∞(u) ≥
(

1
2
− 1

θ + 1

)∫
RN

|∇u|2 + a∞u2 dx +
(

α

2
− α2

θ + 1

)∫
RN

|∇u|2|u|2α−2 dx > 0.

Now let w̃(x) be a least energy solution of (1.12). We put w = f(w̃). Then by Lemma 2.7,
we have c∞ ≤ J∞(w) = I∞(w̃) = c̃∞.

On the other hand, c̃∞ has a Mountain Pass characterization, that is,

c̃∞ = inf
γ∈Γ

max
t∈[0,1]

I∞(γ(t)), Γ = {γ ∈ C([0, 1],H1(RN )) ; γ(0) = 0, I∞(γ(1)) < 0}

(see [13] and the references there in). Let un be a minimizing sequence such that J∞(un) →
c∞ and J ′

∞(un) = 0 for all n ∈ N. We choose tn > 1 so that I∞(f−1(tnun)) < 0 for each
n. Finally we define γn(t) = f−1(ttnun). Then γn(t) ∈ Γ and

c̃∞ ≤ max
t∈[0,1]

I∞(f−1(ttnun)) = max
t∈[0,1]

J∞(ttnun).

Since J ′
∞(un) = 0, the maximum value is achieved at t = 1

tn
by Lemma 3.3. Thus we

obtain c̃∞ ≤ J∞(un) → c∞ and hence c̃∞ = c∞.

Remark 3.5. A similar result as Lemma 3.4 has been obtained in [12] where another
type of quasilinear Schrödinger equations was studied.

Next we prove precise decay estimates of the least energy solution of (1.10) at infinity.

15



Lemma 3.6. Assume (h1)–(h2). Let w(x) be a least energy solution of (1.10). Then

w ∈ C2(RN , R), w(x) = w(|x|) and ∂w
∂r < 0. Moreover there exist c, c′ > 0 such that

lim
|x|→∞

e
√

a∞|x|(|x| + 1)
N−1

2 w(x) = c, lim
r→∞

e
√

a∞r(r + 1)
N−1

2
∂w

∂r
= −c′. (3.4)

Proof. Let w̃ be a least energy solution of (1.12). Then by Lemma 3.4, w = f(w̃) is a
least energy solution of (1.10). By (i), (ii) of Proposition 3.1 and the fact f ∈ C∞(R, R),
we have w ∈ C2(RN , R) and w(x) = w(|x|). Moreover since ∂w

∂r = f ′(w̃)∂w̃
∂r , f ′(w̃) > 0 and

∂w̃
∂r < 0, it follows ∂w

∂r < 0.
Next by Lemma 2.2 and (h1), we can apply the standard comparison principle to

obtain

|Dkw̃(x)| ≤ ce−δ|x| for all δ ∈ (0,
√

a∞), x ∈ RN , |k| ≤ 2 and some c > 0.

By Lemma 2.2, we observe that

|w| = |f(w̃)| ≤ |w̃| ≤ ce−δ|x|,∣∣∣∣ ∂w

∂xi

∣∣∣∣ =
∣∣∣∣f ′(w̃)

∂w̃

∂xi

∣∣∣∣ ≤ ∣∣∣∣ ∂w̃

∂xi

∣∣∣∣ ≤ ce−δ|x|,∣∣∣∣∂2w

∂x2
i

∣∣∣∣ =
∣∣∣∣f ′′(w̃)(

∂w̃

∂xi
)2 + f ′(w̃)

∂2w̃

∂x2
i

∣∣∣∣ ≤ α(α − 1)|w̃|2α−3

∣∣∣∣ ∂w̃

∂xi

∣∣∣∣2 +
∣∣∣∣∂2w̃

∂x2
i

∣∣∣∣ ≤ ce−δ|x|.

Thus for |x| ≫ 1, we have

−∆w + a∞w = h(w) + αw2α−2∆w + α(α − 1)w2α−3|∇w|2 ≤ ce−(1+η)δ|x| + ce−(2α−1)δ|x|.

Since 2α − 1 > 1 and we can take δ arbitrary close to
√

a∞, it follows

−∆w + a∞w = o(G(x)) as |x| → ∞

where G(x) is the fundamental solution of −∆ + a∞I. Then by Gidas-Ni-Nirenberg’s
asymptotic result [15], we obtain (3.4).

Proof of Theorem 1.4. Theorem 1.4 follows directly from Proposition 3.1, Lemma 3.4
and 3.6.

Remark 3.7. From Lemma 3.6 and ∂w
∂r < 0, there exists c > 1 such that

1
c
e−

√
a∞|x|(|x| + 1)−

N−1
2 ≤ w(x) ≤ ce−

√
a∞|x|(|x| + 1)−

N−1
2 , (3.5)

− ce−
√

a∞r(r + 1)−
N−1

2 ≤ ∂w

∂r
≤ −1

c
e−

√
a∞r(r + 1)−

N−1
2 , (3.6)

|∇w(x)| ≤ cw(x) for all x ∈ RN . (3.7)
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Hereafter in this paper, we may assume that a∞ = 1 without loss of generality.

4. Properties of energy functional I

In this section, we prepare some lemmas to find a positive solution of (1.1) and (1.5). First
we show I(v) has the Mountain Pass Geometry. Next we apply concentration compactness
principle and give a global compactness type result for I(v). In order to prove these
properties, it is rather convenient to consider I(v) rather than J(u) because J(u) has the
quasilinear term. Finally we will show any Cerami sequences are bounded in H1(RN ).

Lemma 4.1. Assume (a1), (a2) and (h1)–(h3). Then I(v) has the Mountain Pass Geom-

etry.

Proof. First we observe that

I(v) ≥ 1
2

∫
RN

|∇v|2 dx + a0f(v)2dx −
∫

RN

H(f(v)) dx.

We put H̃(s) = −a0
2 f(s)2 + H(f(s)). Then by Lemma 2.2, we have

lim
s→0

H̃(s)
s2

= −a0

2
, lim

s→∞

H̃(s)

s
2N

N−2
= 0.

Thus for any ϵ > 0, there exists Cϵ > 0 such that

H̃(s) ≤ −a0 − ϵ

2
s2 + Cϵ|s|

2N
N−2 for all s ∈ R .

We take ϵ = a0
2 . Then we obtain

I(v) ≥ 1
2

∫
RN

|∇v|2 dx +
a0

4

∫
RN

v2 dx − C a0
2

∫
RN

|v|
2N

N−2 dx.

Thus there exist c, ρ > 0 such that I(v) ≥ c for all v ∈ H1(RN ) with ∥v∥H1 = ρ.
Next we choose ϕ ∈ C∞

0 (RN ) so that ϕ(x) ≥ 0 for x ∈ RN and

α

2

∫
RN

|∇ϕ|2ϕ2α−2 dx <
1
2

∫
RN

ϕθ+1 dx.

Then from (h3), we have for s > 1,

I(f−1(sϕ)) = J(sϕ) ≤ s2

2

∫
RN

|∇ϕ|2 + ∥a∥L∞ϕ2 dx + (
s2α

2
− sθ+1)

∫
RN

ϕθ+1 dx.

Since θ ≥ 2α − 1, it follows I(f−1(sϕ)) → −∞ as s → ∞. Thus I(v) has the Mountain
Pass Geometry.
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Lemma 4.2. Assume (a1), (a2), (h1) and (h2). For c > 0, let {vn} ⊂ H1(RN ) be a

sequence such that

I(vn) → c, I ′(vn) → 0 in H−1(RN ) and ∥vn∥H1 is bounded.

Then passing to a subsequence, there exist v0 ∈ H1(RN ), k ∈ N∪{0}, {yi
n} ⊂ RN , i =

1, · · · , k and wi ∈ H1(RN ) \ {0} such that

I(vn) → I(v0) +
k∑

i=1

I∞(wi),∥∥∥∥∥vn − v0 −
k∑

i=1

wi(· − yi
n)

∥∥∥∥∥
H1

→ 0,

I ′(v0) = 0,

I ′∞(wi) = 0,

|yi
n| → ∞, |yi

n − yi′

n | → ∞ as n → ∞.

Proof. We show that if vn ⇀ v0 in H1(RN ), then∫
RN

f(vn)f ′(vn)ϕdx →
∫

RN

f(v0)f ′(v0)ϕdx,∫
RN

h(f(vn))f ′(vn)ϕdx →
∫

RN

h(f(v0))f ′(v0)ϕdx (4.1)

for all ϕ ∈ C∞
0 (RN ). We prove (4.1). We fix ϕ ∈ C∞

0 (RN ). Since vn ⇀ v0 in H1(RN ),
passing to a subsequence, we may assume that

vn → v0 in Lq
loc(R

N ) for all q ∈ [2,
2N

N − 2
),

vn → v0 a.e. in RN .

Moreover we see for all R > 0, there exists ψ ∈ Lq(BR(0)) such that |vn| ≤ ψ a.e. BR(0).
Since f, f ′ ∈ C∞(R), it follows h(f(vn))f ′(vn)ϕ → h(f(v0))f ′(v0)ϕ a.e. in RN . From
(h2), Lemma 2.2 and 2.3, we obtain

|h(f(vn))||f ′(vn)||ϕ| ≤ c|f(vn)||f ′(vn)||ϕ| + c|f(vn)|p|f ′(vn)||ϕ|

≤ c
|f(vn)|2

|vn|
|ϕ| + c

|f(vn)|p+1

|vn|
|ϕ|

≤ C|vn||ϕ| + C ′|vn|
p+1

α −1|ϕ|

≤ C|ψ||ϕ| + C ′|ψ|
p+1

α −1|ϕ|. (4.2)
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We take R > 0 large enough so that suppϕ ⊂ BR(0). Then by (4.2), p+1
α < 2N

N−2 and
Hölder’s inequality, we have∫

RN

h(f(vn))f ′(vn)ϕ dx ≤ C

∫
supp ϕ

|ψ||ϕ| dx + C ′
∫

supp ϕ

|ψ|
p+1

α −1|ϕ| dx

≤ C

(∫
BR(0)

|ψ|2 dx

) 1
2 (∫

supp ϕ

|ϕ|2 dx

) 1
2

+ C ′

(∫
BR(0)

|ψ|
p+1

α dx

) p+1−α
p+1 (∫

supp ϕ

|ϕ|
p+1

α dx

) α
p+1

< ∞.

Thus by Lebesgue’s convergence theorem, we obtain (4.1).

Arguing similarly, we can see if vn ⇀ v0 in H1(RN ), then∫
RN

f(vn)2dx →
∫

RN

f(v0)2 dx,

∫
RN

H(f(vn))dx →
∫

RN

H(f(v0)) dx.

Then Lemma 4.2 follows from a similar argument as in [18].

Now we define

H1
G(RN ) := {u ∈ H1(RN ) ; u(gx) = u(x) for all g ∈ G}.

By the principle of symmetric criticality due to Palais [25], we see that if the restriction
I|H1

G
(RN )(v) has a critical point, then it is in fact a critical point of I(v). Thus to find a

G-invariant solution, it suffices to work in the restricted space H1
G(RN ). As a consequence

of Lemma 4.2, we can obtain the following corollary.

Corollary 4.3. Assume (a1)–(a3), (h1) and (h2). For c < mc∞, let {vn} ⊂ H1
G(RN ) be

a sequence such that

I(vn) → c, I ′(vn) → 0 in (H1
G)−1 and ∥vn∥H1 is bounded.

Then {vn} has a convergent subsequence.

Proof. Corollary 4.3 follows from a similar argument in [1].

Next we show the boundedness of any Cerami sequences of I(v).
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Lemma 4.4. Assume (a1), (a2) and (h1)–(h3). For c > 0, let {vn} be a Cerami sequence,

that is,

I(vn) → c and I ′(vn)(1 + ∥vn∥H1) → 0 in H−1as n → ∞. (4.3)

Then ∥vn∥H1 is bounded.

Proof. First we observe that ∥vn∥H1 is controlled by
∫

RN |∇vn|2 + a(x)f(vn)2 dx. In fact
from I(vn) → c, we have∫

RN

H(f(vn)) dx ≤ 1
2

∫
RN

|∇vn|2 + a(x)f(vn)2dx + c + o(1).

From (h3) and Lemma 2.2, it follows H(f(s)) ≥ Cs2 for all s ≥ 1. Then we have∫
RN

a(x)v2
n dx ≤

∫
|vn|≤1

a(x)v2
n dx +

∫
|vn|≥1

a(x)v2
n dx

≤ C

∫
|vn|≤1

a(x)f(vn)2 dx + C ′
∫
|vn|≥1

H(f(vn)) dx

≤ C

∫
RN

a(x)f(vn)2 dx + C ′
∫

RN

H(f(vn)) dx.

Thus it follows

∥vn∥2
H1 ≤

∫
RN

|∇vn|2 dx + C

∫
RN

a(x)f(vn)2 dx + C ′
∫

RN

H(f(vn)) dx

≤ C

∫
RN

|∇vn|2 + a(x)f(vn)2dx + C ′ + o(1).

Next we prove
∫

RN |∇vn|2 + a(x)f(vn)2 dx is bounded. We put un = f(vn) and recall
that ∥∥∥∥ f(vn)

f ′(vn)

∥∥∥∥
H1

≤ α∥vn∥H1 , I ′(vn)
f(vn)
f ′(vn)

= J ′(un)un, I(vn) = J(un).

From (4.3), we have

J(un) = c + o(1), J ′(un)un ≤ αI ′(vn)∥vn∥H1 = o(1). (4.4).

It follows from (h3) that(
1
2
− 1

θ + 1

) ∫
RN

|∇un|2 + a(x)u2
n dx +

(
α

2
− α2

θ + 1

)∫
RN

|∇un|2|un|2α−2 dx ≤ c + o(1).

(4.5)
Since ∫

RN

|∇vn|2 + a(x)f(vn)2 dx =
∫

RN

(1 + α|un|2α−2)|∇un|2 + a(x)u2
n dx, (4.6)
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it follows from (4.5) that
∫

RN |∇vn|2+a(x)f(vn)2 dx is bounded for θ > 2α−1. We suppose
θ = 2α − 1. Then we have from (4.5)∫

RN

|∇un|2 + a(x)u2
n dx ≤ c + o(1). (4.7)

By (4.6) and (4.7), it suffices to show

K(un) :=
∫

RN

|un|2α−2|∇un|2 dx (4.8)

is bounded. From (4.4) and (h2), we have∫
RN

|∇un|2|un|2α−2 dx ≤ c + o(1) +
∫

RN

H(un)dx

≤ c + o(1) + C

∫
RN

u2
ndx + C ′

∫
RN

|un|p+1 dx

≤ c + o(1) + C ′
∫

RN

|un|p+1dx. (4.9)

Now we suppose N = 1, 2 or N = 3 and p ≤ 5. Then by Sobolev’s inequality, it follows

∫
RN

|un|p+1 dx ≤ C

(∫
RN

|∇un|2 + a(x)u2
n dx

) p+1
2

≤ C ′.

Thus K(un) is bounded.

Next we consider the case N ≥ 3 and p <
(2α − 1)N + 4

N
. Using Hölder’s and

Sobolev’s inequalities, it follows

∫
RN

|un|p+1 dx ≤
(∫

RN

u2
n dx

) 2Nα−(N−2)(p+1)
2(Nα−N+2)

(∫
RN

|un|
2Nα
N−2 dx

) (N−2)(p−1)
2(Nα−N+2)

≤ C

(∫
RN

u2
n dx

) 2Nα−(N−2)(p+1)
2(Nα−N+2)

(∫
RN

|∇un|2|un|2α−2 dx

) N(p−1)
2(Nα−N+2)

≤ CK(un)
N(p−1)

2(Nα−N+2) . (4.10)

Here we used (4.7). From (4.9) and (4.10), we obtain

K(un) ≤ c + o(1) + CK(un)
N(p−1)

2(Nα−N+2) .

Since p < (2α−1)N+4
N , or equivalently N(p−1)

2(Nα−N+2) < 1, we have K(un) is bounded and
hence ∥vn∥H1 is bounded.
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Corollary 4.5. Suppose h(u) = up, 2α ≤ p + 1 < ∞ for N = 1, 2 and 2α − 1 ≤ p <
(2α−1)N+2

N−2 for N ≥ 3. Let {vn} be a Cerami sequence of I(v). Then ∥vn∥H1 is bounded.

Proof. If p + 1 > 2α or p + 1 = 2α and N = 1 or 2, the claim follows similarly. We
suppose N ≥ 3 and p + 1 = 2α. It is sufficient to show K(un) defined in (4.8) is bounded.
Arguing as above, we have

K(un) ≤ c + o(1) +
1
2α

∫
RN

|un|2α dx

≤ c + o(1) +
1
2α

(∫
RN

|un|2 dx

) 2α
Nα−N+2

(∫
RN

|un|
2Nα
N−2 dx

) (α−1)(N−2)
Nα−N+2

≤ c + o(1) + C

(∫
RN

|∇un|2|un|2α−2 dx

) N(α−1)
Nα−N+2

= c + o(1) + CK(un)
N(α−1)

Nα−N+2 .

Since N(α−1)
Nα−N+2 < 1, K(un) is bounded.

Remark 4.6. As we have observed above, we require only 2α − 1 ≤ p < (2α−1)N+2
N−2 if

h(s) = sp. This is because of the growth order at infinity when θ = 2α − 1 in (h3). In
the case h(s) = sp and p = 2α− 1, the growth order of H(s) at infinity is exactly equal to
s2α. However (2α − 1)h(s) ≤ h′(s)s does not implies H(s) behaves like s2α at infinity in
general. For example, h(s) = s2α−1 + sq for some q > 2α− 1 fulfills (h3) with θ = 2α− 1.
Thus we need to restrict the range of p for general nonlinearities.

5. Interaction estimate

In this section, we establish an interaction estimate which plays an important role in the
existence result. To this aim, it seems to be better to use energy functional J(u) rather
than I(v) because function f(t) is nonlinear and concave. Even if we consider J(u), we
need delicate estimates since J(u) has the quasilinear term.

Now let w̃ be a least energy solution of (1.12). For l > 0, we put

γ(s) := f−1(s
m∑

i=1

f(w̃(x − lei))) ∈ H1
G(RN )

where {ei} ⊂ SN−1 are vectors defined in (1.3). In this setting, we have the following.

Proposition 5.1. Assume α ≥ 3
2 , (a1)–(a4) and (h1)–(h3). Then there exists l0 > 0 such

that if l ≥ l0, then

sup
s≥0

I(γ(s)) < mc∞. (5.1)
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For simplicity, we write w = f(w̃), w̃i = w̃(x − lei) and ui = f(w̃i) for i = 1, · · · ,m.
To prove Proposition 5.1, we need some preliminaries. For the proof of next lemma, we
refer to [1, 9].

Lemma 5.2. Assume (h3). For any integer m ≥ 2 and K > 0, it follows:

(i) If ti ∈ [0,K] for all i = 1, · · · ,m, then

H

(
m∑

i=1

ti

)
−

m∑
i=1

H(ti) −
1
2

m∑
i,j=1, i ̸=j

h(ti)tj ≥ 0.

(ii) For any ϵ > 0, there exists δϵ,K > 0 such that if ti ∈ (0, K
2 ) and tj ∈ (0, δϵ,K ] for i ̸= j,

then

H

(
m∑

i=1

ti

)
−

m∑
i=1

H(ti) −
1
2

m∑
i,j=1, i ̸=j

h(ti)tj

≥ 1
2

m∑
i,j=1, i̸=j

h(ti)tj − ϵ
m∑

j=1, j ̸=i

(
tj +

1
2
t2j +

1
2
titj

)
.

For an interaction estimate of ui and uj , we have the following

Lemma 5.3. Let i, j ∈ [1, m] and i ̸= j.

(i) For any q > 0 and δ ∈ (0, 1), there exists C > 0 such that∫
RN

uq
i u

q
j + |∇ui|q|∇uj |q dx ≤ Ce−q(1−δ)|ei−ej |l for all l ≥ 0.

(ii) For any R > 1 and q > 0, there exist CR > 0 and l1(R) > 0 such that∫
BR(lei)

uq
j dx ≤ CRe−q|ei−ej |ll−

q(N−1)
2 for all l ≥ l1.

(iii) For any R > 1, there exist MR > 0 and l2(R) > 0 such that∫
∂BR(lei)

(∇ui · ν)uj − (∇uj · ν)ui dS ≤ −MRe−|ei−ej |ll−
N−1

2 for all l ≥ l2

and lim
R→∞

MR = M∗ > 0, where ν is the outer unit normal vector on ∂BR(lei).

(iv) For any R > 1 and r, s > 0, r ̸= s, there exist KR > 0 and l3(R) > 0 such that∫
RN \(∪m

i=1BR(lei))

ur
i u

s
j dx ≤ KRe−min{r,s}|ei−ej |ll−

min{r,s}(N−1)
2 for all l ≥ l3
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and lim
R→∞

KR = 0.

Proof. (i) and (ii) are rather standard.
(iii) First we observe that for every x ∈ RN ,

−|x − l(ej − ei)| + l|ej − ei| →
x · (ej − ei)
|ej − ei|

,
|x − l(ej − ei)|

l|ej − ei|
→ 1 as l → ∞. (5.2)

Thus from (3.5), there exist c > 1 and l̃ > 0 such that if l ≥ l̃,

1
c
e

x·(ej−ei)
|ej−ei| ≤ w(x − l(ej − ei))

e−|ej−ei|l(|ej − ei|l + 1)−
N−1

2

≤ ce
x·(ej−ei)
|ej−ei| for all x ∈ BR(0). (5.3)

Next we recall that ∇u · ν < 0 by Lemma 3.6. Then from (3.5), we have∫
∂BR(lei)

(∇ui · ν)uj dS ≤ −c

∫
∂BR(0)

R−N−1
2 e−Re

x·(ej−ei)
|ej−ei| dS × e−|ej−ei|ll−

N−1
2

for some c > 0 independent of l and R. Next we claim that

lim
R→∞

∫
∂BR(0)

R−N−1
2 e−Re

x·(ej−ei)
|ej−ei| dS > 0. (5.4)

Indeed, up to rotation if necessary, we may assume that ej−ei

|ej−ei| = (1, 0, · · · , 0). Changing
the variable x = Ry, we have∫

∂BR(0)

R−N−1
2 e−Re

x·(ej−ei)
|ej−ei| dS =

∫
∂BR(0)

R−N−1
2 e−Rex1 dS = R

N−1
2 e−R

∫
∂B1(0)

eRy1 dSy.

Using polar coordinates

y1 = cos θ1,

y2 = sin θ1 cos θ2,

...

yN = sin θ1 · · · sin θN−2 sin θN−1,

we have

R
N−1

2 e−R

∫
∂B1(0)

eRy1 dSy

= R
N−1

2 e−R

∫ π

0

∫ π

0

· · ·
∫ 2π

0

eR cos θ1(sin θ1)N−2(sin θ2)N−3 · · · sin θN−2 dθ1 · · · dθN−1

= cR
N−1

2

∫ π

0

e−R(1−cos θ1)(sin θ1)N−2 dθ1.
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We put R(1 − cos θ1) = t. Then it follows

R
N−1

2

∫ π

0

e−R(1−cos θ1)(sin θ1)N−2 dθ1

=
∫ R

0

e−t(2t − t2

R
)

N−3
2 dt +

∫ 2R

R

e−t(−2t +
t2

R
)

N−3
2 dt

→
∫ ∞

0

e−t(2t)
N−3

2 dt ∈ (0,∞) as R → ∞.

Thus we obtain (5.4). Next we observe that

−
∫

∂BR(lei)

(∇uj · ν)ui dS = −
∫

∂BR(0)

(∇w(x − l(ej − ei)) · ν)w dS.

Since w is radially symmetric, we have

∇w(x − l(ej − ei)) · ν = w′(|x − l(ej − ei)|)
x − l(ej − ei)
|x − l(ej − ei)|

· x

|x|
,

where we write w′ = ∂w
∂r . Now it follows

x − l(ej − ei)
|x − l(ej − ei)|

· x

|x|
→ − x1

|x|
as l → ∞ uniformly in x ∈ ∂BR(0).

Moreover by Lemma 3.6, there exists c > 0 such that

w′(|x − l(ej − ei)|)
w(x − l(ej − ei))

→ −c as l → ∞ uniformly in x ∈ ∂BR(0).

Thus from (5.3), there exist l > 0 and c > 0 independent of l, R such that if l ≥ l,

∇w(x − l(ej − ei)) · ν ≥ c
x1

|x|
ex1e−|ej−ei|l(|ej − ei|l + 1)−

N−1
2 .

Next we observe that∫
∂BR(0)

wex1
x1

|x|
dS =

1
R

∫
∂BR(0)∪{x1>0}

wex1x1 dS +
1
R

∫
∂BR(0)∪{x1<0}

wex1x1 dS

=
1
R

∫
∂BR(0)∪{x1>0}

wex1x1 dS − 1
R

∫
∂BR(0)∪{x1>0}

we−x1x1 dS

=
1
R

∫
∂BR(0)∪{x1>0}

w(ex1 − e−x1)x1 dS > 0.

Arguing similarly as above, we have

lim
R→∞

1
R

∫
∂BR(0)∪{x1>0}

w(ex1 − e−x1)x1 dS ∈ (0,∞).
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Thus there exist MR > 0 and l2 > 0 such that for l ≥ l2,∫
∂BR(lei)

(∇ui · ν)uj − (∇uj · ν)ui dS ≤ −MRe−|ej−ei|ll−
N−1

2

and lim
R→∞

MR = M∗ > 0.

(iv) We may assume without loss of generality that r > s > 0. From (3.5), we have∫
RN \(∪m

i=1BR(lei))

ur
i u

s
j dx ≤ c

∫
|x|≥R

|x|−
r(N−1)

2 e−r|x|w(x − l(ej − ei))s dx.

We show that

lim
l→∞

es|ei−ej |ll
s(N−1)

2

∫
|x|≥R

|x|−
r(N−1)

2 e−r|x|w(x − l(ej − ei))s dx

= c

∫
|x|≥R

e−sx1 |x|−
r(N−1)

2 e−r|x|dx (5.5)

for some c > 0 independent of R. Indeed from (5.2) and Lemma 3.6, we have

lim
l→∞

es|ej−ei|ll
s(N−1)

2 w(x − l(ej − ei))s = ce−sx1 for all x ∈ RN .

Moreover we have

|ej − ei|l − |x − l(ej − ei)| ≤ |x|,(
l

|x − l(ej − ei)| + 1

)N−1
2

≤
(

2
|ej − ei|

)N−1
2

max{1, |x|
N−1

2 }.

Thus we obtain

es|ej−ei|ll
s(N−1)

2 |x|−
r(N−1)

2 e−r|x|w(x − l(ej − ei))s

≤ cmax{1, |x|
N−1

2 }e−(r−s)|x||x|−
r(N−1)

2 ∈ L1(RN ).

By the Lebesgue’s convergence theorem, (5.5) follows. Finally we observe that

KR :=
∫
|x|≥R

e−sx1 |x|−
r(N−1)

2 e−r|x| dx ≤ c

∫
|x|≥R

e−(r−s)|x||x|−
r(N−1)

2 dx.

Since r − s > 0, it follows lim
R→∞

KR = 0.

Proof of Proposition 5.1. For simplicity, we prove Proposition 5.1 for the case m = 2.
Then it follows |e1 − e2| = λ0 = 2. We can similarly prove (5.1) for the case m > 2.
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First we observe that I(γ(s)) → −∞ as s → ∞ uniformly in l > 1. Moreover by the
continuity of I(γ(s)) with respect to s, there exists 0 < s1 < 1 < s2 such that

I(γ(s)) < mc∞ for all s ∈ [0, s1] ∪ [s2,∞) and l ≥ 1. (5.6)

Thus to prove (5.1), it suffices to show I(γ(s)) < mc∞ for s ∈ [s1, s2].
Step 1: [Decomposition of the energy]. By direct calculations, it follows

I(γ(s)) = J(su1 + su2)

= J∞(su1) + J∞(su2) + s2

∫
RN

∇u1 · ∇u2 + a∞u1u2 dx

+
s2

2

∫
RN

(a(x) − a∞)(u1 + u2)2 dx

+
αs2α

2

∫
RN

(u1 + u2)2α−2|∇u1 + ∇u2|2 − |∇u1|2u2α−2
1 − |∇u2|2u2α−2

2 dx

−
∫

RN

H(su1 + su2) − H(su1) − H(su2) dx.

Using
s2

2
J ′
∞(u1)u2 = 0,

s2

2
J ′
∞(u2)u1 = 0 and Lemma 3.3, we obtain

I(γ(s)) ≤ 2J∞(w) − 2c(s − 1)2 +
s2

2

∫
RN

(a(x) − a∞)(u1 + u2)2 dx

+
1
2

∫
RN

s2h(u1)u2 − h(su1)su2 dx +
1
2

∫
RN

s2h(u2)u1 − h(su2)su1 dx

−
∫

RN

H(su1 + su2) − H(su1) − H(su2) −
1
2
h(su1)su2 −

1
2
h(su2)su1 dx

+
αs2α

2

∫
RN

(u1 + u2)2α−2|∇u1 + ∇u2|2 − |∇u1|2u2α−2
1 − |∇u2|2u2α−2

2 dx

− s2

2

∫
RN

α∇u1 · ∇u2(u2α−2
1 + u2α−2

2 )

+ α(α − 1)(|∇u1|2u2α−3
1 u2 + |∇u2|2u2α−3

2 u1) dx

=: 2J∞(w) − 2c(s − 1)2 +
s2

2

∫
RN

(a(x) − a∞)(u1 + u2)2 dx

+
1
2

∫
RN

s2h(u1)u2 − h(su1)su2 dx +
1
2

∫
RN

s2h(u2)u1 − h(su2)su1 dx

− L1(RN ) + L2(RN ) − L3(RN ).

By (a4), Lemma 2.4 in [1] and (3.5), there exists C0 > 0 such that∫
RN

(a(x) − a∞)(u1 + u2)2 dx ≤ C0 max{e−λl, e−2ll−(N−1)} for all l ≥ 1.
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Next by Taylor’s expansion, it follows

s2h(u1)u2 − h(su1)su2 = s2h(u1)u2 − sh(u1)u2 + sh(u1)u2 − h(su1)su2

= s(s − 1)h(u1)u2 − s(s − 1)h′((1 + θ(s − 1))u1)u1u2

for some 0 < θ < 1. From (3.5), there exists C > 0 independent of s ∈ [s1, s2], l > 0 and
x ∈ RN such that

|s2h(u1)u2 − h(su1)su2| ≤ C|s − 1|u1u2.

Thus by (i) of Lemma 5.3, we have∫
RN

s2h(u1)u2 − h(su1)su2dx ≤ C|s − 1|
∫

RN

u1u2 dx ≤ C|s − 1|e−(1−δ)λ0l (5.7)

for any l ≥ 0 and 0 < δ < 1. Thus we obtain

I(γ(s)) ≤ 2J∞(w) − 2c(s − 1)2 + C0 max{e−λl, e−2ll−(N−1)} + C|s − 1|e−(1−δ)λ0l

− L1(RN ) + L2(RN ) − L3(RN ). (5.8)

Now let R > 0 be arbitrary given. Taking large l > 0 enough so that BR(le1)∩BR(le2) = ∅.
We decompose

RN = BR(le1) ∪ BR(le2) ∪ (RN \(BR(le1) ∪ BR(le2))).

For simplicity, we write Bi = BR(lei), i = 1, 2, Ω = RN \(B1 ∪ B2). Then we have

Li(RN ) = Li(B1) + Li(B2) + Li(Ω) for i = 1, 2, 3.

Step 2: [Estimate of L1(B1)]. We observe that u2 is exponentially small on B1. Then
by (ii) of Lemma 5.2 and (5.7), we have

−L1(B1) ≤ −1
2

∫
B1

h(su1)su2 dx − 1
2

∫
B1

h(su2)su1 dx

+ ϵ

∫
B1

su2 +
s2

s
u2

2 +
s2

2
u1u2 dx

≤ −s2

2

∫
B1

h(u1)u2 dx +
1
2

∫
B1

s2h(u1)u2 − h(su1)su2 dx

+ ϵ

∫
B1

su2 +
s2

s
u2

2 +
s2

2
u1u2 dx

≤ −s2

2

∫
B1

h(u1)u2 dx + C|s − 1|e−(1−δ)λ0l + C ′ϵ

∫
B1

u2 dx.
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It follows from (ii) of Lemma 5.3 that∫
B1

u2 dx ≤ CRe−λ0ll−
N−1

2 .

Thus we obtain

−L1(B1) ≤ −s2

2

∫
B1

h(u1)u2 dx + C|s − 1|e−(1−δ)λ0l + C ′ϵe−λ0ll−
N−1

2 , (5.9)

where ϵ > 0 is arbitrary and we choose a suitable ϵ > 0 later. Next we estimate
− s2

2

∫
B1

h(u1)u2 dx as follows. Since u1 is a solution of (1.10), it follows

−
∫

B1

h(u1)u2dx =
∫

∂B1

(∇u1 · ν)u2(1 + αu2α−2
1 ) dS −

∫
B1

∇u1 · ∇u2 + a∞u1u2 dx

− α

∫
B1

u2α−2
1 ∇u1 · ∇u2 dx − α(α − 1)

∫
B1

u2α−3
1 |∇u1|2u2 dx.

Since u2 is also a solution of (1.10), we have

−
∫

B1

∇u1 · ∇u2 + a∞u1u2 dx = −
∫

∂B1

(∇u2 · ν)u1(1 + αu2α−2
2 ) dS

+ α(α − 1)
∫

B1

u2α−3
2 |∇u2|2u1 dx

+ α

∫
B1

u2α−2
2 ∇u1 · ∇u2 dx −

∫
B1

h(u2)u1 dx.

Thus we obtain from (3.7) and −
∫

B1
h(u2)u1 dx ≤ 0,

−s2

2

∫
B1

h(u1)u2 dx

≤ s2

2

∫
∂B1

(∇u1 · ν)u2(1 + αu2α−2
1 ) − (∇u2 · ν)u1(1 + αu2α−2

2 ) dS

− α(α − 1)
2

s2

∫
B1

u2α−3
1 |∇u1|2u2 dx − α

2
s2

∫
B1

u2α−2
1 ∇u1 · ∇u2 dx

+
α(α − 1)

2
s2

∫
B1

u2α−3
2 |∇u2|2u1 dx +

α

2
s2

∫
B1

u2α−2
2 ∇u1 · ∇u2 dx

≤ s2

2

∫
∂B1

(∇u1 · ν)u2(1 + αu2α−2
1 ) − (∇u2 · ν)u1(1 + αu2α−2

2 ) dS

− α(α − 1)
2

s2

∫
B1

u2α−3
1 |∇u1|2u2 dx − α

2
s2

∫
B1

u2α−2
1 ∇u1 · ∇u2 dx

+ C

∫
B1

u2α−1
2 dx. (5.10)
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From (5.9), (5.10), (ii) and (iii) of Lemma 5.3, we obtain

−L1(B1) ≤ −α(α − 1)
2

s2

∫
B1

u2α−3
1 |∇u1|2u2 dx − α

2
s2

∫
B1

u2α−2
1 ∇u1 · ∇u2 dx

+ C(−MRe−λ0ll−
N−1

2 + |s − 1|e−(1−δ)λ0l + ϵe−λ0ll−
N−1

2

+ e−(2α−1)λ0l) (5.11)

for all l ≥ max{l1, l2}.
Step 3: [Estimate of L2(B1) and L3(B1)]. By Taylor’s expansion, there exists c > 0

independent of l and R such that

L2(B1) ≤
αs2α

2

∫
B1

(2α − 2)u2α−3
1 u2|∇u1|2 + 2u2α−2

1 ∇u1 · ∇u2 dx

+ cs2α

∫
B1

u2α−4
1 u2

2|∇u1|2 + u2α−2
1 |∇u2|2

+ u2α−2
2 |∇u2|2 + u2α−3

1 u2|∇u1||∇u2| dx. (5.12)

We also have

−L3(B1) ≤ −αs2

2

∫
B1

∇u1 · ∇u2u
2α−2
1 dx − α(α − 1)

2
s2

∫
B1

|∇u1|2u2α−3
1 u2 dx

+ cs2

∫
B1

|∇u1||∇u2|u2α−2
2 + |∇u2|2u2α−3

2 u1 dx. (5.13)

From (3.7), (5.12) and (5.13), we obtain

L2(B1) − L3(B1) ≤
α

2
(2s2α − s2)

∫
B1

∇u1 · ∇u2u
2α−2
1 dx

+
α(α − 1)

2
(2s2α − s2)

∫
B1

|∇u1|2u2α−3
1 u2 dx

+ C

∫
B1

u2
2 + u2α

2 + u2α−1
2 dx.

It follows from (ii) of Lemma 5.3 and α ≥ 3
2

that

L2(B1) − L3(B1) ≤
α

2
(2s2α − s2)

∫
B1

∇u1 · ∇u2u
2α−2
1 dx

+
α(α − 1)

2
(2s2α − s2)

∫
B1

|∇u1|2u2α−3
1 u2 dx

+ Ce−2λ0l. (5.14)
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Step 4: [Decay estimate on B1]. From (5.11) and (5.14), we have

−L1(B1) + L2(B1) − L3(B1)

≤ α(s2α − s2)
∫

B1

∇u1 · ∇u2u
2α−2
1 dx + α(α − 1)(s2α − s2)

∫
B1

u2α−3
1 |∇u1|2u2 dx

+ C(−MRe−λ0ll−
N−1

2 + |s − 1|e−(1−δ)λ0l + ϵe−λ0ll−
N−1

2 + e−2λ0l).

Arguing as Lemma 3.3, there exists c > 0 such that |s2α − s2| ≤ c|s− 1| for all s ∈ [s1, s2].
Then we have from (3.7) and (i) of Lemma 5.3

α(s2α − s2)
∫

B1

∇u1 · ∇u2u
2α−2
1 dx + α(α − 1)(s2α − s2)

∫
B1

u2α−3
1 |∇u1|2u2 dx

≤ C|s − 1|
∫

B1

u2α−1
1 u2 dx

≤ C ′|s − 1|
∫

B1

u1u2 dx

≤ C ′′|s − 1|e−(1−δ)λ0l.

Consequently we obtain

−L1(B1) + L2(B1) − L3(B1)

≤ C(−MRe−λ0ll−
N−1

2 + |s − 1|e−(1−δ)λ0l + ϵe−λ0ll−
N−1

2 + e−2λ0l) (5.15)

for all l ≥ max{l1, l2}. Similarly we can estimate L1(B2), L2(B2) and L3(B2), that is,

−L1(B2) + L2(B2) − L3(B2)

≤ C(−MRe−λ0ll−
N−1

2 + |s − 1|e−(1−δ)λ0l + ϵe−λ0ll−
N−1

2 + e−2λ0l) (5.16)

for all l ≥ max{l1, l2}.
Step 5: [Decay estimate on Ω]. We notice that both u1 and u2 are exponentially

small on Ω. First by (i) of Lemma 5.2, we have −L1(Ω) ≤ 0. Next since

(u1 + u2)2α−2 − u2α−2
1 =

∫ u2

0

(2α − 2)(u1 + τ)2α−3 dτ ≤ c(u1 + u2)2α−3u2,

it follows

L2(Ω) ≤ C

∫
Ω

|∇u1|2u2(u2α−3
1 + u2α−3

2 )

+ |∇u2|2u1(u2α−3
2 + u2α−3

1 ) + |∇u1||∇u2|(u2α−2
1 + u2α−2

2 ) dx.
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Finally we have

−L3(Ω) ≤ C

∫
Ω

|∇u1||∇u2|(u2α−2
1 + u2α−2

2 ) + |∇u1|2u2α−3
1 u2 + |∇u2|2u2α−3

2 u1 dx.

Thus we obtain from (3.7), (iv) of Lemma 5.3 and α ≥ 3
2
,

−L1(Ω) + L2(Ω) − L3(Ω) ≤ C

∫
Ω

u2α−2
1 u2

2 + u2
1u

2α−2
2 + u2α−1

1 u2 + u2α−1
2 u1 dx

≤ C(KRe−min{2,2α−2}λ0ll−
min{2,2α−2}(N−1)

2 + KRe−λ0ll−
N−1

2 )

≤ C ′KRe−λ0ll−
N−1

2 (5.17)

for all l ≥ l3.
Step 6: [Conclusion]. From (5.8), (5.15), (5.16) and (5.17) we have

I(γ(s)) ≤ 2J∞(w) − 2c(s − 1)2 + C0 max{e−λl, e−2ll−(N−1)} + C1KRe−λ0ll−
N−1

2

+ C2e
−2λ0l + C3|s − 1|e−(1−δ)λ0l + C4ϵe

−λ0ll−
N−1

2 − C5MRe−λ0ll−
N−1

2

for all l ≥ max{l1, l2, l3}, where 0 < δ < 1 and ϵ > 0 are arbitrary. Now we fix large R > 0
so that

C1KR ≤ C5

2
MR.

Next using Young’s inequality, we have for all η > 0, there exists Cη > 0 such that

C3|s − 1|e−(1−δ)λ0l ≤ η(s − 1)2 + Cηe−2(1−δ)λ0l.

Thus choosing η > 0 so small that

−2c(s − 1)2 + η(s − 1)2 ≤ 0,

we have

I(γ(s)) ≤ 2J∞(w) + C0 max{e−λl, e−2ll−(N−1)}

+ C2e
−2λ0l + C ′

3e
−2(1−δ)λ0l −

(
C5

2
MR − C4ϵ

)
e−λ0ll−

N−1
2

for all l ≥ max{l1, l2, l3}. Finally we choose ϵ > 0 small enough so that C5
2 MR − C4ϵ > 0.

We also choose 0 < δ < 1
2 . Since 2 = λ0 < λ and 2(1 − δ) > 1, there exists l0 >

max{l1, l2, l3} such that for l ≥ l0,

I(γ(s)) < 2J∞(w) for all s ∈ [s1, s2].
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From (5.6) and Lemma 3.4, we obtain

sup
s≥0

I(γ(s)) < 2J∞(w) = 2I∞(w̃) = 2c̃∞.

Thus we complete the proof of Proposition 5.1.

6. Proof of Theorem 1.1

By Lemma 4.1, we can define the Mountain Pass value cMP by

cMP = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)), Γ = {γ ∈ C([0, 1],H1
G(RN )) ; γ(0) = 0, I(γ(1)) < 0}.

By Proposition 5.1, we have cMP < mc∞. By Corollary 4.3 and Lemma 4.4, we can apply
the variant of the Mountain Pass Theorem [6]. Then there exists v0 ∈ H1

G(RN ) such that
I(v0) = cMP and I ′(v0) = 0. Putting u0 = f(v0), then u0 is a G-invariant positive solution
of (1.1). Similarly Theorem 1.3 follows from Lemma 4.1, Corollary 4.3, 4.5 and Proposition
5.1.
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