G-invariantly resolvable Steiner 2-designs which are 1-rotational over G

Marco Buratti
Fulvio Zuanni

Abstract

A 1-rotational $(G, N, k, 1)$ difference family is a set of k-subsets (base blocks) of an additive group G whose list of differences covers exactly once $G-N$ and zero times N, N being a subgroup of G of order $k-1$. We say that such a difference family is resolvable when the base blocks union is a system of representatives for the nontrivial right (or left) cosets of N in G.

A Steiner 2-design is said to be 1-rotational over a group G if it admits G as an automorphism group fixing one point and acting regularly on the remainder. We prove that such a Steiner 2 -design is G-invariantly resolvable (i.e. it admits a G-invariant resolution) if and only if it is generated by a suitable 1-rotational resolvable difference family over G.

Given an odd integer k, an additive group G of order $k-1$, and a prime power $q \equiv 1(\bmod k(k+1))$, a construction for 1-rotational (possibly resolvable) $\left(G \oplus \mathbb{F}_{q}, G \oplus\{0\}, k, 1\right)$ difference families is presented. This construction method always succeeds (resolvability included) for $k=3$. For small values of $k>3$, the help of a computer allows to find some new 1-rotational (in many cases resolvable) $((k-1) q+1, k, 1)$-BIBD's. In particular, we find $(1449,9,1)$ and (4329, 9, 1)-BIBD's the existence of which was still undecided.

Finally, we revisit a construction by Jimbo and Vanstone [12] that has apparently been overlooked by several authors. Using our terminology, that construction appears to be a recursive construction for resolvable 1-rotational difference families over cyclic groups. Applying it in a particular case, we get a better result than previously known on cyclically resolvable 1-rotational $(v, 4,1)$-BIBD's.

[^0]
1 Preliminaries

Recall that a $(v, k, 1)$-BIBD (Steiner 2-design of order v and block-size k) is a pair (V, \mathcal{B}) where V is a set of v points and \mathcal{B} is a set of k-subsets of V (blocks) such that any 2 -subset of V is contained in exactly one block.

A $(v, n, k, 1)$ groop divisible design (GDD) is a triple $(V, \mathcal{C}, \mathcal{B})$ where V is a set of v points, \mathcal{C} is a set of n-sets (groops) partitioning V, and \mathcal{B} is a set of k-subsets of V (blocks) such that each block meets each groop in at most one point and any two points lying in distinct groops belong to exactly one block. Of course, when $n=1$ the pair (V, \mathcal{B}) is a $(v, k, 1)$-BIBD.

Let Σ be a BIBD or GDD. An automorphism group of Σ is a group of bijections on the point-set V leaving invariant the block-set \mathcal{B}.

A BIBD admitting an automorphism group G is said to be 1-rotational over G when G fixes one point and acts regularly on the remainder.

A BIBD is resolvable (RBIBD) when there exists a partition of its blocks (resolution) in classes (parallel classes), each of which is a partition of the point-set. An RBIBD is G-invariantly resolvable when it admits G as an automorphism group leaving invariant at least one resolution.

A G-invariantly resolvable BIBD is G-transitively resolvable when there exists a G-invariant resolution on which G acts transitively. If this is the case and G is cyclic, we say that the BIBD is cyclically resolvable. Of course, in order to give a resolution on which G acts transitively it suffices to give only one parallel class (the starter parallel class).

Let G be an additive group of order v, let N be a subgroup of G of order n, and let k be a positive integer. A $(G, N, k, 1)$ difference family (also called $(v, n, k, 1)$ difference family over G and relative to N) is a set of k-subsets of G (base blocks) such that each element of $G-N$ is representable in exactly one way as the difference of two elements lying in the same base block while no element of N admits such a representation. If G is cyclic we just speak of $(v, n, k, 1)$ difference family.

A $(G, N, k, 1)$ difference family generates a groop divisible design $(V, \mathcal{C}, \mathcal{B})$ where $V=G, \mathcal{C}$ is the set of right cosets of N in G and \mathcal{B} is the family of all the right translates (under G) of the base blocks (see[6]).

When $N=\{0\}$ we obtain a GDD with groop-size 1 and hence a $(|G|, k, 1)$-BIBD. Also, in the case where $|N|=k$ the pair $(G, \mathcal{B} \cup \mathcal{C})$ is a $(|G|, k, 1)$-BIBD.

A $(G, N, k, 1)$ difference family where $|N|=k-1$ is said to be a 1-rotational difference family. Such a difference family generates a $(|G|+1, k, 1)$-BIBD with point-set $G \cup\{\infty\}$ and block-set $\mathcal{B} \cup\{C \cup\{\infty\} \mid C \in \mathcal{C}\}$, where ∞ is a symbol not in G. This BIBD is 1-rotational over G. All but one of its block-orbits are full (namely of size $|G|)$, and $\{C \cup\{\infty\} \mid C \in \mathcal{C}\}$ is the unique short block-orbit.

A multiplier of a ($G, N, k, 1$) difference family \mathcal{F} is an automorphism μ of the group G which is also an automorphism of the design generated by \mathcal{F}.

2 Resolvable 1-rotational difference families

In this section we want to establish the conditions under which a 1-rotational Steiner 2-design over a group G admits a G-invariant resolution. In order to do this, we introduce the following concept.

Definition 1 A 1-rotational $(G, N, k, 1)$ difference family is said to be resolvable if the union of its base blocks is a complete system of representatives for the non-trivial right (or left) cosets of N in G.

Remark 1 Let \mathcal{F} be a 1-rotational $(N \oplus H, N \oplus\{0\}, k, 1)$ difference family and let π be the projection of $N \oplus H$ over H. Then \mathcal{F} is resolvable if and only if $\cup_{A \in \mathcal{F}} \pi(A)=H-\{0\}$.

In [5], the first author - starting from the work of Genma, Jimbo and Mishima [10] also introduced the definition of resolvable $(G, N, k, 1)$ difference family in the case where $|N|=k$. This concept is used in the study of G-invariantly resolvable BIBD's arising from these families.

Theorem 1 A 1-rotational Steiner 2-design over a group G admits a G-invariant resolution if and only if it is generated by a suitable resolvable 1-rotational ($G, N, k, 1$) difference family.

Proof. (\Rightarrow). Let $\Sigma=(V, \mathcal{B})$ be a 1-rotational Steiner 2-design over an additive group G. Of course, we may identify the point-set V with $G \cup\{\infty\}$ and the action of G on V with the addition on the right (under the rule that $\infty+g=\infty$ for any $g \in G)$. It is easy to see that the block B through 0 and ∞ has the form $N \cup\{\infty\}$ where N is the stabilizer of B under G.

An easy computation shows that any resolution of Σ contains exactly $\rho:=\mid G$: $N \mid$ parallel classes. Now, let \mathcal{R} be a G-invariant resolution of Σ, let $S=\left\{s_{0}=\right.$ $\left.0, s_{1}, \ldots, s_{\rho-1}\right\}$ be a complete system of representatives for the right cosets of N in G, and let \mathcal{P}_{0} be the parallel class of \mathcal{R} containing $N \cup\{\infty\}$. Since \mathcal{R} is G-invariant, $\mathcal{P}_{i}:=\mathcal{P}_{0}+s_{i}$ is a parallel class for every $i=0,1, \ldots, \rho-1$. Also, for $i \neq j$ we have $\mathcal{P}_{i} \neq \mathcal{P}_{j}$, otherwise \mathcal{P}_{i} would contain the distinct blocks $B+s_{i}=\left(N+s_{i}\right) \cup\{\infty\}$ and $B+s_{j}=\left(N+s_{j}\right) \cup\{\infty\}$ which is absurd. Hence the \mathcal{P}_{i} 's are pairwise distinct and their number is exactly equal to $|\mathcal{R}|$, so that we have $\mathcal{R}=\left\{\mathcal{P}_{0}, \mathcal{P}_{1}, \ldots, \mathcal{P}_{\rho-1}\right\}$.

Since B, i.e. $N \cup\{\infty\}$, is fixed by N, \mathcal{P}_{0} is fixed by N too. Thus, if A is a block belonging to \mathcal{P}_{0}, each block of type $A+n$ with $n \in N$ belongs also to \mathcal{P}_{0}. On the other hand \mathcal{P}_{0} does not contain blocks of type $A+g$ with $g \notin N$. In fact $g \notin N$ implies that $g=n+s_{i}$ for a suitable $n \in N$ and a suitable $i \neq 0$, so that $A+g=(A+n)+s_{i} \in \mathcal{P}_{0}+s_{i}=\mathcal{P}_{i} \neq \mathcal{P}_{0}$.
It easily follows that there are suitable blocks $A_{1}, A_{2}, \ldots, A_{t}$ - where $t=(\rho-1) / k$ - belonging to pairwise distinct full orbits under G such that

$$
\mathcal{P}_{0}=\left\{A_{i}+n \mid i=1,2, \ldots, t ; n \in N\right\} \cup\{B\}
$$

It is not difficult to see that $\mathcal{F}:=\left\{A_{1}, A_{2}, \ldots, A_{t}\right\}$ is a 1-rotational $(G, N, k, 1)$ difference family. Also, since the union of the blocks belonging to \mathcal{P}_{0} gives all of G, we have $\bigcup_{1 \leq i \leq t}\left(A_{i}+N\right)=G-N$. It is equivalent to say that $\bigcup_{1 \leq i \leq t} A_{i}$ is a complete system of representatives for the nontrivial left cosets of N in \bar{G}, namely that \mathcal{F} is resolvable.
(\Leftarrow). Assume that \mathcal{F} is a resolvable $(G, N, k, 1)$ difference family. Set $\mathcal{P}_{0}:=\{A+$ $n \mid A \in \mathcal{F} ; n \in N\} \cup\{N \cup\{\infty\}\}$ and fix a complete system S of representatives for the right cosets of N in G. Then $\mathcal{R}:=\left\{\mathcal{P}_{0}+s \mid s \in S\right\}$ is a G-invariant resolution of the BIBD generated by \mathcal{F}.

Remark 2 It follows from the proof of the above theorem that any Steiner 2-design which is 1 -rotational over G and admits a G-invariant resolution, is G-transitively resolvable. Thus the BIBD is cyclically resolvable in the case where G is cyclic.

The following theorem gives a well-known class of cyclically resolvable 1-rotational BIBD's.

Theorem 2 The incidence structure of points and lines of any affine geometry $A G(n, q)$ is a cyclically resolvable $\left(q^{n}, q, 1\right)$-BIBD which is 1-rotational over $\mathbb{Z}_{q^{n}-1}$.

More than one hundred years ago a class of resolvable 1-rotational difference families was found by the following construction.

Theorem 3 (Moore [14]) There exists a resolvable $\left(\mathbb{Z}_{3} \oplus \mathbb{F}_{q}, \mathbb{Z}_{3} \oplus\{0\}, 4,1\right)$ difference family for any prime power $q \equiv 1(\bmod 4)$.

Proof. Set $q=4 n+1$ and let ω be a primitive element in \mathbb{F}_{q}. Then $\mathcal{F}:=$ $\left\{\left\{\left(0, \omega^{i}\right),\left(0,-\omega^{i}\right),\left(1, \omega^{i+n}\right),\left(1,-\omega^{i+n}\right)\right\} \mid 0 \leq i<n\right\}$ is the required difference family.

Corollary 1 For any prime $p \equiv 1(\bmod 4)$ there exists a cyclically resolvable $(3 p+$ $1,4,1)$-BIBD which is 1 -rotational over $\mathbb{Z}_{3 p}$.

Example 1 Applying Theorem 3 with $q=13$ we get a $\left(\mathbb{Z}_{3} \oplus \mathbb{Z}_{13}, \mathbb{Z}_{3} \oplus\{0\}, 4,1\right)$ resolvable difference family whose base blocks are:
$\{(0,1),(0,12),(1,5),(1,8)\},\{(0,2),(0,11),(1,10),(1,3)\},\{(0,4),(0,9),(1,7),(1,6)\}$.
By the ring isomorphism $\psi:(a, b) \in \mathbb{Z}_{3} \oplus \mathbb{Z}_{13} \rightarrow(13 a-12 b) \in \mathbb{Z}_{39}$, we may recognize the above family as a $(39,3,4,1)$ difference family with base blocks :

$$
\{27,12,31,34\},\{15,24,10,16\},\{30,9,7,19\} .
$$

Let Σ be the 1 -rotational ($40,4,1$)-BIBD generated by this difference family. By Theorem $1, \Sigma$ is \mathbb{Z}_{39}-invariantly resolvable and a resolution of Σ can be obtained by developing the following starter parallel class:
$\mathcal{P}_{0}=\{\{27,12,31,34\},\{1,25,5,8\},\{14,38,18,21\},\{15,24,10,16\},\{28,37,23,29\}$, $\{2,11,36,3\},\{30,9,7,19\},\{4,22,20,32\},\{17,35,33,6\},\{0,13,26, \infty\}\}$

We warn the reader that Σ is not isomorphic to the ($40,4,1$)-RBIBD associated with the 3-dimensional projective geometry over \mathbb{Z}_{3}. In fact, one can see that the full stabilizer of a point of the latter BIBD does not have any cyclic subgroup of order 39. Thus we have:

Remark 3 There are at least two non-isomorphic (40,4,1)-RBIBD's.
What we have mentioned above has been overlooked for a long time. For instance, in the parameter tables of small BIBD's recently given by Mathon and Rosa [13], it is stated that the only known $(40,4,1)$-RBIBD is the one obtainable from $\operatorname{PG}(3,3)$.

3 Some direct constructions for 1-rotational (possibly resolvable) difference families

With the following direct constructions, given a prime power $q \equiv 1(\bmod k(k+1))$ with k odd, we want to find a 1-rotational (possibly resolvable) $\left(G \oplus \mathbb{F}_{q}, G \oplus\{0\}, k, 1\right)$ difference family where G is a suitable additive group of order $k-1$. This will be achieved under the assumption that there exists a k-tuple $X=\left(x_{0}, x_{1}, \ldots, x_{k-1}\right) \in$ $\mathbb{F}_{q}{ }^{k}$ satisfying suitable conditions.

Construction 1 Let $q=k(k+1) t+1$ be a prime power with k odd, let δ be a generator of $(k+1)$-st powers in \mathbb{F}_{q}, and let ($\left.g_{1}=0, g_{2}, \ldots, g_{k-1}\right)$ be an ordering of a fixed additive group G of order $k-1$. Set $g_{0}=0$ and let $X=\left(x_{0}, x_{1}, \ldots, x_{k-1}\right) \in \mathbb{F}_{q}{ }^{k}$ such that the following conditions hold:
(1) $S_{1}:= \pm\left(x_{1}-x_{0}, \delta^{t}-1, \delta^{2 t}-1, \ldots, \delta^{(k-1) t / 2}-1\right)$ is a system of representatives for the cosets of $\langle\delta\rangle$ in $\mathbb{F}_{q}{ }^{*}$.
(2) $S_{h}:=\left(x_{i}-x_{j} \mid(i, j) \in\{0,1, \ldots, k-1\}^{2}, g_{i}-g_{j}=g_{h}\right)$ is a system of representatives for the cosets of $\langle\delta\rangle$ in $\mathbb{F}_{q}{ }^{*}$ for $2 \leq h<k$.

Then the family

$$
\begin{gathered}
\mathcal{E}=\left\{\left\{\left(g_{0}, \delta^{i} x_{0}\right),\left(g_{1}, \delta^{i} x_{1}\right), \ldots,\left(g_{k-1}, \delta^{i} x_{k-1}\right)\right\} \mid 0 \leq i<k t\right\} \cup \\
\cup\left\{\{0\} \times\left(\delta^{j}\left\langle\delta^{t}\right\rangle\right) \mid 0 \leq j<t\right\}
\end{gathered}
$$

is a 1-rotational $\left(G \oplus \mathbb{F}_{q}, G \oplus\{0\}, k, 1\right)$ difference family. Moreover, \mathcal{E} is resolvable if the following additional condition is satisfied:
(3) $S_{k}:=\left(x_{0}, x_{1}, \ldots, x_{k-1}, 1\right)$ is a system of representatives for the cosets of $\langle\delta\rangle$ in $\mathbb{F}_{q}{ }^{*}$.

Proof. It is easy to check that the list $\Delta \mathcal{E}$ of differences from \mathcal{E} is given by

$$
\Delta \mathcal{E}=\bigcup_{1 \leq h<k}\left\{g_{h}\right\} \times\left(S_{h}\langle\delta\rangle\right)
$$

On the other hand, in view of (1) and (2), $S_{h}\langle\delta\rangle=\mathbb{F}_{q}{ }^{*}$ for each $h=1, \ldots, k-1$, so that $\Delta \mathcal{E}=\mathrm{G} \times \mathbb{F}_{q}{ }^{*}$. The first part of the statement follows.

Note that the projection of the union of the blocks of \mathcal{E} over \mathbb{F}_{q} is given by $S_{k}\langle\delta\rangle$. Hence, assuming that condition (3) is satisfied too, such a projection coincides with $\mathbb{F}_{q}{ }^{*}$. Therefore, the second part of the statement follows from Remark 1.

Construction 2 Let $q=k(k+1) t+1$ be a prime power with $k=2^{n}+1$, let δ be a generator of $(k+1)-s t$ powers in \mathbb{F}_{q}, and let $\left(g_{1}=0, g_{2}, \ldots, g_{k-1}\right)$ be an ordering of $\mathbb{Z}_{2}{ }^{n}$. Set $g_{0}=0$ and let $X=\left(x_{0}, x_{1}, \ldots, x_{k-1}\right) \in \mathbb{F}_{q}{ }^{k}$ such that the following conditions hold:
(4) $T_{1}:=\left(x_{1}-x_{0}, \delta^{t}-1, \delta^{2 t}-1, \ldots, \delta^{(k-1) t / 2}-1\right)$ is a system of representatives for the cosets of $\langle\sqrt{\delta}\rangle$ in $\mathbb{F}_{q}{ }^{*}$.
(5) $T_{h}:=\left(x_{i}-x_{j} \mid 0 \leq i<j \leq k-1, g_{i}-g_{j}=g_{h}\right)$ is a system of representatives for the cosets of $\langle\sqrt{\delta}\rangle$ in $\mathbb{F}_{q}{ }^{*}$, for $2 \leq h<k$.

Then the family \mathcal{E} defined like in Construction 1 is a 1-rotational $\left(\mathbb{Z}_{2}{ }^{n} \oplus \mathbb{F}_{q}, \mathbb{Z}_{2}{ }^{n} \oplus\right.$ $\{0\}, k, 1)$ difference family. Moreover, \mathcal{E} is resolvable if the following additional condition is satisfied:
(6) $\left(x_{0}, x_{1}, \ldots, x_{k-1}, 1\right)= \pm T_{k}$ where T_{k} is a system of representatives for the cosets of $\langle\sqrt{\delta}\rangle$ in $\mathbb{F}_{q}{ }^{*}$.

Proof. This time we can write:

$$
\Delta \mathcal{E}=\bigcup_{1 \leq h<k}\left\{g_{h}\right\} \times\left(\pm T_{h}\langle\delta\rangle\right)
$$

On the other hand, $\pm\langle\delta\rangle=\langle\sqrt{\delta}\rangle$ so that, in view of (4) and (5), $\pm T_{h}\langle\delta\rangle=\mathbb{F}_{q}{ }^{*}$ for each $h=1, \ldots, k-1$. Hence $\Delta \mathcal{E}=G \times \mathbb{F}_{q}{ }^{*}$ and the first part of the statement follows.
Assuming that condition (6) is satisfied too, the projection of the union of the blocks of \mathcal{E} over \mathbb{F}_{q} is given by $\pm T_{k}\langle\delta\rangle=\mathbb{F}_{q}{ }^{*}$. Therefore, the second part of the statement follows again from Remark 1.

Construction 3 Let $q=k(k+1) t+1$ be a prime power with $\operatorname{gcd}(2 t, k)=1$, let δ be a generator of $(k+1)$-st powers in \mathbb{F}_{q} and let $\left(g_{1}=0, g_{2}, \ldots, g_{k-1}\right)$ be an ordering of a fixed additive group G of order $k-1$. Set $g_{0}=0$ and let $X=\left(x_{0}, x_{1}, \ldots, x_{k-1}\right) \in \mathbb{F}_{q}{ }^{k}$ such that condition (2) holds. Finally, let $Y=\left(y_{0}, y_{1}, \ldots, y_{k-1}\right) \in \mathbb{F}_{q}{ }^{k}$ such that its list of differences ΔY satisfies the following condition:
(7) $Z:= \pm\left(x_{1}-x_{0}\right)\left\langle\delta^{t}\right\rangle \cup \Delta Y$ is a system of representatives for the cosets of $\left\langle\delta^{k}\right\rangle$ in $\mathbb{F}_{q}{ }^{*}$.

Then the family

$$
\begin{aligned}
\mathcal{E}= & \left\{\left\{\left(g_{0}, \delta^{i} x_{0}\right),\left(g_{1}, \delta^{i} x_{1}\right), \ldots,\left(g_{k-1}, \delta^{i} x_{k-1}\right)\right\} \mid 0 \leq i<k t\right\} \cup \\
& \cup\left\{\left\{\left(0, \delta^{k j} y_{0}\right),\left(0, \delta^{k j} y_{1}\right), \ldots,\left(0, \delta^{k j} y_{k-1}\right)\right\} \mid 0 \leq j<t\right\}
\end{aligned}
$$

is a 1-rotational $\left(G \oplus \mathbb{F}_{q}, \mathrm{G} \oplus\{0\}, k, 1\right)$ difference family.
Moreover, \mathcal{E} is resolvable under the additional hypothesis that X satisfies condition (3) and that Y satisfies the following condition:
(8) Y is a system of representatives for the cosets of $\left\langle\delta^{k}\right\rangle$ in $\langle\delta\rangle$.

Proof. It is easy to check that the list of differences from \mathcal{E} is given by

$$
\Delta \mathcal{E}=\left\{g_{1}\right\} \times\left[\pm\left(x_{1}-x_{0}\right)\langle\delta\rangle \cup(\Delta Y)\left\langle\delta^{k}\right\rangle \cup \bigcup_{2 \leq h<k}^{\bigcup}\left\{g_{h}\right\} \times\left(S_{h}\langle\delta\rangle\right)\right.
$$

On the other hand, since $\operatorname{gcd}(t, k)=1$, we can write $\langle\delta\rangle=\left\langle\delta^{t}\right\rangle\left\langle\delta^{k}\right\rangle$. It follows that $\pm\left(x_{1}-x_{0}\right)\langle\delta\rangle \cup(\Delta Y)\left\langle\delta^{k}\right\rangle=Z\left\langle\delta^{k}\right\rangle=\mathbb{F}_{q}{ }^{*}$ (by (7)). Also, by (2), $S_{h}\langle\delta\rangle=\mathbb{F}_{q}{ }^{*}$ for each $h=2,3, \ldots, k-1$. So $\Delta \mathcal{E}=G \times \mathbb{F}_{q}{ }^{*}$ and the first part of the statement follows.

Now assume that (3) and (8) hold. The projection of the union of the blocks of \mathcal{E} over \mathbb{F}_{q} is given by $\langle\delta\rangle X \cup\left\langle\delta^{k}\right\rangle Y$. But, by (8), $\left\langle\delta^{k}\right\rangle Y=\langle\delta\rangle$ so that $\langle\delta\rangle X \cup\left\langle\delta^{k}\right\rangle Y=$ $\langle\delta\rangle(X \cup\{1\})=\mathbb{F}_{q}{ }^{*}($ by (3)). Therefore, the second part of the statement follows from Remark 1.

Remark 4 (i). Note that conditions (1), ..., (8) are compatible with the sizes of the lists S_{h} 's, T_{h} 's, Y and Z. In fact, all the S_{h} 's have size $k+1=\left|\mathbb{F}_{q}{ }^{*}:\langle\delta\rangle\right|$, all the T_{h} 's have size $(k+1) / 2=\left|\mathbb{F}_{q}{ }^{*}:\langle\sqrt{\delta}\rangle\right|, Z$ has size $k(k+1)=\left|\mathbb{F}_{q}{ }^{*}:\left\langle\delta^{k}\right\rangle\right|$ and, finally, Y has size $k=\left|\langle\delta\rangle:\left\langle\delta^{k}\right\rangle\right|$.
(ii). In order to apply the previous constructions a computer is needed, in general. First of all, we need to find a primitive root ω in \mathbb{F}_{q}. Then we have to construct the index function ind : $\omega^{i} \in \mathbb{F}_{q}{ }^{*} \rightarrow i \in \mathbb{Z}_{q-1}$. Finally, using this function, for a given choice of X (and Y in Construction 3) we should check which of the conditions (1), ... (8) hold. For instance, (1), (2) and (3) hold if and only if $\operatorname{ind}\left(S_{h}\right)=\mathbb{Z}_{k+1}(\bmod (k+1))$ for $1 \leq h \leq k$.
(iii). Obviously, in order for condition (1) to hold, q must be such that any two elements of the set $\left\{\delta^{t}-1, \delta^{2 t}-1, \ldots, \delta^{(k-1) t / 2}-1\right\}$ lie in distinct cosets of $\langle\delta\rangle$ in $\mathbb{F}_{q}{ }^{*}$. Any prime power $q \equiv 1(\bmod k(k+1))$ with k odd and satisfying this property will be called good. So both Constructions 1, 2 may succeed only if q is good.
(iv). Constructions 1 and 3 may succeed only for t odd. In fact, assuming that t is even, let g_{h} be an involution of G. Then $-1 \in\langle\delta\rangle$ and $S_{h}= \pm\left(T_{h}\right)$. Consequently, for any $z \in T_{h}$, the elements z and $-z$, both of which belong to S_{h}, represent the same coset of $\langle\delta\rangle$ in $\mathbb{F}_{q}{ }^{*}$, so that (2) cannot be satisfied.
(v). It is easy to see that the difference families given by Constructions 1 and 2 $\operatorname{admit} \delta$ as a multiplier of order $k t$, while the difference family obtainable by Construction 3 admits δ^{k} as a multiplier of order t.

4 Some resolvable $(2 p, 2,3,1)$ difference families

Here we show that Construction 2 always succeeds in the case where q is prime and $k=3$.

Theorem 4 For any prime $p=12 t+1$ there exists a resolvable ($2 p, 2,3,1$) difference family.

Proof. Let δ be a generator of 4 th powers $(\bmod p)$, and let $X=\left(x_{0}, x_{1}, x_{2}\right) \in \mathbb{Z}_{p}{ }^{3}$ be defined as follows:
$X=(a,-a,-1)$ with $a=\min \{n \in N \mid n$ and $n+1$ are non-squares $(\bmod p)\}$ when 2 and $\delta^{t}-1$ are both squares or both non-squares $(\bmod p)$;
$X=(-1, a,-a)$ with $a=\min \{n \in N \mid n$ is a non-square $(\bmod p)\}$ when 2 is a square and $\delta^{t}-1$ is a non-square $(\bmod p)$;
$X=(-1,1 / 2,-1 / 2)$ when 2 is a non-square and $\delta^{t}-1$ is a square $(\bmod p)$.
Now, one can easily check that applying Construction 2 with $G=\mathbb{Z}_{2},\left(g_{1}, g_{2}\right)=$ $(0,1)$, and $X=\left(x_{0}, x_{1}, x_{2}\right) \in \mathbb{Z}_{p}^{3}$ defined as above,
$\mathcal{E}=\left\{\left\{\left(0, \delta^{i} x_{0}\right),\left(0, \delta^{i} x_{1}\right),\left(1, \delta^{i} x_{2}\right)\right\} \mid 0 \leq j<3 t\right\} \cup\left\{\left\{\left(0, \delta^{j}\right),\left(0, \delta^{t+j}\right),\left(0, \delta^{t+j}\right)\right\} \mid 0 \leq j<t\right\}$ is a resolvable ($\mathbb{Z}_{2} \oplus \mathbb{Z}_{p}, \mathbb{Z}_{2} \oplus\{0\}, 3,1$) difference family.

Corollary 2 For any prime $p \equiv 1(\bmod 12)$, there exists a cyclically resolvable $(2 p+1,3,1)$-BIBD which is 1 -rotational over $\mathbb{Z}_{2 p}$.

We recall that the existence problem for 1-rotational $(2 v+1,3,1)$-BIBD's over the cyclic group has been completely settled by Phelps and Rosa [15]. As far as we know, the analogous problem for 1-rotational RBIBD's is open.

Example 2 Let us apply Theorem 4 with $t=1$, namely with $p=13$. We can take $\delta=3$ as a generator of 4 th powers $(\bmod 13)$. Note that $2=\delta^{t}-1$ is not a square $(\bmod 13)$ and that $a=5$ is the first integer such that both a and $a+1$ are non-squares (mod 13). Thus, according to the proof of Theorem 4, we use the triple $X=(5,8,12)$. The base blocks of the resultant resolvable $\left(\mathbb{Z}_{2} \oplus \mathbb{Z}_{13}, \mathbb{Z}_{2} \oplus\{0\}, 3,1\right)$ difference family are the following:

$$
\begin{gathered}
\{(0,5),(0,8),(1,12)\},\{(0,2),(0,11),(1,10)\}, \\
\{(0,6),(0,7),(1,4)\},\{(0,1),(0,3),(0,9)\}
\end{gathered}
$$

By the ring isomorphism $\psi:(a, b) \in \mathbb{Z}_{2} \oplus \mathbb{Z}_{13} \rightarrow(13 a-12 b) \in \mathbb{Z}_{26}$, we may identify the above family as a $(26,2,3,1)$ difference family, say \mathcal{E}, with the following base blocks:

$$
\{18,8,25\},\{2,24,23\},\{6,20,17\},\{14,16,22\} .
$$

A starter parallel class of the $(27,3,1)$-RBIBD generated by \mathcal{E} is

$$
\mathcal{P}_{0}=\{\{18,8,25\},\{5,21,12\},\{2,24,23\},\{15,11,10\},\{6,20,17\},
$$

$$
\{19,7,4\},\{14,16,22\},\{1,3,9\},\{0,13, \infty\}\}
$$

5 Some 1-rotational difference families with block size 5, 7, 9

In [7] the first author showed that a prime $p \equiv 1(\bmod 30)$ is good if and only if $(11+5 \sqrt{5}) / 2$ is not a cube $(\bmod p)$ and essentially applying Construction 2 proved the existence of a $\left(\mathbb{Z}_{2}{ }^{2} \oplus \mathbb{Z}_{p}, \mathbb{Z}_{2}{ }^{2} \oplus\{0\}, 5,1\right)$ difference family for any good prime $p \equiv 1(\bmod 30)$. It is reasonable to believe that Construction 2 almost always succeeds in realizing resolvable $\left(\mathbb{Z}_{2}{ }^{2} \oplus \mathbb{Z}_{p}, \mathbb{Z}_{2}{ }^{2} \oplus\{0\}, 5,1\right)$ difference families having p a good prime. But this is not easy to prove. However, with the aid of a computer, it has been shown that success is guaranteed for $p<1000$ with the only exception of $p=61$.
In order to apply the constructions of Section 3 when $k>5$, the help of a computer seems to be essential even if we are interested only in 1-rotational designs, without asking for resolvability. Here are a few computer results for the cases $k=7$ and $k=9$.
$\mathbf{k}=7$. Construction 1 gives us a 1 -rotational resolvable $(6 p+1,7,1)$-BIBD for any good prime $p=56 t+1<10000$ with t odd. It suffices to take $G=\mathbb{Z}_{6}$, $\left(g_{1}, g_{2}, \ldots, g_{6}\right)=(0,1, \ldots, 5)$ and $X \in \mathbb{Z}_{p}{ }^{7}$ as indicated in the following table.

p
 X

Construction 3 gives us a 1-rotational ($6 p+1,7,1$)-BIBD for any bad prime $p=$ $56 t+1<10000$ having t odd. It suffices to take $G=\mathbb{Z}_{6},\left(g_{1}, g_{2}, \ldots, g_{6}\right)=(0,1, \ldots, 5)$ and $X, Y \in \mathbb{Z}_{p}{ }^{7}$ as indicated in the following table.

\mathbf{p}	\mathbf{X}	\mathbf{Y}
617	$(0,1,2,5,12,70,423)$	$(0,3,12,100,306,456,490)$
1289	$(0,1,3,8,6,403,758)$	$(0,3,9,47,638,820,1029)$

$\mathbf{k}=\mathbf{9}$. Construction 2 gives us a 1 -rotational resolvable $(8 p+1,9,1)$-BIBD for each good prime $p=90 t+1<10000$ with t odd. It suffices to take $G=\mathbb{Z}_{2}{ }^{3}$, $\left(g_{1}, g_{2}, \ldots, g_{8}\right)=((000),(001),(010),(011),(100),(101),(110),(111))$ and $X \in \mathbb{Z}_{p}{ }^{9}$ as indicated in the following table.

```
p
                                    X
991
    (2, 987, 4, 989, 14, 980, 939, 762, 786)
1531
    (2, 1527, 4, 1529, 12, 1503, 804, 153, 720)
6 5 7 1
    (2,6560, 3, 6568, 18, 6566, 5228, 2666, 6288)
9631
    (2, 9629, 4, 9630, 6, 9627, 1316, 4832, 6194)
```

For $p \in\{181,541,631,1171,6121\}$, Constructions 2 or 3 give us a 1 -rotational ($8 p+$ $1,9,1)$-BIBD. The constructions are applied with G and $\left(g_{1}, g_{2}, \ldots, g_{8}\right)$ as above. In the table below we indicate how to take the 9 tuple X when Construction 2 is applied and how to take the 9tuples X and Y when Construction 3 is applied.

\mathbf{p}	\mathbf{X}	\mathbf{Y}
181	$(1,14,2,3,41,64,92,88,142)$	
541	$(1,3,4,5,13,7,210,305,224)$	
631	$(1,2,3,4,10,11,30,614,277)$	$(0,2,13,247,433,452,486,588,574)$
1171	$(1,2,3,4,19,5,1018,310,589)$	$(0,2,8,102,255,794,939,1095,1123)$
6121	$(1,3,4,5,10,6,21,5278,4300)$	

Remark 5 Abel and Greig ([2], Table 2.12) give the set of values of t for which the existence of a $(72 t+9,9,1)$-BIBD is still undecided. One can check that the ($8 p+1,9,1$)-BIBD's that we obtain with $p=181$ and $p=541$, allow to remove 20 and 60 from this set.

6 Recursive constructions for resolvable 1-rotational difference families over cyclic groups

Concerning recursive constructions of 1-rotational difference families over cyclic groups, we recall results on this matter that seem to have been missed by several authors. In a 1983 paper, Jimbo [11] gave a recursive construction for cyclic

1-rotational Steiner 2-designs. Starting from this construction, one year later Jimbo and Vanstone [12] obtained a composition theorem for cyclically resolvable 1-rotational designs. Here, we revisit the construction of Jimbo and Vanstone using our terminology. Namely, their construction is presented as a composition theorem for resolvable 1-rotational difference families. We observe that, as a corollary, it is possible to obtain a better result on cyclically resolvable 1-rotational BIBD's with block-size 4. First we need a definition.

Definition $2 A k \times w$ matrix $A=\left(a_{i h}\right)$ with elements from \mathbb{Z}_{w} is said to be a $(w, k, 1)$ difference matrix if the following condition is satisfied:

$$
\left(a_{r 1}-a_{s 1}, a_{r 2}-a_{s 2}, \ldots, a_{r w}-a_{s w}\right)=\mathbb{Z}_{w}(\bmod w), 1 \leq r<s \leq k
$$

namely if the difference of any two distinct rows of A contains each element of \mathbb{Z}_{w} exactly once.

We say that a $(w, k, 1)$ difference matrix is good if no row of A contains repeated elements. It is easy to see that such a good difference matrix exists if and only if there exists a $(w, k+1,1)$ difference matrix.

Lemma 1 If $\operatorname{gcd}(w, k!)=1$, namely if the least prime dividing w is larger than k, then the matrix

$$
A=(i(h-1))_{i=1, \ldots, k ; h=1, \ldots, w}
$$

is a good ($w, k, 1$) difference matrix.
We refer to [9] for general results on difference matrices. Some generalizations can be found in [6].
Difference matrices are used by Jimbo and Vanstone [12] to get a recursive construction that we restate below in terms of difference families.

Construction 4 Let $\mathcal{D}=\left\{D_{i} \mid i \in I\right\}$ and $\mathcal{E}=\left\{E_{j} \mid j \in J\right\}$ be (nv,n,k,1) and $(n w, n, k, 1)$ difference families respectively. Then, let $A=\left(a_{i h}\right)$ be a $(w, k, 1)$ difference matrix. For each $D_{i}=\left\{d_{i 1}, d_{i 2}, \ldots, d_{i k}\right\} \in \mathcal{D}$ and each $h \in\{1, \ldots, w\}$, set $D_{(i, h)}=\left\{d_{i 1}+n v a_{1 h}, d_{i 2}+n v a_{2 h}, \ldots, d_{i k}+n v a_{k h}\right\}$. For each $E_{j}=\left\{e_{j 1}, e_{j 2}, \ldots, e_{j k}\right\} \in$ \mathcal{E}, set $E_{j}{ }^{*}=\left\{v e_{j 1}, v e_{j 2}, \ldots, v e_{j k}\right\}$. Then the family

$$
\mathcal{F}=\left\{D_{(i, h)}(\bmod (n v w)) \mid i \in I, 1 \leq h \leq w\right\} \cup\left\{E_{j}{ }^{*}(\bmod (n v w)) \mid j \in J\right\}
$$

is a $(n v w, n, k, 1)$ difference family.
We point out that the above construction can also be obtained as a consequence of a much more general result (see [6], Corollary 5.10). This construction has many applications. For instance, applying it with $n=k, \operatorname{gcd}(w,(k-1)!)=1$ and $A=$ $((i-1)(h-1))$, one obtains a construction for cyclic block designs given by M. Colbourn and C. Colbourn [8]. On the other hand, when $n=k-1$, we get the recursive construction for 1-rotational Steiner 2-designs given by Jimbo [11].
Now we give a recursive construction for resolvable 1-rotational difference families over cyclic groups.

Theorem 5 Let $\mathcal{D}=\left\{D_{i} \mid i \in I\right\}$ and $\mathcal{E}=\left\{E_{j} \mid j \in J\right\}$ be resolvable $((k-1) v, k-$ $1, k, 1)$ and $((k-1) w, k-1, k, 1)$ difference families respectively. Assume that $\operatorname{gcd}(w, k-1)=1$ and let $A=\left(a_{i h}\right)$ be a good $(w, k, 1)$ difference matrix. Then the $((k-1) v w, k-1, k, 1)$ difference family \mathcal{F} obtainable by Construction 4 (with $n=k-1$) is also resolvable.

Proof. Let x, x^{\prime} be elements lying in the base blocks union of \mathcal{F} and assume that $x \equiv x^{\prime}(\bmod v w)$ holds. There are three possibilities:
1st case: x is of the form $d_{i r}+(k-1) v a_{r h}$ and x^{\prime} is of the form $d_{i^{\prime} r^{\prime}}+(k-1) v a_{r^{\prime} h^{\prime}}$. In this case we should get $d_{i r} \equiv d_{i^{\prime} r^{\prime}}(\bmod v)$ which, since \mathcal{D} is resolvable, implies that $i=i^{\prime}$ and $r=r^{\prime}$. It follows that $(k-1) a_{r h} \equiv(k-1) a_{r h^{\prime}}(\bmod w)$ and hence, since $\operatorname{gcd}(w, k-1)=1, a_{r h} \equiv a_{r h^{\prime}}(\bmod w)$. Then, since A is good, we also have $h=h^{\prime}$.
2nd case: x is of the form $d_{i r}+(k-1) v a_{r h}$ and x^{\prime} is of the form $v e_{j r^{\prime}}$. In this case we should get $d_{i r} \equiv 0(\bmod v)$ which is absurd since \mathcal{D} is resolvable.
3rd case: x is of the form $v e_{j r}$ and x^{\prime} is of the form $v e_{j^{\prime} r^{\prime}}$. In this case we should get $e_{j r} \equiv e_{j^{\prime} r^{\prime}}(\bmod w)$ which, since \mathcal{E} is resolvable, implies $j=j^{\prime}$ and $r=r^{\prime}$.
Now observe that no element x lying in a certain base block of \mathcal{F} can be equivalent to $0(\bmod v w)$. In fact, if $x=d_{i r}+(k-1) v a_{r h}$, we should have $d_{i r} \equiv 0(\bmod v)$, contradicting the fact that \mathcal{D} is resolvable, while if $x=v e_{j s}$ we should have $e_{j s} \equiv 0$ $(\bmod w)$, contradicting the fact that \mathcal{E} is resolvable.
In conclusion, we have proved that any two distinct elements x, x^{\prime} lying in the union of the base blocks of \mathcal{F} are distinct modulo $v w$ and that no element of this union is zero modulo $v w$. This means that the union of the base blocks of \mathcal{F} and zero is a system of representatives for the cosets of $\{0, v w, 2 v w, \ldots,(k-2) v w\}$ in $\mathbb{Z}_{(k-1) v w}$. The assertion follows.

As a consequence of the above theorem we find again the mentioned result by Jimbo and Vanstone [12].

Corollary 3 (Jimbo and Vanstone [12]) Assume that there exists a cyclically resolvable 1-rotational $((k-1) v+1, k, 1)$-BIBD, a cyclically resolvable 1-rotational $((k-1) w+1, k, 1)-$ BIBD and $a(w, k+1,1)$ difference matrix. Then, if $\operatorname{gcd}(w, k-1)=$ 1 , there exists a cyclically resolvable 1-rotational $((k-1) v w+1, k, 1)$-BIBD.

Corollary 4 There exists a cyclically resolvable 1-rotational ($v, 3,1$)-BIBD for all v of the form $2 p_{1} p_{2} \ldots p_{n}+1$ where each p_{j} is a prime $\equiv 1(\bmod 12)$.

Proof. By Corollary 2 there exists a cyclically resolvable 1 -rotational $\left(2 p_{j}+1,3,1\right)$ BIBD for each $j=1, \ldots, n$. By Lemma 1, there exists a good ($p_{j}, 3,1$) difference matrix for each $j=1, \ldots, n$. The assertion follows by iteratively applying Corollary 3.

The following corollary improves a recent result by Anderson and Finizio [3].
Corollary 5 There exists a cyclically resolvable 1-rotational (v,4,1)-BIBD for all v of the form $3 p_{1} p_{2} \ldots p_{n}+1$ where each p_{j} is a prime $\equiv 1$ (mod 4).

Proof. By Corollary 1 there exists a cyclically resolvable 1-rotational $\left(3 p_{j}+1,4,1\right)$ BIBD for each $j=1, \ldots, n$. By Lemma 1, there exists a good ($p_{j}, 4,1$) difference matrix for each $j=1, \ldots, n$. The assertion follows by iteratively applying Corollary 3.

The following example gives a cyclically resolvable ($664,4,1$)-BIBD obtainable by Construction 4.

Example 3 Take the resolvable (39,3, 4, 1) difference family $\mathcal{D}=\left\{D_{1}, D_{2}, D_{3}\right\}$ (constructed in Example 1) whose base blocks are:

$$
D_{1}=\{27,12,31,34\}, D_{2}=\{15,24,10,16\}, D_{3}=\{30,9,7,19\} .
$$

Now, using Theorem 3 with $q=17$, we construct the resolvable $\left(\mathbb{Z}_{3} \oplus \mathbb{Z}_{17}, \mathbb{Z}_{3} \oplus\right.$ $\{0\}, 4,1$) difference family whose base blocks are:
$\{(0,1),(0,16),(1,4),(1,13)\},\{(0,3),(0,14),(1,12),(1,5)\}$,
$\{(0,9),(0,8),(1,2),(1,15)\}, \quad\{(0,10),(0,17),(1,6),(1,11)\}$.
Using the ring isomorphism $\psi:(a, b) \in \mathbb{Z}_{3} \oplus \mathbb{Z}_{17} \rightarrow(18 b-17 a) \in \mathbb{Z}_{51}$, the above family may be identified with the (51, 3, 4, 1) difference family
$\mathcal{E}=\left\{E_{1}, E_{2}, E_{3}, E_{4}\right\}$ where
$E_{1}=\{18,33,4,13\}, E_{2}=\{3,48,46,22\}$,
$E_{3}=\{9,42,19,49\}, E_{4}=\{27,24,40,28\}$.
Finally, let us apply Construction 4 with \mathcal{D} and \mathcal{E} as above, using the (17, 3, 1) good difference matrix $A=(i(h-1))_{i=1,2,3 ; h=1, \ldots, 17}$. In such a way we get a resolvable ($3 \cdot 13 \cdot 17,3,4,1$) difference family \mathcal{F} whose base blocks are:
$\{27,12,31,34\}\{15,24,10,16\}\{30,9,7,19\}$
$\{66,90,148,190\}\{54,102,127,172\}\{69,87,124,175\}$
$\{105,168,265,346\}\{93,180,244,328\}\{108,165,241,331\}$
$\{144,246,382,502\}\{132,258,361,484\}\{147,243,358,487\}$
$\{183,324,499,658\}\{171,336,478,640\}\{186,321,475,643\}$
$\{222,402,616,151\}\{210,414,595,133\}\{225,399,592,136\}$
$\{261,480,70,307\}\{249,492,49,289\}\{264,477,46,292\}$
$\{300,558,187,463\}\{288,570,166,445\}\{303,555,163,448\}$
$\{339,636,304,619\}\{327,648,283,601\}\{342,633,280,604\}$
$\{378,51,421,112\}\{366,63,400,94\}\{381,48,397,97\}$
$\{417,129,538,268\}\{405,141,517,250\}\{420,126,514,253\}$
$\{456,207,655,424\}\{444,219,634,406\}\{459,204,631,4\}$
$\{495,285,1,580\}\{483,297,88,562\}\{498,282,85,565\}$
$\{534,363,226,73\}\{522,375,205,55\}\{537,360,202,58\}$
$\{573,441,343,229\}\{561,453,322,211\}\{576,438,319,214\}$
$\{612,519,460,385\}\{600,531,439,367\}\{615,516,436,370\}$
$\{651,597,577,541\}\{639,6,556,523\}\{654,594,553,526\}$
$\{234,429,52,169\}\{39,624,598,286\}\{117,546,247,637\}\{351,312,520,364\}$
We point out that in the h-th row $(h=1, \ldots, 17)$ we have the blocks $D_{1 h}, D_{2 h}, D_{3 h}$, while the blocks in the last row are $13 E_{1}, 13 E_{2}, 13 E_{3}, 13 E_{4}$.

Developing the blocks of $\mathcal{F}(\bmod 13 \cdot 17)$ and adding the block $\{0,13 \cdot 17,2 \cdot 13 \cdot 17, \infty\}$, we get the starter parallel class of a cyclically resolvable ($664,4,1$)-BIBD.

References

[1] R. J. R. Abel. Difference families. In CRC Handbook of Combinatorial Designs (C. J. Colbourn and J. H. Dinitz (eds.)), CRC Press, Boca Raton, FL, 1996, 270-287.
[2] R. J. R. Abel and M. Greig. BIBDs with small block size. In CRC Handbook of Combinatorial Designs (C. J. Colbourn and J. H. Dinitz (eds.)), CRC Press, Boca Raton, FL, 1996, 41-47.
[3] I. Anderson and N. J. Finizio. Cyclically resolvable designs and triple whist tournaments. J. Combin. Des. 1 (1993), 347-358.
[4] T. Beth, D. Jungnickel and H. Lenz. Design Theory Cambridge University Press, Cambridge (1993).
[5] M. Buratti. On resolvable difference families. Des. Codes Cryptogr. 11 (1997), 11-23.
[6] M. Buratti. Recursive constructions for difference matrices and relative difference families. J. Combin. Des., to appear.
[7] M. Buratti. Some constructions for 1-rotational BIBD's with block size 5. Australas. J. Combin., to appear.
[8] M. J. Colbourn and C. J. Colbourn. Recursive constructions for cyclic block designs. J. Statist. Plann. Inference 10 (1984), 97-103.
[9] C. J. Colbourn and W. de Launey. Difference matrices. In CRC Handbook of Combinatorial Designs (C. J. Colbourn and J. H. Dinitz (eds.)), CRC Press, Boca Raton, FL, 1996, 287-297.
[10] M. Genma, M. Jimbo and M. Mishima. Cyclic resolvability of cyclic Steiner 2-designs. J. Combin. Des. 5 (1997), 177-187.
[11] M. Jimbo. A recursive construction of 1-rotational Steiner 2-designs. Aequationes Math. 26 (1983), 184-190.
[12] M. Jimbo and S. A. Vanstone. Recursive constructions for resolvable and doubly resolvable 1-rotational Steiner 2-designs. Utilitas Math. 26 (1984), 45-61.
[13] R. Mathon and A. Rosa. $2-(v, k, \lambda)$ designs of small order. In CRC Handbook of Combinatorial Designs (C. J. Colbourn and J. H. Dinitz (eds.)), CRC Press, Boca Raton, FL, 1996, 3-41.
[14] E. H. Moore. Tactical Memoranda I-III. Amer. J. Math. 18 (1896), 264-303.
[15] K. T. Phelps and A. Rosa. Steiner triple systems with rotational automorphisms. Discrete Math. 33 (1981), 57-66.

Marco BURATTI and Fulvio ZUANNI
University of L'Aquila
Department of Electrical Engineering
I - 67040 Monteluco di Roio (AQ)
ITALY
Tel.: ++39-(0) 862-434429
Fax.: ++39-(0) 862-434403
e-mail: buratti@marte.mat.uniroma1.it
e-mail: zuanni@ing.univaq.it

[^0]: Received by the editors August 1997.
 Communicated by Jean Doyen.
 1991 Mathematics Subject Classification. 05B05, 05B10, 51E10.
 Key words and phrases. Resolvable Steiner 2-design, 1-rotational difference family.

