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ABSTRACT 
Different signal processing transforms provide us with unique 

decomposition capabilities. Instead of using specific 

transformation for every type of signal, we propose in this 

paper a novel way of signal processing using a group of 

transformations within the limits of Group theory. For 

different types of signal different transformation combinations 

can be chosen. It is found that it is possible to process a signal 

at multiresolution and extend it to perform edge detection, 

denoising, face recognition, etc by filtering the local features. 

For a finite signal there should be a natural existence of basis 

in it’s vector space. Without any approximation using Group 

theory it is seen that one can get close to this finite basis from 

different viewpoints. Dihedral groups have been demonstrated 

for this purpose.   
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1. INTRODUCTION 
A digital signal is finite-dimensional. Therefore, within the 

approximation of digitization, the signal exists in a vector 

space of finite basis. If it is possible to obtain this basis of the 

signal space, a signal processing algorithm may be developed 

wherein the signal is projected onto the basis of the signal 

space to obtain its individual pieces. Such an algorithm would 

provide a general framework for extracting various features of 

interest from the signal without loss of information, within the 

digitization approximation. This is the inspiration behind the 

development of G-lets. Group theory [2][3][4][5][6] provides 

the crucial piece of the puzzle, namely the dimension of the 

vector space where the signal exists. Group theory also shows 

the way for choosing any suitable transformation or set of 

transformations required for a particular application 

customized to capture specific characteristics.  

Fourier transform was first developed for continuous signals 

and then approximated for digital signals. In Wavelets, 

choosing a mother wavelet as an approximation of the signal, 

it’s translates and dilates are the actual basis functions. Since 

translations cannot be finite, it is also an approximation. In G-

lets, we provide the most natural signal decomposition 

algorithm for a digitized signal without any artificially 

introduced approximations using general transformation 

groups. 

2. BACKGROUND 
Fourier series generate a representation for a signal in terms of 

sine and cosine functions, giving an infinite set of basis 

vectors for the signal. Here time and frequency information 

cannot be localized on specific parts of the signal. Generalized 

Fourier basis is formed by creating representation matrices of 

the transformations and calculating their trace, which are 

called the characters of the transform. Wavelets [8][9] create 

orthogonal subspaces using the transformations dilation and 

translation to capture different frequencies of the signal. Still, 

due to the edge effect produced by breaking frequencies into 

smaller and smaller pieces, in applications like face 

recognition they are unable to testify a good match. 

Ridgelet transform [10][11] focuses on detecting lines in an 

image using Radon transform [12]. Curves are specially 

recognized in a signal by curvelets [13], which is a 

combination of wavelets and ridgelets. These two transforms 

are specialized forms of wavelets. There are also other 

specialized forms of wavelets like the contourlets [14], 

wedgelets [15], and grouplets [16]. In grouplets, the wavelet 

coefficients are grouped together based on the direction of 

their flow using multiscale association fields. Representation 

theory using rotations and reflections have been used by Lenz 

[17][18] for edge detection in images but they do not 

generalize the use of transformation groups to generate an 

orthogonal basis. In a recent work by Lenz, octahedral 

transformation group has been chosen to be suitable for a 

specific application, i.e., the 3-D image environment, and 

representations have been used to describe this environment 

by evaluating their correlation coefficients. Vale [19] shows 

how an orthonormal set of polynomials can be generated by 

the orbit of a vector using representation theory [20][21]. In 

this work, we focus on using all the transforms of a 

transformation group using transformations like rotations, 

reflections, dilations, translations and more through their 

irreducible representations producing a series of block 

diagonal matrices portraying the features of the signal from 

low to high frequencies progressively. Dihedral groups 

[22][23] have been chosen for the illustrations. 

3. GROUP THEORETICAL APPROACH 
A group is an ordered pair (G,*), where G is a set and * is a 

binary operation on G satisfying the following axioms: 

 

Closure : For all a,b ε G, the product a * b is also in G. 

Associativity : For all a,b,c ε G, (a*b)*c=a*(b*c). 

Identity: There exist an element c  ε G, called the identity of 

G, such that for all a ε G, a*c = c*a =a. 
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Inverse: For every element a ε G, there is an element  a-1, 

called the inverse of a, such that a*a-1 = a-1*a =e. 

 

If the elements of the group are linear transformations, then it 

is called a transformation group [24]. A transformation group 

is a set G of transformations of a certain set which has the 

following two properties: 

1. If two transformations f and g belong to G then their 

composition f o g also belong to G. 

2. Together with every transformation f the set G also 

contains the inverse transformation f-1. 

Any two transformations h ε G and g ε G such that g = f * h*f-

1 are said to be conjugate transformations. The conjugate set 

of transformations split the group G into disjoint sets. There is 

another way of partitioning a group into disjoint sets using 

cosets. A coset is a subgroup of the group G obtained by 

choosing a subgroup H of the group first and then choosing 

another element a ϵ G, operate ‘a’ on H defined by the group 

G. If a is operated on the left(or right), then it is a left(or right) 

coset aH. This method is used by wavelets, with the mother 

wavelet the chosen subgroup of the transformation group G. 

Fourier transform is defined for cyclic transformation groups, 

where each element is commutative with every other element 

and also called the abelian group.  

Fourier transform [22][25][26] is also extended to non-abelian 

groups, where each transform is reduced to the trace of its 

matrix representation due to which it lags the functionality to 

localize frequencies in time. If the conjugate partitioning of a 

group is used then no approximation is needed. An abstract 

group is brought alive by choosing any basis in the vector 

space of the signal. The group itself contains the linear 

transformations on this vector space.  Conjugate 

transformations in the group collect together the 

corresponding invariant subspaces of the vector space by 

deriving the irreducible representations of each linear 

transformation. These irreducible representations form the 

new basis for the signal called the G-lets. G-lets are not a 

single transform, but a set of transformations related by the 

rules of Group theory. 

3.1 Constructing G-Lets 
First a transformation group has to be chosen for generating 

G-lets. We focus only on finite groups whose representations 

are unitary so that they are always completely reducible into 

irreducible representations. A finite discrete signal is 

considered. The signal exists in a vector space V, which shall 

henceforth be called as the signal space. For this signal, we 

generate a finite set of G-lets and project the signal on them. 

The signal can be reconstructed from G-lets without any loss 

as shown in Fig:1 below individually as well as through a 

linear sum of the transforms. 

 

Fig 1: Representation matrices form a kaliedoscope 

In the examples below the standard basis of the vector space 

V is the chosen basis of the signal given by 

L =  ei
n
i=1   where ej  = { 1 at i=j, 0 otherwise} 

With this basis, the linear transformations materialize into 

matrices. The matrix representation looks like this: 

D R =   

D1 R                                             0    

D2 R             

                            D3 R 

0                                                  …

  

 

Each diagonal block Di(R) of the representation corresponds 

to one irreducible representation. The procedure to find the 

irreducible representations is given below. 

By Schur's orthogonality lemma, the irreducible 

representations all put together are orthogonal and form a 

basis for the vector space V.  

Schur's orthogonality lemma 1: For finite dimensional 

representation of a finite group G in which inner products 

have been introduced to make the representations unitary 

 If R1 and R2 are two inequivalent irreducible 

representations, then every matrix coefficient of R1 

is orthogonal to every matrix coefficient of R2 with 

respect to the inner product in the vector space V. 

 If R is another irreducible representations, then  

 
 G trace (R)

dim V
 is equal to the action of R on the other 

irreducible representations R1, R2. 

 

As a consequence, the dimensions of the irreducible 

representations follow the rule [2] [5]: 

 di
2

m

i=1

   =  Dm  

Where di = dimension of ith irreducible representation, Dm = 

dimension of representation matrix and m = number of 

irreducible representations.  

To show an example, we consider ‘Dihedral’ groups which 

include only two transformations, namely rotations and 

reflections. The conjugate transformations of the Dihedral 

groups occur either in pairs or remain single. Therefore the 

dimension of an irreducible representation is either one or 

two. If the dimension of the signal is ‘n’, then the basis is also 

of the same dimension. The representation matrix of the linear 

transformation is chosen to be of size n x n. The set of 

representation matrices for the transformations in the group 

form what is called the representation space of dimension n2.  

In a dihedral group Dn, there are ‘n’ rotations and ‘n’ 

reflections. Therefore there are 2n matrices one for each 

transformation. The rotation matrix is given by 

Rθ =  
cos θ − sin θ
sinθ cosθ

  

The irreducible representations are lined up along the diagonal 

of a representation matrix. An example of the representation 

matrix where n = 9 is given below and the rest of the matrices 

are given in the appendix. 
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0.766 0 0 0 0 0  0 0 

 

0 0.766 -
0.6428 

0 0 0 0 0 0 

 

0 0.6428 0.766 0 0 0 0 0 0 

 

0 0 0 0.766 -
0.6428 

0 0 0 0 

R1 =  
0 0 0 0.6428 0.766 0 0 0 0 

 

0 0 0 0 0 0.766 -
0.6428 

0 0 

 

0 0 0 0 0 0.6428 0.766 0 0 

 

0 0 0 0 0 0 0 0.766 -0.6428 

 

0 0 0 0 0 0 0 0.6428 0.766 

 

For dihedral groups, the number of irreducible representations 

is given by (n+6)/2 for even sized ‘n’ and (n+3)/2 for odd 

sized ‘n’.  The matrix so formed is naturally a sparse 

representation. For other kinds of transformation groups, 

dimension of the corresponding irreducible representations are 

greater than two. Therefore the representation matrix can look 

like in the figure below with varying sizes of irreducible 

representations. 

There are other transformation groups with combinations like 

rotations and translations, Heisenberg groups and etc. For 

illustration the G-lets for a 6-tuple sig = {0.2 0.3 0.1 1.2 0.1 

0.6}is shown in the Fig:2, Fig:3 and Fig:4. 

 

 Fig 2: Original 6-tuple signal 

 

 

Fig 3: Rotation G-let coefficients 

 

 

Fig 4: Reflection G-let coefficients 

The figure above contains the original signal and both the G-

lets corresponding to rotations and reflections respectively. 

More examples, of a 3-tuple and 9-tuple signal, with their G-

let coefficients and representation matrices are shown in the 

appendix below. A comparison of G-let coefficients for a 9-

tuple signal with Fourier and wavelet coefficients is shown in 

the following tables. Table 1 shows the G-let coefficients. 

Table 2 shows the Fourier and Wavelet coefficients for the 

same 9-tuple. 

Table 1: Rotation G-let Coefficients 

Rotation G-lets 

Type G-let Coefficients 

Signal -0.1259 0.3915 0.6 0.4454 -0.394 -0.7 -0.8 -0.6631 -0.194 

G-let1 -0.0964 -0.0858 0.7113 0.5945 -0.0155 -0.022 -1.0628 -0.3833 -0.575 

G-let2 -0.0219 -0.5229 0.4897 0.4654 0.3702 0.6663 -0.8283 0.0759 -0.687 

G-let3 0.0629 -0.7154 0.039 0.1185 0.5827 1.0428 -0.2062 0.4996 -0.477 

G-let4 0.1183 -0.5731 -0.4299 -0.2838 0.5226 0.9314 0.5123 0.6895 -0.045 

G-let5 0.1183 -0.1627 -0.6977 -0.5533 0.2179 0.3842 0.9912 0.5568 0.4091 

G-let6 0.063 0.3239 -0.639 -0.5639 -0.1887 -0.3428 1.0062 0.1635 0.6713 

G-let7 -0.0219 0.6589 -0.2814 -0.3107 -0.5071 -0.9094 0.5504 -0.3062 0.6193 

G-let8 -0.0964 0.6856 0.208 0.0879 -0.5881 -1.0505 -0.1629 -0.6327 0.2776 

 

Table 2: Fourier and Wavelet Coefficients 

Type Coefficients 

Original 

Signal 

0.1259    0.3915    0.6000    0.4454   -0.3940        

-0.7000   -0.8000   -0.6631   -0.1940 

Fourier -1.4401   1.2198 - 2.8035i    -0.6931 + 0.2666i    

-0.0007 + 0.3218i    -0.3725 - 0.1655i    -0.3725 

+ 0.1655i    -0.0007 -0.3218i     -0.6931- 0.2666i     

1.2198 + 2.8035i 

Wavelet 0.0049    0.3435    0.6646   -0.8694   -0.9594       

-0.3011  -0.3168    0.2153   -0.1690         -0.1411    

0.1836   -0.0997 

 

4. SALIENT FEATURES 
Some of the salient features of this algorithm are discussed 

below: 

 It may be seen in Figure that the signal is portrayed by 

representation matrices from different perspectives. The 

irreducible pieces might be big or small and that depends 

on the size of the signal. When a signal shows an 

irreducible representation of a large block size, it is 

possible to create an equivalent representation through a 

linear transformation with the help of its subspaces (null 

space or range space) such that the block becomes 

further reducible. This technique allows us to focus and 

explore further that part of the signal captured by the 

0
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irreducible block as shown in Figures. The features of the 

signal under consideration are found to be spread across 

conjugacy classes, i.e., here they are spread across two 

conjugacy classes. 

Fig 5: Irreducible blocks forming representation 

matrix 

 The number of irreducible representations is equal to the 

number of conjugacy classes. Irreducible representations 

form the orthonormal basis. Conjugacy classes represent 

the structural symmetries for the signal. So, whenever a 

change occurs in the signal at a particular point, the 

above relationship propagates this change across 

different conjugacy classes. 

 When a representation is chosen for a signal, the 

different basis of the underlying vector space gives 

different representations as if viewing through a 

kaleidoscope. We get a powerful method for matching 

the features of two signals especially in applications like 

pattern matching and face recognition with such a variety 

of basis sets. 

 Expanding any function f(x) in terms of the basis 

functions of irreducible representations requires that the 

representation group is obtained by applying to the 

function f(x) all the transformations. Then the function is 

linearly expressible in terms of the basis functions in the 

various irreducible representations. One may also choose 

one of the irreducible representation functions g(x) with 

its projection of the signal and generate a new set of 

basis functions which will include itself in the set of 

basis functions. This feature allows us to customize the 

representation for any signal. 

 As the size of the signal increases, the number of 

conjugacy classes is almost 50% less. This promises a 

compression of the signal, though further attention is 

needed in this regard. The Table 3 shows the number of 

conjugacy classes for different tuples. 

Table 3: Number of Conjugacy Classes 

S.No 

Tuple 

Odd/Even 

No. of 
conjugacy 

classes (c) (n) 

1 10 Even 8 

2 21 Odd 12 

3 32 Even 19 

4 51 Odd 27 

5 100 Even 53 

6 501 Odd 252 

7 1000 Even 503 

 In determining irreducible representations, a set of 

reducible representations may be divided into lower 

angle matrices and higher angle matrices. The lower 

angle matrices may then be explored using a completely 

different transformation group to further extract more 

features from that part of the signal. 

 Group representation theory states that, new 

representations can be generated by direct product or 

tensor product of any two representation groups. Then 

their irreducible representations also turn out to be a 

direct product or tensor product. 

 It is also possible to use complex representation matrices 

so long as a suitable transformation group is chosen. This 

quality could lead to the discovery of a new set of 

features in a signal. 

 Local features: The local features of a signal can be 

identified by looking at the gradient map of each G-let. 

The same can be applied to G-lets at the next level where 

the G-let at the first level becomes the input to the 

second level. At each level, smaller and smaller local 

features are obtained. 

 Complexity: The computational complexity depends on 

the number of viewpoints that need to be explored, the 

choice of transformation group and size of the signal. 

The matrices obtained in all of the representations are 

sparse orthonormal block-diagonal matrices and this adds 

an advantage for large signal calculations. Only if all the 

angles are to be explored, do we need to compute all the 

representation matrices and their corresponding G-let 

coefficients. One member of every conjugacy class put 

together shows a complete and different view of the 

signal. The same can be achieved by the alternate 

members of the conjugacy classes. In this way, the 

number of G-lets required for reconstruction of the signal 

can be cut down to the number of conjugacy classes.   

5. CONCLUSION 
In this paper, a different approach to signal processing with 

the choice of a group of transformations is proposed. The 

results are demonstrated using the dihedral groups with 

rotations and reflections. The results provide a method of 

multiresolution analysis without an approximation like a 

mother wavelet. G-lets for other transformation groups need 

to be explored with a unique combination and characteristics 

and their suitability to different applications. G-lets can also 

be extended to a continuous signal in the Hilbert Space. 
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Appendix 

G-lets for a 3-tuple signal using the group D3 is shown below: 

Rotation G-lets 

Type Coefficients 

Signal 44 55 34 

G-let1 -22 -56.9449 30.6314 

G-let2 -22 1.9449 -64.6314 
 

Reflection G-lets 

Type Coefficients 

Signal 44 55 34 

G-let1 22 -56.9449 -30.6314 

G-let2 22 1.9449 64.6314 
 

 
-0.5 0 0 

R1     =  0 -0.5 -0.866 

 
0 0.866 -0.5 

 

 

 
-0.5 0 0 

R2     =  0 0.5 0.866 

 
0 -0.866 -0.5 

 

 
1 0 0 

R3     = 0 1 0 

 
0 0 1 

 

 
0.5 0 0 

R4     =  0 -0.5 -0.866 

 
0 -0.866 0.5 

 

 
0.5 0 0 

R5     =  0 -0.5 0.866 

 
0 0.866 0.5 

 

 
-1 0 0 

R6     = 0 1 0 

 
0 0 -1 

 

G-lets for a nine tuple signal using the group D9 is 

shown as in Fig. The signal is chosen as 

sig  = [ -0.1259    0.3915    0.6000    0.4454   -0.3940          

-0.7000   -0.8000   -0.6631   -0.1940 ] 

Since the 9th and the 18th representation matrices are the 

identity transformations, they have been omitted here. 

Also the rotation g-lets are shown in the discussion of 

constructing g-lets above. 
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0.766 0 0 0 0 0 0 0 0 

  

0 0.766 -0.6428 0 0 0 0 0 0 

  

0 0.6428 0.766 0 0 0 0 0 0 

  

0 0 0 0.766 -0.6428 0 0 0 0 

R1=    

0 0 0 0.6428 0.766  0 0 0 

  

0 0 0 0 0 0.766 -0.6428 0 0 

  

0 0 0 0 0 0.6428 0.766 0 0 

  

0 0 0 0 0 0 0 0.766 -0.6428 

  

0 0 0 0 0 0 0 0.6428 0.766 

 

 
0.1736 0 0 0 0 0 0 0 0 

 
0 0.1736 

-
0.9848 

0 0 0 0 0 0 

 
0 0.9848 0.1736 0 0 0 0 0 0 

 
0 0 0 0.1736 

-
0.9848 

0 0 0 0 

R2    = 0 0 0 0.9848 0.1736 0 0 0 0 

 
0 0 0 0 0 0.1736 

-
0.9848 

0 0 

 
0 0 0 0 0 0.9848 0.1736 0 0 

 
0 0 0 0 0 0 0 0.1736 

-
0.9848 

 
0 0 0 0 0 0 0 0.9848 0.1736 

          
          

 
-0.5 0 0 0 0 0 0 0 0 

 
0 -0.5 -0.866 0 0 0 0 0 0 

 
0 0.866 -0.5 0 0 0 0 0 0 

 
0 0 0 -0.5 -0.866 0 0 0 0 

R3    =  0 0 0 0.866 -0.5 0 0 0 0 

 
0 0 0 0 0 -0.5 -0.866 0 0 

 
0 0 0 0 0 0.866 -0.5 0 0 

 
0 0 0 0 0 0 0 -0.5 -0.866 

 
0 0 0 0 0 0 0 0.866 -0.5 

 

 

-
0.9397 0 0 0 0 0 0 0 0 

 
0 

-
0.9397 -0.342 0 0 0 0 0 0 

 
0 0.342 

-
0.9397 0 0 0 0 0 0 

 
0 0 0 

-
0.9397 -0.342 0 0 0 0 

R4    = 0 0 0 0.342 
-

0.9397 0 0 0 0 

 
0 0 0 0 0 

-
0.9397 -0.342 0 0 

 
0 0 0 0 0 0.342 

-
0.9397 0 0 

 
0 0 0 0 0 0 0 

-
0.9397 -0.342 

 
0 0 0 0 0 0 0 0.342 

-
0.9397 

 

 

 

-
0.9397 0 0 0 0 0 0 0 0 

 
0 

-
0.9397 0.342 0 0 0 0 0 0 

 
0 -0.342 

-
0.9397 0 0 0 0 0 0 

 
0 0 0 

-
0.9397 0.342 0 0 0 0 

R5   = 0 0 0 -0.342 
-

0.9397 0 0 0 0 

 
0 0 0 0 0 

-
0.9397 0.342 0 0 

 
0 0 0 0 0 -0.342 

-
0.9397 0 0 

 
0 0 0 0 0 0 0 

-
0.9397 0.342 

 
0 0 0 0 0 0 0 -0.342 

-
0.9397 

 

 
-0.5 0 0 0 0 0 0 0 0 

 
0 -0.5 0.866 0 0 0 0 0 0 

 
0 -0.866 -0.5 0 0 0 0 0 0 

 
0 0 0 -0.5 0.866 0 0 0 0 

R6   =  0 0 0 -0.866 -0.5 0 0 0 0 

 
0 0 0 0 0 -0.5 0.866 0 0 

 
0 0 0 0 0 -0.866 -0.5 0 0 

 
0 0 0 0 0 0 0 -0.5 0.866 

 
0 0 0 0 0 0 0 -0.866 -0.5 

 

 
0.1736 0 0 0 0 0 0 0 0 

 
0 0.1736 0.9848 0 0 0 0 0 0 

 
0 

-
0.9848 0.1736 0 0 0 0 0 0 

 
0 0 0 0.1736 0.9848 0 0 0 0 

R7   = 0 0 0 
-

0.9848 0.1736 0 0 0 0 

 
0 0 0 0 0 0.1736 0.9848 0 0 

 
0 0 0 0 0 

-
0.9848 0.1736 0 0 

 
0 0 0 0 0 0 0 0.1736 0.9848 

 
0 0 0 0 0 0 0 

-
0.9848 0.1736 

 

 
0.766 0 0 0 0 0 0 0 0 

 
0 0.766 0.6428 0 0 0 0 0 0 

 
0 

-
0.6428 0.766 0 0 0 0 0 0 

 
0 0 0 0.766 0.6428 0 0 0 0 

R8   = 0 0 0 
-

0.6428 0.766 0 0 0 0 

 
0 0 0 0 0 0.766 0.6428 0 0 

 
0 0 0 0 0 

-
0.6428 0.766 0 0 

 
0 0 0 0 0 0 0 0.766 0.6428 

 
0 0 0 0 0 0 0 

-
0.6428 0.766 

 

 Reflection G-lets 

 
Type Coefficients 

 
Signal -0.1259 0.3915 0.6 0.4454 -0.394 -0.7 -0.8 -0.6631 -0.194 

 
G-let1 0.0964 -0.0858 0.7113 0.5945 -0.0155 0.022 -0.0628 0.3833 0.5748 

 
G-let2 0.0219 -0.5229 -0.4897 0.4654 -0.3702 0.6663 0.8283 0.0759 0.6867 

 
G-let3 -0.0629 -0.7154 -0.039 0.1185 -0.5827 1.0428 0.2062 0.4996 0.4773 

 
G-let4 -0.1183 -0.5731 0.4299 -0.2838 -0.5226 0.9314 -0.5123 0.6895 0.0445 

 
G-let5 -0.1183 -0.1627 0.6977 -0.5533 -0.2179 0.3842 -0.9912 0.5568 -0.4091 

 
G-let6 -0.063 0.3239 0.639 -0.5639 0.1887 -0.3428 -1.0062 0.1635 -0.6713 

 
G-let7 0.0219 0.6589 0.2814 -0.3107 0.5071 -0.9094 -0.5504 -0.3062 -0.6193 

 
G-let8 0.0964 0.6856 -0.208 0.0879 0.5881 -1.0505 0.1629 -0.6327 -0.2776 
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Another example for G-lets of an ECG signal is shown here. 

The signal is a 168-tuple.  

 

Some of the g-lets for this signal are shown below. The 1st g-

let is given by 

 

The 10th g-let is given by 

 

The 50th g-let is given by 

 

The 100th g-let is given by 

 

The above are rotation g-lets. The reflection g-lets are also 

shown here. The 170th g-let is given by 

 

The 200th g-let is given by  

 

The 300th g-let is given by 

 

In the above figures we see that there are oscillations in the 

signal. This is due to the two dimensional irreducible 

representations. The oscillations originate at a specific point 

in the signal and spread across the signal. This feature helps 

us to identify low and high frequencies. Filters can also be 

designed using various transformation groups. 
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