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A bst ract 

Hill climbing is used to maximize an information theoretic measure of the difference 
between the actual behavior of a unit and the behavior that would be predicted by a 
statistician who knew the first order statistics of the inputs but believed them to be 
independent. This causes the unit to detect higher order correlations among its inputs. 
Initial simulations are presented, and seem encouraging. We describe an extension of the 
basic idea which makes it resemble competitive learning and which causes members of a 
population of these units to differentiate, each extracting different structure from the input. 

Introduction 

There are two distinct classes of theory about how to modify weights in networks of 
neuron-like units. Supervised learning theories like perceptrons and their more recent 
generalizations 1 assume that there is a special input to a unit which indicates how it ought 
to behave or how it ought to modify its behavior. Unsupervised learning theories assume 
that weight modification is based solely on the inputs to the unit and its actual responses. 
Typically, these theories have first suggested an intuitively plausible weight modification 
rule 2, 3, 4, 5 and then investigated the consequences of this rule. This paper presents an 
alternative approach in which the learning procedure is derived from a principle which 
specifies how the unit should behave. The principle proposed 6 is that the unit should 
respond to patterns in its inputs that occur more often than would be expected if the 
activities of the individual input lines were assumed to be independent. This is equivalent 
to saying that the unit should respond to higher order statistical regularities in its ensemble 
of input vectors. 

At first sight, it seems that a unit would have to keep a record of its history of input 
vectors in order to discover higher order regularities. As we shall see, however, it is only 
necessary to keep track of two variables for each weight and a few more at the level of the 
whole unit. 

Consider a unit with to 8 input lines, each of which alone is active ]/2 of the time, 4 
of which are completely unrelated to any of the others, and the other 4 of which are highly 
correlated, either all being on at the same time or all being off. Our unit would ignore the 4 
inputs with no higher order structure and latch onto the regularity present in the other 4. It 
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could do this by developing strong positive weights to the 4 correlated inputs and a very 
high positive threshhold which could only be overcome if all those 4 input lines were on. 
Because these lines are correlated, the unit would come on with probability 1/2, but a 
statistician who assumed the lines were independent would predict that the unit would 
come on with probability 1/16. 

The One Unit Case 

Consider a unit which takes the weighted sum of its binary inputs s r runs that sum, 
x, through a logistic function o to get y, and generates output 1 with probability y and 
output 0 with probability 1-y.  

n 

x= E wsi and y=  a(x) 
i=0 

where a(x)= 1 / 0  + e-X), s i is the state of the i th input, and the w.t are the weights. Note that 
do(x ) /dx=a ' (x )=e(x ) (1 -o(x ) )  resembles a gaussian. Let the unit be exposed to some 
stationary probability distribution over the 2 n possible input vectors. Given this input 
distribution P, the unit has expected output of 

<Y) = E P(a)o(x"). 
a 

Imagine someone who thought that the various inputs to the unit were statistically 
independent. Suppose this person recorded the first order statistics of the input lines, 

a 
Pi = ~'a P(a)si where s~ is the state of the i th input line for the e th input vector. Assuming 
independence, this person would expect the input vectors to follow the distribution P~ and 
would predict the unit to have an expected output <y>l: 

II{  ~ Pl(a) = Pi when s i = 1 <y> I= E P'(a)~ 
l Ot a 

l - p i  whensi =0 
The unit is detecting an interesting feature of the actual input distribution to the 

extent that the actual expected output differs from this predicted expected output. More 
formally, we can measure how many bits of information this person gains about the actual 
input distribution Pwhen told that the actual expected output of the unit is <y>.7 

' -". 
xy,, 1 - ~,y,," 

This measure tells us how good a feature detector the unit is, so in order to develop 
our unit into a good feature detector we can hill climb in G by modifying the w i, the only 
parameters under our control. 

aG aG a<y> aG a<y> 1 

aw/ ~)<y) aw i + a<y> I ~w i 

<y> 1-<y> []-<Y> <Y> ~ , a a § (o)o 
~'Y'~ a 

Note that the "prime" notation is used in different senses in P '  and a I. We proceed by 
accumulating the quantities on the right hand side of the above equation and using these 

Downloaded 10 Jan 2009 to 128.100.5.116. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/proceedings/cpcr.jsp



335 

to modify the weights with the simple rule W. n e w  = W. ~  + e~G/~w.. 
! t I 

To accumulate these right hand side quantities, we sample the distributions P and 
P'. We call the phase during which P is sampled the "structured phase" because the 
higher order structure is present in the ensemble of input vectors; to sample pi we 
introduce an "unstructured phase" in which the input lines are statistically independent. 
Thus, for each unit we accumulate ~(x a) during the structured phase to give us <y> and the 
same quantity during the unstructured phase to give us (y> I. In addition, during the 
structured phase we accumulate ol(x~)s<~ for each weight to give us ~<y>/O~, and the 
same quantity during the unstructured phase to give us a(y>l/~w. Initially, we set the 
weights to small random values to help break symmetry. 

A Simulation 

If the input vector is a 10 by 10 array and the distribution is composed of single, 
randomly oriented, randomly positioned, black-white edges on this "retina," a unit typically 
develops into on-center off-surround detector (or vice versa) as in figure 1. To understand 
why this is so, consider the regularity captured in the input. If the input was random 
uncorrelated noise, like static on a TV screen, this unit would almost always come on, so 
<),>/is almost 1. However, the center of the receptive field is frequently not on the bright 
side of the edge, so <y> is (in this case) about 0.7. The unit is capturing the fact that 
nearby pixels tend to have the same value. It is interesting to note that, given this input 
distribution, changing the signs of all the weights would leave G unchanged. 

Some typical 
detectors 
developed in 
response to 
randomly 
oriented 
black-white 
edges on a 
2D field. 

Figu re 1 : 

The above treatment deals only with a single unit. Were we to have a number of 
such units, they could all develop to detect the same feature. We need some force that will 
cause them to differentiate. One obvious method is to require each pair of units to be 
pretty much uncorrelated. If r b is the correlation between units a and b, rather than 
maximizing G we can maximize a new measure, 

1 aG* aG arab 

a~b al b~a .z 
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where k is a constant controlling the relative importance of making good feature detectors 
and making the feature detectors uncorrelated, and r and its derivatives are computed as 
follows: 

I I  O0 10 O1 

r b = qabqab-- qabqab 

11 a ct 10 a a 

qab = E P(a)a(Xa)a(Xb)' qab = E P(a)a(Xa)(l- a(Xb)) 
a o~ 

O1 a a a a 
qab = E P(a)(1 - a(xa)X1- a(Xb) ) qab = E P(a)(1-  a(x a))a(xb), oo 

Once again we do gradient descent  on a measure by sampling the distribution and 
accumulating quantities as we sample, notably these qa~; and their dervivatives with 
respect to each weight, 

new w O l d +  aG ' *  

Wa~ : . i  e a w  i 

a% a~b 
~ ~ [ ( l - / O = - - - k  ~-~ r ~ = = ]  

= w, • owi b~'a a~ 

wold + OG a<ya> 0% O<y 2 '  

= "~ dka<y 2 ~ ~-~a<y 2' 0% 
O0 ,~ 11 ,~ O1 a 10 

11 Oqab oo Oqab m Oqab ol Oqab,, 
- ( 1 -  k) ~ ro~[ qab ~w . -{- qab a wa----~i -- qab O Wa----~ -- qab a--"~a jl 

b ~  a ai  

SO we accumulate: 
for each pair of units: for each wai and other unit b: 

11 a a 11 a a a 

qab a(xa)a(xb) aqab/OW i ~ ( x  )a(Xb)~ 

,0 " = ar a ' ( x ~ ) ( 1 -  = " qab o(X a X1 - O(Xb)) lo  o(xb))5 
Ol a a O1 I a a a 

qab (1--a(xa))a(xb) aqab/aWai (1--a (xa))a(Xb)S i 

oo oo 1 / = a a 
qab ( 1  - a(x:))(1 - a(Xb)) aqab/a~i ( - a (x a))(1 - a(Xb))S i 

If we have n input bits and m units, our original scheme (without decorrelation) takes 
2 units of storage for each unit, to hold <y> and <y>~, and 2 for each weight, to hold 
a<y>/aw i and a<y>l/aw r Assuming we wish to decorrelate each pair of units, our new 
decorrelation scheme requires an additional 4 values for each of the m(m-1)/2 pairs of 
units, and an additional 4(m-1) for each weight. Although simulations show that this 
decorrelation method is effective, we find it heavyhanded and implausible. 

With a simple approximation we can greatly simplify the decorrelationo Given that 
the units come on rarely, the decorrelation scheme described above can be approximated 
by mutual inhibition. For instance, if units are on only one time in a thousand then two 
decorrelated units will come on together only one time in a million, which is negligible. 
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Mutual inhibition between rarely active units also eliminates higher order correlations 
(which are not precluded by explicit pairwise decorrelation.) We have not yet simulated 
this mutual inhibition technique. 

It is interesting to note that Boltzmann machines s handle higher order correlations in 
a way that is both principled and space-efficient (but slow.) At thermal equilibrium, a 
Boltzmann machine communicates information about higher order correlations via local 
pairwise interactions. This allows it to develop weights which ensure that the higher order 
correlations between its units are the same in two different phases. Notice that a 
Boltzmann machine learns by making its spontaneously generated output be as similar as 
possible.to the required structured output, whereas G-Maximization learns by making its 
response to structured input be as different as possible from its response to unstructured 
input. 

Fu r t h e  r E l a b o  r a t i o n s  

If different units are connected to different subsets of the total set of input lines, they 
will tend to detect different things. This means that decorrelation or mutual inhibition is 
only needed for nearby units. 

If we know what we want a unit to detect, we can supervise it by adding an extra 
input to the unit and initializing the weight on that input to a high value. We then turn this 
input bit on when the feature we are interested in is present and off when its not. The 
unit's other weights will develop to detect this feature, unless such a feature isn't really 
present in which case the weight to our extra input will decrease until the unit can ignore it 
and pick up some real feature. 

If one desires the feature detectors to be rarely active, 9 one can add another term to 
the G measure to impose this additional constraint. We let 

where d is the desired activity level. The corresponding modification to the learning 
procedure is simple, requiring no additional state. 

aG** a<Y2 
%], . . . . .  k2(<ya> - ~) a a 

A unit which is forced to be rarely active will tend to maximize Gby responding to very high 
order regularities. 

If we want a unit to be helpful for deciding which of two distributions gave rise to the 
input vector, we can replace the structured and unstructured phases by these two 
distributions. 
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Relation to Hebbian Learning 

A careful examination of the single unit case reveals that the learning rule resembles 
Hebbian learning. An intuitive way of looking at the process is as follows. We define a 
marginal case to be one in which the total input, x, to the unit is on the steep part of the 
logistic function, where ~(x) is higher than usual (if we assume that units are rarely active.) 
We assume that <y> is higher than <y>~. If an input line, i, is involved in more marginal 
cases during the structured phase than during the unstructured phase, raising w. will raise ! 
<y> more than it raises <y>~ so it will normally raise G. If we identify the unstructured phase 
with sleep 1~ we expect Hebbian learning during wake and reverse Hebbian learning during 
sleep. 
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