
333 

G-Maximization: an Unsupervised Learning Procedure 
for Discovering Regularities 

Barak A. Pearlmutter 

Geoffrey E. Hinton 

Department of Computer Science 

Carnegie-Mellon University 

Pittsburgh, PA 15213 

May, 1986 

A bst ract 

Hill climbing is used to maximize an information theoretic measure of the difference 

between the actual behavior of a unit and the behavior that would be predicted by a 

statistician who knew the first order statistics of the inputs but believed them to be 

independent. This causes the unit to detect higher order correlations among its inputs. 

Initial simulations are presented, and seem encouraging. We describe an extension of the 

basic idea which makes it resemble competitive learning and which causes members of a 

population of these units to differentiate, each extracting different structure from the input. 

Introduction 

There are two distinct classes of theory about how to modify weights in networks of 

neuron-like units. Supervised learning theories like perceptrons and their more recent 

generalizations 1 assume that there is a special input to a unit which indicates how it ought 

to behave or how it ought to modify its behavior. Unsupervised learning theories assume 

that weight modification is based solely on the inputs to the unit and its actual responses. 

Typically, these theories have first suggested an intuitively plausible weight modification 

rule 2, 3, 4, 5 and then investigated the consequences of this rule. This paper presents an 

alternative approach in which the learning procedure is derived from a principle which 

specifies how the unit should behave. The principle proposed 6 is that the unit should 

respond to patterns in its inputs that occur more often than would be expected if the 

activities of the individual input lines were assumed to be independent. This is equivalent 

to saying that the unit should respond to higher order statistical regularities in its ensemble 

of input vectors. 

At first sight, it seems that a unit would have to keep a record of its history of input 

vectors in order to discover higher order regularities. As we shall see, however, it is only 

necessary to keep track of two variables for each weight and a few more at the level of the 

whole unit. 

Consider a unit with to 8 input lines, each of which alone is active ]/2 of the time, 4 

of which are completely unrelated to any of the others, and the other 4 of which are highly 

correlated, either all being on at the same time or all being off. Our unit would ignore the 4 

inputs with no higher order structure and latch onto the regularity present in the other 4. It 
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could do this by developing strong positive weights to the 4 correlated inputs and a very 

high positive threshhold which could only be overcome if all those 4 input lines were on. 

Because these lines are correlated, the unit would come on with probability 1/2, but a 

statistician who assumed the lines were independent would predict that the unit would 

come on with probability 1/16. 

The One Unit Case 

Consider a unit which takes the weighted sum of its binary inputs s r runs that sum, 

x, through a logistic function o to get y, and generates output 1 with probability y and 

output 0 with probability 1-y.  

n 

x= E wsi and y=  a(x) 
i=0 

where a(x)= 1 / 0  + e-X), s i is the state of the i th input, and the w.t are the weights. Note that 

do(x ) /dx=a ' (x )=e(x ) (1 -o(x ) )  resembles a gaussian. Let the unit be exposed to some 

stationary probability distribution over the 2 n possible input vectors. Given this input 

distribution P, the unit has expected output of 

<Y) = E P(a)o(x"). 
a 

Imagine someone who thought that the various inputs to the unit were statistically 

independent. Suppose this person recorded the first order statistics of the input lines, 
a 

Pi = ~'a P(a)si where s~ is the state of the i th input line for the e th input vector. Assuming 

independence, this person would expect the input vectors to follow the distribution P~ and 

would predict the unit to have an expected output <y>l: 

II{  ~ Pl(a) = Pi when s i = 1 <y> I= E P'(a)~ 

l Ot a 

l - p i  whensi =0 

The unit is detecting an interesting feature of the actual input distribution to the 

extent that the actual expected output differs from this predicted expected output. More 

formally, we can measure how many bits of information this person gains about the actual 

input distribution Pwhen told that the actual expected output of the unit is <y>.7 

' -". 
xy,, 1 - ~,y,," 

This measure tells us how good a feature detector the unit is, so in order to develop 

our unit into a good feature detector we can hill climb in G by modifying the w i, the only 

parameters under our control. 

aG aG a<y> aG a<y> 1 

aw/ ~)<y) aw i + a<y> I ~w i 

<y> 1-<y> []-<Y> <Y> ~ , a a 
§ (o)o 

~'Y'~ a 

Note that the "prime" notation is used in different senses in P '  and a I. We proceed by 

accumulating the quantities on the right hand side of the above equation and using these 
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to modify the weights with the simple rule W. n e w  = W. ~  + e~G/~w.. 
! t I 

To accumulate these right hand side quantities, we sample the distributions P and 

P'. We call the phase during which P is sampled the "structured phase" because the 

higher order structure is present in the ensemble of input vectors; to sample pi we 

introduce an "unstructured phase" in which the input lines are statistically independent. 

Thus, for each unit we accumulate ~(x a) during the structured phase to give us <y> and the 

same quantity during the unstructured phase to give us (y> I. In addition, during the 

structured phase we accumulate ol(x~)s<~ for each weight to give us ~<y>/O~, and the 

same quantity during the unstructured phase to give us a(y>l/~w. Initially, we set the 

weights to small random values to help break symmetry. 

A Simulation 

If the input vector is a 10 by 10 array and the distribution is composed of single, 

randomly oriented, randomly positioned, black-white edges on this "retina," a unit typically 

develops into on-center off-surround detector (or vice versa) as in figure 1. To understand 

why this is so, consider the regularity captured in the input. If the input was random 

uncorrelated noise, like static on a TV screen, this unit would almost always come on, so 

<),>/is almost 1. However, the center of the receptive field is frequently not on the bright 

side of the edge, so <y> is (in this case) about 0.7. The unit is capturing the fact that 

nearby pixels tend to have the same value. It is interesting to note that, given this input 

distribution, changing the signs of all the weights would leave G unchanged. 

Some typical 

detectors 

developed in 
response to 

randomly 

oriented 

black-white 

edges on a 

2D field. 

Figu re 1 : 

The above treatment deals only with a single unit. Were we to have a number of 

such units, they could all develop to detect the same feature. We need some force that will 

cause them to differentiate. One obvious method is to require each pair of units to be 

pretty much uncorrelated. If r b is the correlation between units a and b, rather than 

maximizing G we can maximize a new measure, 

1 aG* aG arab 

a~b al b~a .z 
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where k is a constant controlling the relative importance of making good feature detectors 

and making the feature detectors uncorrelated, and r and its derivatives are computed as 

follows: 

I I  O0 10 O1 

r b = qabqab-- qabqab 

11 a ct 10 a a 

qab = E P(a)a(Xa)a(Xb)' qab = E P(a)a(Xa)(l- a(Xb)) 
a o~ 

O1 a a a a 

qab = E P(a)(1 - a(xa)X1- a(Xb) ) qab = E P(a)(1-  a(x a))a(xb), oo 

Once again we do gradient descent  on a measure by sampling the distribution and 

accumulating quantities as we sample, notably these qa~; and their dervivatives with 

respect to each weight, 

new w O l d +  aG ' *  

Wa~ : . i  e a w  i 

a% a~b 
~ ~ [ ( l - / O = - - - k  ~-~ r ~ = = ]  

= w, • owi b~'a a~ 

wold + OG a<ya> 0% O<y 2 '  

= "~ dka<y 2 ~ ~-~a<y 2' 0% 
O0 ,~ 11 ,~ O1 a 10 

11 Oqab oo Oqab m Oqab ol Oqab,, 
- ( 1 -  k) ~ ro~[ qab ~w . -{- qab a wa----~i -- qab O Wa----~ -- qab a--"~a jl 

b ~  a ai  

SO we accumulate: 

for each pair of units: for each wai and other unit b: 

11 a a 11 a a a 

qab a(xa)a(xb) aqab/OW i ~ ( x  )a(Xb)~ 

,0 " = ar a ' ( x ~ ) ( 1 -  = " qab o(X a X1 - O(Xb)) lo  o(xb))5 
Ol a a O1 I a a a 

qab (1--a(xa))a(xb) aqab/aWai (1--a (xa))a(Xb)S i 

oo oo 1 / = a a 
qab ( 1  - a(x:))(1 - a(Xb)) aqab/a~i ( - a (x a))(1 - a(Xb))S i 

If we have n input bits and m units, our original scheme (without decorrelation) takes 

2 units of storage for each unit, to hold <y> and <y>~, and 2 for each weight, to hold 

a<y>/aw i and a<y>l/aw r Assuming we wish to decorrelate each pair of units, our new 

decorrelation scheme requires an additional 4 values for each of the m(m-1)/2 pairs of 

units, and an additional 4(m-1) for each weight. Although simulations show that this 

decorrelation method is effective, we find it heavyhanded and implausible. 

With a simple approximation we can greatly simplify the decorrelationo Given that 

the units come on rarely, the decorrelation scheme described above can be approximated 

by mutual inhibition. For instance, if units are on only one time in a thousand then two 

decorrelated units will come on together only one time in a million, which is negligible. 
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Mutual inhibition between rarely active units also eliminates higher order correlations 

(which are not precluded by explicit pairwise decorrelation.) We have not yet simulated 

this mutual inhibition technique. 

It is interesting to note that Boltzmann machines s handle higher order correlations in 

a way that is both principled and space-efficient (but slow.) At thermal equilibrium, a 

Boltzmann machine communicates information about higher order correlations via local 

pairwise interactions. This allows it to develop weights which ensure that the higher order 

correlations between its units are the same in two different phases. Notice that a 

Boltzmann machine learns by making its spontaneously generated output be as similar as 

possible.to the required structured output, whereas G-Maximization learns by making its 

response to structured input be as different as possible from its response to unstructured 

input. 

Fu r t h e  r E l a b o  r a t i o n s  

If different units are connected to different subsets of the total set of input lines, they 

will tend to detect different things. This means that decorrelation or mutual inhibition is 

only needed for nearby units. 

If we know what we want a unit to detect, we can supervise it by adding an extra 

input to the unit and initializing the weight on that input to a high value. We then turn this 

input bit on when the feature we are interested in is present and off when its not. The 

unit's other weights will develop to detect this feature, unless such a feature isn't really 

present in which case the weight to our extra input will decrease until the unit can ignore it 

and pick up some real feature. 

If one desires the feature detectors to be rarely active, 9 one can add another term to 

the G measure to impose this additional constraint. We let 

where d is the desired activity level. The corresponding modification to the learning 

procedure is simple, requiring no additional state. 

aG** a<Y2 
%], . . . . .  k2(<ya> - ~) 

a a 

A unit which is forced to be rarely active will tend to maximize Gby responding to very high 

order regularities. 

If we want a unit to be helpful for deciding which of two distributions gave rise to the 

input vector, we can replace the structured and unstructured phases by these two 

distributions. 
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Relation to Hebbian Learning 

A careful examination of the single unit case reveals that the learning rule resembles 

Hebbian learning. An intuitive way of looking at the process is as follows. We define a 

marginal case to be one in which the total input, x, to the unit is on the steep part of the 

logistic function, where ~(x) is higher than usual (if we assume that units are rarely active.) 

We assume that <y> is higher than <y>~. If an input line, i, is involved in more marginal 

cases during the structured phase than during the unstructured phase, raising w. will raise ! 

<y> more than it raises <y>~ so it will normally raise G. If we identify the unstructured phase 

with sleep 1~ we expect Hebbian learning during wake and reverse Hebbian learning during 

sleep. 

Acknowledgements 

This research was supported by contract N00014-86-K-00167 from the Office of 

Naval Research. Barak Pearlmutter is a Hertz Fellow. We thank Richard Szeliski for useful 

discussions. 

References 

1. 

2, 

3. 

4. 

5. 

6. 

7, 

8. 

9. 

10. 

Rumelhart, D. E., Hinton, G. E., & Williams, R. J., "Learning internal representations 

by error propagation", in Parallel distributed processing: Explorations in the 

microstructure of cognition, D. E. Rumelhart, J. L. McClelland, & the PBP research 

group, eds., Bradford Books, Cambridge, MA, Vol. I, 1986. 

Hebb, D. O., The Organization of Behavior, Wiley, New York, 1949. 

Marr, D., "A theory of cerebellar cortex", Journal of Physiology (London), Vol. 202, 

1969, pp. 437-470. 

Von der Malsburg, C., "Self-organizing of orientation sensitive cells in striate 

cortex", Kybernetik, VoI. 14, 1973, pp. 85.100. 

Rumelhart, D. E. and Zipser, D., "Competitive Learning", Cognitive Science, Vol. 9, 

1985, pp. 75-112. 

Hinton, G. E., "Implementing semantic networks in parallel hardware", in Parallel 

Models of Associative Memory, G. E. Hinton & J. A. Anderson, eds., Erlbaum, 

Hillsdale, NJ, 1981. 

Kullback, S., Information Theory and Statistics, Wiley, New York, 1959. 

Ackley, D. H., Hinton, G. E., Sejnowski, T. J., "A learning algorithm for Boltzmann 

machines", Cognitive Science, Vol. 9, 1985, pp. 147-169. 

Barlow, H. B., "Single units and sensation: A neuron doctrine for perceptual 

psychology?.", Perception, Vol. 1, 1972, pp. 371-394. 

Crick, F. & Mitchison, G., "The function of dream sleep", Nature, Vol. 304, 1983, pp. 

111-114, 

Downloaded 10 Jan 2009 to 128.100.5.116. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/proceedings/cpcr.jsp


