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Introduction

Phosphoinositide 3-kinase (PI3K) is conserved across eukary-

otic organisms and regulates many facets of pathways involving 

cellular growth, survival, metabolism, vehicle traf� cking, and 

chemotaxis. PI3Ks are classi� ed into Class I, II, and III based 

on their structures and substrate preferences. Class I PI3K is 

primarily responsible for the production of PI(3,4,5)P3 via phos-

phorylation of PI(4,5)P2 in response to extracellular stimulation 

(Vanhaesebroeck et al., 2005; Engelman et al., 2006; Sasaki and 

Firtel, 2006). All mammalian Class I PI3Ks contain a Ras bind-

ing domain (RBD) and can be activated by interacting with 

GTP-Ras (Pacold et al., 2000).

The Class IB PI3K, PI3Kγ, is expressed most highly in 

neutrophils and activated by binding to Gβγ subunits and Ras 

upon G protein–coupled receptor activation (Stephens et al., 1994, 

1997; Stoyanov et al., 1995; Suire et al., 2005). Overexpression 

of Gβγ subunits in HEK293 cells leads to PI3Kγ activation via 

its interaction with the p101 catalytic subunit (Krugmann et al., 

2002; Brock et al., 2003). Recently, p101 knockout mice and 

RBD-mutated PI3Kγ knock-in mice have been generated. In the 

neutrophils from these mutant mice, chemoattractant-induced 

PI3Kγ activation is signi� cantly decreased (Suire et al., 2006). 

These in vitro and in vivo studies demonstrate a linkage 

between chemoattractant stimulation and PI3Kγ activation. 

Interestingly, lipid PI3K assays demonstrated that cells have a 

basal level of PI3K activity in the absence of chemoattractants 

or serum (Huang et al., 2003; Suire et al., 2005). It is unclear 

whether this basal activity of PI3K is actively controlled or 

merely a passive property of this enzyme.

Dictyostelium Class I PI3Ks are considered to be the func-

tional counterpart of PI3Kγ on the basis of biochemical and 

structural characteristics (Janetopoulos et al., 2005; Sasaki and 

Firtel, 2006). As implicated in PI3Kγ regulation in mammalian 

cells, Dictyostelium cells lacking Gβ cannot activate PI3K in 

response to chemoattractant or GTPγS stimulation (Meili et al., 

1999; Huang et al., 2003). Dictyostelium cells, however, manage 

to divide and undergo random motility in the absence of func-

tional heterotrimeric G proteins (Wu et al., 1995). It is known 

that these complex cell shape changes involve the polymeriza-

tion of F-actin, but the upstream signals regulating these path-

ways have yet to be determined.

Cells have the intrinsic ability to produce pseudopodia 

and move in the absence of chemoattractants or nutrients 
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(Wessels et al., 1988; Condeelis and Segall, 2003). This random 

cell migration allows cells to explore their environment and is as-

sociated with metastasis of tumor cells. Although much progress 

has been made in elucidating the molecular mechanisms of chemo-

attractant-mediated migration (chemotaxis), random cell migra-

tion has barely been investigated. In this study, we genetically 

separate the GPCR heterotrimeric G protein–dependent cellu-

lar events that regulate chemotaxis from the basal regulatory 

signaling loops that control random cell movement and cyto-

kinesis. We demonstrate that both PI3K and Ras activation occur 

actively, at the same sites of new pseudopod formation in the ab-

sence of extracellular stimuli and without heterotrimeric G pro-

tein input. PI3K and Ras activation also occur at the poles of 

dividing cells in wild-type strains and in cells lacking functional 

heterotrimeric G proteins, implying that cell shape changes during 

cytokinesis are controlled by a similar mechanism. We suggest 

that this “unprompted” Ras activity and PI(3,4,5)P3 accumu-

lation, which are independent of external stimuli, constitute a 

core regulatory pathway involved in a variety of physiological 

responses and provide the basis for many ligand- or substrate-

mediated processes, such as chemotaxis and phagocytosis.

Results and discussion

G�-independent PI(3,4,5)P3 accumulation 

without extracellular stimuli

In this study, we used vegetative cells rather than starved, devel-

opmentally competent cells, which produce and respond to 

cAMP and are normally used to investigate chemoattractant-

mediated cell movement in Dictyostelium, as Gβγ signaling is 

required for cells to become developmentally competent. We 

expressed the GFP-tagged PH domain of CRAC (PHcrac), a 

reporter for PI(3,4)P2 and PI(3,4,5)P3, in the KAx-3 wild-type 

strain and a null strain of Gβ, the sole Gβ subunit in Dictyo-

stelium (Wu et al., 1995; Comer et al., 2005). Consistent with 

previous studies (Parent 1998; Meili et al., 1999), gβ null (gβ−) 

cells show no detectable folic acid–mediated translocation of 

PHcrac to the cell cortex (Fig. 1 A). However, we noticed that, in 

the buffer containing only Na/KPO4, the PH domains spontane-

ously accumulated at both pseudopodial extensions and to macro-

pinosomes (the structures responsible for � uid-phase uptake) of 

randomly moving KAx-3 cells (Lee and Knecht, 2002). The 

PHcrac accumulation in randomly moving cells is a consequence 

of PI3K activation because its membrane localization was abol-

ished �1 min after the addition of LY294002, a PI3K inhibitor 

(Fig. 1 A). Importantly, gβ− cells also exhibited spontaneous 

PHcrac accumulation, which was sensitive to the PI3K inhibitor. 

This � nding indicates that PI3K is spontaneously activated 

without heterotrimeric G protein signaling.

To validate whether gβ− cells activate PI3K signaling, we 

measured the kinase activity of Akt, a downstream effector of 

PI3K. Fig. 1 B illustrates that gβ− cells have a robust Akt activity 

in the absence of a chemoattractant or nutrients. The treatment 

of cells with LY294002 completely suppresses this spontaneous 

Akt activity in both strains to background levels (akt− cells; 

unpublished data). Notably, basal Akt activity in gβ− cells is 

higher than that in the wild-type cells, suggesting a possibility 

that Gβ attenuates on the basal PI3K/Akt signaling in the 

absence of stimuli. Although the importance of the Gβ subunit 

in receptor-mediated PI3K activation has been demonstrated 

(Krugmann et al., 2002; Brock et al., 2003), these data reveal 

that PI3K and its downstream signaling are activated without a 

chemoattractant or nutrients and Gβ, whereas Gβ is essential 

for ligand-induced PI3K activation.

As spontaneous PI(3,4,5)P3 accumulation appears to occur 

strictly at sites of F-actin protrusion, including both the sites of 

macropinosomes and pseudopodial extensions, we examined 

whether spontaneous PI3K activation requires F-actin synthesis. 

(In many instances, we could not resolve whether protrusions 

began as macropinosomes or pseudopodia, but consider them 

pseudopodia if they ultimately protruded from the cell and gave 

rise to a net movement.) After treatment with Latrunculin B 

Figure 1. G protein–independent PI3K activation in the absence of extra-
cellular stimuli. (A) The vegetative state cells were plated in Na/KPO4 buffer. 
Fluorescent images of GFP-PHcrac in wild-type and gβ− cells before or after 
the addition of 50 μM LY294002 (left). The cells were exposed to a uniform 
concentration of chemoattractant (50 μM folic acid; right). The folic-induced 
PH translocation is weak compared with the spontaneous PH accumulation 
at the plasma membrane. (B) Spontaneous activation of Akt/PKB is shown. 
(C) Fluorescent images of GFP-PHcrac in wild-type and gβ− cells before or af-
ter the addition of 5 μM LatB and after the removal of LatB. The LatB-treated 
cells increased GFP intensity due to the loss of membrane PH, and the cell 
became round and shrank. (D) Fluorescent images of GFP-tagged PI3K (left) 
and PTEN (right) in wild-type cells. The arrows indicate PI3K accumulation 
sites (left) and PTEN dissociation sites (right). Bars, 5 μm.
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(LatB), an inhibitor of F-actin polymerization, spontaneous 

PI(3,4,5)P3 accumulation (as visualized through PHcrac recruit-

ment) was lost and cells rounded up. After washout of LatB, 

cells regained the spontaneous PI(3,4,5)P3 accumulation at the 

sites of new pseudopodial projections (Fig. 1 C). This � nding 

suggests that Gβ-independent, spontaneous PI3K activation 

 requires and occurs at sites of F-actin polymerization. Further-

more, we found that GFP-PI3K2 labeled the sites of new F-actin 

projections in both wild-type and gβ− cells (Fig. 1 D and Video 1, 

which is available at http://www.jcb.org/cgi/content/full/jcb

.200611138/DC1), whereas PTEN-GFP detached from the 

membrane in pseudopodial extensions in both wild-type cells 

and gβ− cells (unpublished data). The gβ− cells did not exhibit 

PI3K translocalization in response to a chemoattractant, whereas 

wild-type cells did (unpublished data). Thus, although PI3K and 

PTEN localization is regulated by extracellular stimuli in the 

chemotaxing cells, the reciprocal localization of PI3K and PTEN 

occurs during random cell movement, even in the absence of 

chemoattractant, nutrients, and heterotrimeric G proteins.

G�-independent, PI3K-dependent 

Ras activation in the absence 

of extracellular stimuli

As Ras is required for PI3K activation in response to extra-

cellular stimuli in neutrophils and Dictyostelium, we monitored 

the localization of activated Ras during random movement us-

ing a GFP fusion of the human Raf1 RBD (GFP-RBD; Sasaki 

et al., 2004). As we demonstrated for PI(3,4,5)P3 accumulation, 

spontaneous localization of GFP-RBD occurs at the sites of 

F-actin projections in wild-type, gβ−, and pten− cells. Surpris-

ingly, the Ras activation was abrogated with LY294002 treat-

ment and recovered after removal of the drug (Fig. 2 A and 

Video 2, which is available at http://www.jcb.org/cgi/content/

full/jcb.200611138/DC1). Biochemical assays con� rmed a basal 

Ras activity in both wild-type and gβ− vegetative cells in the 

absence of exogenous stimulation or nutrients (Fig. 2 B). The 

basal Ras and PI3K activation do not require cellular attachment 

to the substratum, as cells in suspension display the LY294002-

sensitive spontaneous Ras and Akt activations (Fig. S1 A, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200611138/DC1). 

The basal Ras activation is elevated in pten− cells (Fig. 2 C), 

supporting our notion of the requirement of PI3K. Further-

more, like PI3K activation, this unprompted Ras activation 

requires F-actin (Fig. 2 D and Video 3), although it is possible 

that a very low level of Ras and PI3K activity exists in these 

drug-treated cells. These drug-treated wild-type cells can acti-

vate Ras in response to chemoattractant stimulation (Fig. 2 E; 

Sasaki et al., 2004).

Next, we examined whether Gβ was required for chemo-

attractant-induced Ras activation. Fig. 2 F illustrates that 

chemoattractant-induced Ras activation occurs in wild-type 

cells but not in gβ− cells. There was no detectable translocation 

of GFP-RBD in response to chemoattractant stimulation in cells 

lacking the Gβ subunit (Fig. 2 G). These results uncover two 

different pathways that lead to detectable levels of activated 

Ras: a receptor-mediated, Gβ-dependent pathway and a Gβ-

 independent, PI3K-dependent pathway.

It is worth noting that we previously observed spontaneous 

PI3K and Ras activation in developed PTEN-de� cient Dictyo-

stelium cells (Sasaki et al., 2004). The � ndings here differ 

because the developed pten− cells likely increase the level of the 

chemoattractant (cAMP) secretion (Iijima and Devreotes, 2002), 

which would evoke a GPCR/heterotrimeric G protein–mediated 

autocrine Ras activation (Comer et al., 2005).

Figure 2. G protein–independent, PI3K-dependent 
Ras activation without extracellular stimuli. (A) Fluo r-
escent images of GFP-RBD in wild-type and gβ− 
cells before or after the addition of 50 μM 
LY294002 and after the removal of LY294002. 
(B and C) Spontaneous activation of Ras in indicated 
cells is shown. Cells were treated or not treated 
with 50 μM LY294002 (LY) or DMSO for 5 min. 
(D) Fluorescent images of GFP-RBD in wild-type 
and gβ− cells before or after the addition of 5 μM 
LatB and after the removal of LatB. (E) Transloca-
tion of GFP-RBD in a wild-type cell treated with 
50 μM LY294002 for 10 min or 5 μM LatB for 
20 min before folic acid stimulation. (F) Ras activa-
tion level in response to folic acid. (G) Translocation 
of GFP-RBD in wild-type and gβ null cells in response 
to folic acid. Bars, 5 μm.
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Spontaneous activation of Ras and PI3K 

occurs simultaneously at the same sites

To compare the sites and timing of Ras activation to those of 

PI3K in randomly moving cells, we simultaneously imaged 

both GFP-RBD and RFP-PH by using a dual-wavelength beam 

splitter with high time resolution (�200 msec). The RBD and 

PH domain appeared concurrently (within the limits of our res-

olution) at the same sites where pseudopodia start to form (Fig. 

3 A, arrow, and Video 4, which is available at http://www.jcb

.org/cgi/content/full/jcb.200611138/DC1). The kinetics of the 

disappearance of the RBD and PHcrac probes were also closely 

correlated (Fig. 3 B). Interestingly, we observed this synchro-

nized localization of RBD and PHcrac in the pten− cells. RBD 

and PHcrac also appear at micropinosome cups (clathrin-dependent 

small invaginating pits) with the same timing; however, PHcrac is 

retained considerably longer at these sites than RBD, suggest-

ing differential regulation of Ras at later stages of micropino-

cytosis (Fig. S1 B). These data demonstrate that the timing of 

PI3K and Ras activation occurs in parallel and at the same sites 

during random movement.

In experiments in which cells were stimulated with a chemo-

attractant, the RBD translocated �0.6 s faster than PHcrac to 

the plasma membrane (Fig. 3 C, cAMP, and Fig. S2 C, folic 

acid, which is available at http://www.jcb.org/cgi/content/full/

jcb.200611138/DC1). Thus, Ras activation is not synchronized 

with PI3K activity in the initial phases (�2 s) of chemoattrac-

tant signaling. Furthermore, in pten− cells stimulated with 

either folic acid or cAMP, PHcrac was retained at the plasma 

membrane for >1 min, whereas RBD returned to the cytosol in 

�20 s (Fig. 3 D). These results suggest that a chemoattractant/

Gβ-dependent pathway induces the signaling response that 

overrides or disrupts the intrinsic feedback activation of Ras/

PI3K. In response to a chemoattractant gradient, cells activate a 

localized response at the site on the plasma membrane closest to 

the chemoattractant source while inhibiting the spontaneous ac-

tivation of Ras/PI3K at the lateral sides of cells, thereby repress-

ing random cell movement.

PI3K and Ras form a G protein–independent 

circuit and regulate random cell movement

We further investigated whether Gβ-independent PI3K activa-

tion is involved in random motility. Fig. 4 A illustrates that ran-

dom movement of two strains of wild-type cells (KAx-3 and 

NC-4) is rapidly blocked by 50 μM LY294002 (Video 5, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200611138/DC1; 

similar results are observed with 30 μM LY294002, unpub-

lished data). As NC-4 cells do not have macropinosomes, the 

cellular movement is driven by LY294002-sensitive pseudo-

podial extensions. This LY294002-sensitive random cell move-

ment does not require heterotrimeric G proteins because the 

Figure 3. Tight correlation of the sites and timing of autonomous 
Ras and PI3K activation. (A and B) Fluorescent images of GFP-
RBD and RFP-PHcrac in a wild-type cell. Simultaneous imaging of 
spontaneous RBD and PH domain accumulation (A) and dis-
appearance (B) are shown. (C) Translocation of GFP-RBD and 
PHcrac in developed wild-type cells by cAMP is depicted. (D) Trans-
location of GFP-RBD and PHcrac in vegetative (left) and developed 
pten null cells by folic acid and cAMP is depicted.
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gβ− cells exhibit random cell movement (Fig. 4 A). To clarify 

whether the random movement inhibition by LY294002 is due 

to the inhibition of PI3K signaling, we used pi3k1/2/3− cells 

(a strain lacking the three major PI3Ks responsible for PIP3 pro-

duction in Dictyostelium [Takeda et al., 2007]). Strikingly, 

pi3k1/2/3− cells exhibit defects in random cell motility (Fig. 

4 A and Video 6). LY294002-treated cells and pi3k1/2/3− 

cells still produce small pseudopodial projections, suggesting 

that a low level of PI3K-independent F-actin synthesis path-

way is active. On the other hand, wild-type cells expressing 

membrane-bound PI3K2 (Myr-PI3K2; Funamoto et al., 2002), 

thus bypassing F-actin–induced PI3K translocalization, period-

ically exhibit sudden robust protrusions that are associated 

with rapid cell movement (Video 7). This � nding suggests 

that F-actin–mediated PI3K translocation plays an important 

role in amplifying F-actin projection during random movement. 

Overall, these data demonstrate that PI3K regulates random cell 

movement and the extent of F-actin projections in the absence 

of extracellular stimuli.

In randomly moving wild-type cells, RFP-PHcrac and GFP-

RBD colocalize on F-actin projection sites (Fig. 4 B and Video 8). 

The pi3k1/2− strain is a PI3K hypomorphic cell line and dis-

plays reduced random cell movement and abolished PH domain 

localization at the plasma membrane. The overexpression of 

wild-type PI3K1, but not PI3K1K736E, which harbors a muta-

tion in its RBD that abrogates binding to Ras-GTP (Funamoto 

et al., 2002), in pi3k1/2− cells complements this random cell 

movement defect and spontaneous PI(3,4,5)P3 accumulation at 

sites where Ras is activated (Fig. 4, A and B). Furthermore, an 

isogenic strain lacking Aimless, one of the RasGEFs responsi-

ble for chemoattractant-induced Ras activation (Insall et al., 

1996; Sasaki et al., 2004), displays reduced random movement 

(Fig. 4 A). Collectively, these results show that Gβ-independent 

activation of PI3K requires interaction with Ras-GTP, and that 

Ras activation is required for basal cell motility. This suggests 

that cells use a Gβ-independent Ras/PI3K feedback ampli� ca-

tion pathway to form pseudopodia.

As Dd-target of rapamycin (Dd-TOR) may be another 

LY294002-sensitive kinase, we examined the role of TOR in 

random cell movement. We found that inhibition of TOR com-

plex (TORC)1 by 1 μM rapamycin and disruption of TORC2 

using pianissimo− cells, which lack the ortholog of mammalian 

Rictor/mAVO3 (Lee et al., 2005), did not result in random 

movement defects (unpublished data and Video 9, which is avail-

able at http://www.jcb.org/cgi/content/full/jcb.200611138/DC1). 

Akt is under the regulation of TORC2. We � nd that akt−cells, 

which have a defect in macropinocytosis, display normal RFP-

PHcrac and GFP-RBD colocalization on F-actin projections 

linked to cellular movement, consistent with TORC2 not play-

ing a major role in random cell movement (Rupper et al., 2001; 

Video 10).

The Ras/PI3K circuit regulates cell 

morphology during cytokinesis

We previously demonstrated that the regulation of PI(3,4,5)P3 

plays a central role in cell shape changes during cytokinesis 

(Janetopoulos et al., 2005). We show here that Ras activation as 

examined by RBD cortical localization, like PI3K activation, 

Figure 4. Spontaneous PI3K activation requires Ras binding and regulates random cell movement. (A) Time-lapse recording of random movement of the 
indicated strains or wild-type cells treated with LY294002. The vegetative state cells and the nonaxenic NC4 cells grown on bacteria were placed in Na/
KPO4 buffer. (B) Fluorescent images of GFP-RBD and RFP-PHcrac in the indicated strains. We note that the spontaneous RBD accumulation in the pi3k mutant 
cells was completely blocked by LY294002. (C) Time sequence of GFP-RBD in wild-type and gβ− cells during cytokinesis.
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was uniformly suppressed at the onset of cytokinesis as cells 

rounded up. As cells progressed through mitosis, the Ras activity 

reporter gradually localized to the polar ruf� es during spindle 

assembly, cell elongation, and cytokinesis (Fig. 4 C). When the 

daughter cells separate from one another, cortically localized 

RBD and PI(3,4,5)P3 activity increase dramatically, resulting in 

high levels of random pseudopod extension. The gβ− cells ex-

hibit activation of Ras indistinguishable from that of wild-type 

cells during cytokinesis, suggesting that the Gβ-independent 

Ras/PI3K circuit plays a fundamental role in cytokinesis.

Conclusions

Our studies reveal a critical role of a Gβ-independent Ras/PI3K/

PTEN/F-actin feedback loop in regulating random cell move-

ment, a basic cellular function, and showed a linkage to cyto-

kinesis. We dissect two distinct pathways that regulate Ras 

and PI3K activation and PTEN localization: (1) cells use Gβγ-

 dependent signaling to evoke Ras/PI3K activation and PTEN 

relocalization in response to chemoattractant stimulation; and 

(2) cells exploit Gβ-independent machinery to induce stochastic 

Ras and PI3K activation and PTEN dissociation, for example, 

during random cell movement and cytokinesis. We assume that 

the regulators for Ras/PI3K/PTEN and F-actin polymerization/

disassembly can in� uence the initiation and decay of the circuit 

(Fig. S2). As the process is stochastic, we hypothesize that an 

increase in the level of any of the responses over a threshold 

level may be suf� cient to trigger the feedback loops and pseu-

dopod formation, whereas components such as GAPs and phos-

phatases regulate the threshold and level/time of activation.

The pathways controlling random movement parallel those 

of the ampli� cation step of chemotaxis that is controlled through 

a regulatory loop containing Ras, PI3K, PTEN, and F-actin 

(Sasaki and Firtel, 2006). We suggest that, in chemotaxis, the di-

rected activation of the pathway by the chemoattractant/G proteins 

biases the localized activation of the intrinsic Ras/PI3K circuit 

and locally restricts the positive feedback loop that is the basis for 

random cell movement (Fig. S2). The output from the sensing 

mechanism activates Ras and generates PI3K binding sites and 

simultaneously results in the loss of PTEN binding sites. This re-

ciprocal regulation, along with the activation of Ras, leads to the 

local production of PI(3,4,5)P3 and pseudopod extension.

RasG may be one of Ras isoforms that plays a role in the 

Ras/PI3K feedback circuit because the GFP-RBD recognizes 

RasG-GTP and random movement of rasG− cells is decreased 

(Tuxworth et al., 1997; Sasaki et al., 2004). There are likely 

other Ras isoforms that are integrated into the PI3K feedback 

loop, as rasG null cells show modest defects. The challenge for 

future investigation will be to elucidate the molecular mecha-

nisms by which Ras, RasGEF, and RasGAP regulate basic cell 

motility in a Gβ-independent fashion in the absence of extra-

cellular stimuli.

Materials and methods

Materials
We obtained folic acid, LatB, and LY294002 from Sigma-Aldrich, and 
monoclonal anti-Ras (Ab-3) antibody from Oncogene Research Products. 
We used 50 μM LY294002 for the experiments because this concentration 

has become the standard and at this concentration Akt/protein kinase B 
(PKB) activity and GFP-PH translocation are blocked, but PKBR1 (which is 
not PI3K dependent but is a TORC2-dependent, Akt/PKB-related kinase in 
Dictyostelium) is not blocked. We observed that 30 μM LY294002 simi-
larly suppressed random movement of wild-type cells. GST-RBD, GFP-RBD, 
GFP-PHcrac, N-PI3K-GFP, and PTEN-GFP were described previously (Funamoto 
et al., 2002; Iijima et al., 2002; Sasaki et al., 2004). RFP-PHcrac was cloned 
into a hygromycin-resistant CV5 vector (pYu34).

We created an aimless null strain in the KAx-3 background using a 
targeting vector similar to that used to generate aimless null in a KAx2 
background (Insall et al., 1996). The gβ, pten, and pi3k1/2 null strains 
were described previously (Wu et al., 1995; Funamoto et al., 2001; Iijima 
and Devreotes, 2002).

Cell culture
All cell lines except for NC-4 were cultured axenically in HL5 medium at 
22°C. NC-4 cells were grown on bacterial lawns. Transformants were main-
tained in 40 μg/ml G418, 50 μg/ml hygromycin, or both as required.

Biochemical assays
PKB activation and Ras activation were measured as described previously 
(Meili et al., 1999; Sasaki et al., 2004). Cells were treated or not treated 
with 50 μM LY294002 for 5 min. Endogenous Akt was immunoprecipi-
tated and subjected to an in vitro kinase assay using H2B as a substrate. 
To monitor the Akt and Ras activation in vegetative cells, cells were har-
vested at 2–4 × 106 cells/ml, washed twice with 12 mM sodium/potas-
sium phosphate buffer, pH 6.1, buffer A, and then resuspended in buffer A 
at 107 cells/ml. After 30 min of starvation, cells were subjected to the 
assay. For comparing Ras activation of wild-type cells to that of the mutant 
cells, washed cells were placed on the plate for 1 h and stimulated with 
50 μM folic acid for the indicated duration, and then lysed on the plate.

Assays for random movement and cytokinesis
In a random movement assay, vegetative cells growing on plates were har-
vested and seeded onto a chambered coverglass in starvation buffer. Cells 
were rinsed three times with an excess amount of buffer A at 10 min after 
seeding, and then sat for 1 h. Images were collected on a microscope 
(model TE300; Nikon) with DIC and 40x/0.60 objectives. Initial images 
were captured using Metamorph software and analyzed with the DIAS 
program (Wessels et al., 1988). Speed refers to the speed of the cell’s cen-
troid movement along the total path. The cell movement during the 1 min 
between measured frames was measured to calculate speed so that genu-
ine movement was measured rather than cytoplasmic rearrangement. Par-
allel experiments were performed with cells in HL5 axenic growth medium 
or cells starved for 2 h. No differences in the results were observed under 
these three conditions.

Cytokinesis was measured as described previously (Janetopoulos 
et al., 2005). Confocal images were obtained by using a CSU10 scanner 
unit (Yokogawa) on a Leica inverted DMIRE2 microscope with a 63x/1.4 
objective using an ORCA-ER camera (Hamamatsu) or a Dual-View OI-11-
EM–equipped EM-CCD camera (Hamamatsu) for simultaneous imaging. 
Imaging was described previously (Sasaki et al., 2004; Janetopoulos 
et al., 2005).

Online supplemental material
Fig. S1 A shows spontaneous Ras and PI3K activation in low density sus-
pended cells, and Fig. S1 B shows the differences of RBD and PH accu-
mulation kinetics in micropinosome formation from those in pseudopodial 
formation. Fig. S1 C shows translocation of GFP-RBD and PHcrac in vegeta-
tive wild-type cells by folic acid. Fig. S2 illustrates a model for the Ras/
PI3K circuit during random movement and chemotaxis. Video 1 shows 
GFP-N-PI3K1 localization in gβ null cells without extracellular stimuli. In 
Video 2, GFP-RBD localization in a gβ null cell corresponds to Fig. 2 A in 
the text. In Video 3, GFP-RBD localization in a gβ null cell corresponds 
to Fig. 2 D in the text. In Video 4, simultaneous imaging of GFP-RBD and 
RFP-PHcrac in the wild-type vegetative cells corresponds to Fig. 3 A in the 
text. In Video 5, random movement analysis of nonaxenic NC4 cells 
corresponds to Fig. 4 A in the text. In Video 6, random movement analy-
sis of cells corresponds to Fig. 4 A in the text. Video 7 shows random 
movement analysis of myristoylated PI3K2-overexpressing wild-type cells. 
In Video 8, GFP-RBD and RFP-PHcrac in the wild-type cells correspond to 
Fig. 4 B in the text. Video 9 shows random movement analysis of pianis-
simo null cells. Video 10 shows GFP-RBD and RFP-PHcrac in the akt null 
cells. The online supplemental material can be found at http://www.jcb
.org/cgi/content/full/jcb.200611138/DC1.
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