
Computing and Informatics, Vol. 21, 2002, 363–382

G-QOSM: GRID SERVICE DISCOVERY
USING QOS PROPERTIES

Rashid J. Al-Ali, Omer F. Rana, David W. Walker

Department of Computer Science

Cardiff University, Wales, UK

e-mail: {rashid, o.f.rana}@cs.cf.ac.uk

Sanjay Jha, Shaleeza Sohail

Department of Computer Science and Engineering

UNSW, Sydney, Australia

Revised manuscript received 13 November 2002

Abstract. We extend the service abstraction in the Open Grid Services Archi-
tecture [12] for Quality of Service (QoS) properties. The realization of QoS often
requires mechanisms such as advance or on-demand reservation of resources, varying
in type and implementation, and independently controlled and monitored. Foster
et al. propose the GARA [10] architecture. The GARA library provides a restricted
representation scheme for encoding resource properties and the associated moni-
toring of Service Level Agreements (SLAs). Our focus is on the application layer,
whereby a given service may indicate the QoS properties it can offer, or where
a service may search for other services based on particular QoS properties.

Keywords: QoS, service-oriented Grids, differentiated services, web services

1 INTRODUCTION AND RELATED WORK

Service Oriented Computing is often seen as a natural progression from component-
based software development [20], and as a means of integrating different component
development frameworks. A service in this context may be defined as a behaviour

364 R. J. Al-Ali, O. F. Rana, D. W. Walker, S. Jha, S. Sohail

that is provided by a component for use by any other component based on a network-
addressable interface contract (generally identifying some capability provided by the
service). A service stresses interoperability and may be dynamically discovered and
used. According to [12], the service abstraction may be used to specify access to
computational resources, storage resources, and networks, in a unified way. How
the actual service is implemented is hidden from the user through the service inter-
face — hence, a compute service may be implemented on a single or multi-processor
machine — however, these details may not be directly exposed in the service con-
tract. The granularity of a service can vary, and a service can be hosted on a single
machine, or it may be distributed. The focus of this work is to allow Quality of Ser-
vice (QoS) criteria to be specified as part of a service interface — to enable service
selection based on QoS.

The system closest to our approach is Darwin [7] — a service-oriented resource
management system capable of supporting/managing requests for complex network
services with QoS support. A request is initiated by the user in the form of a task
graph, and the resource manager subsequently locates suitable resources to per-
form the requested tasks to the optionally specified QoS requirements. The resource
manager is responsible for creating a “hierarchical grouping” — a structure of the
flows with their QoS specifications and the node IP addresses. The Globus Ar-
chitecture for Reservation and Allocation (GARA) [10] addresses QoS at the level
of facilitating and providing basic mechanisms for QoS support, namely resource
configuration, discovery, selection, and allocation. This architecture is particularly
aimed at using Globus services to support allocation of resources, and utilises spe-
cialised resource managers (such as a Diffserv manager) to support admission con-
trol and application adaptation at network edges. Current emphasis has been on
supporting request authentication and authorisation. The hierarchical service dis-
covery approach adopted by [13, 26] is also particularly relevant in this context —
as the common attributes of service providers and users can be determined across
service domains. QoS feedback and the dynamic caching of service advertisements
can also be supported through such a hierarchical organisation, and used by an
application to adapt its behaviour. This enables the identification of ‘QoS-similar’
domains — to support advert propagation over time. GARA does not support these
request-caching and inter-domain similarity derivation mechanisms. Specifying QoS
requirements in terms of a ‘policy’ involves provision of an object-oriented, decla-
rative language for specifying management and security policies [8], for instance.
Policy specification allows various entities in the network to specify constraints on
flows. Existing work on such policy languages has been targeted to abstract net-
work components — and of these, few mappings to real network components exist.
COPS (Common Open Policy Service) [18] provides a a simple query and response
protocol that can be used to exchange policy information between a policy server
(Policy Decision Point) and its clients (Policy Enforcement Points). This protocol,
however, necessitates the existence of a single policy server in each administrative
domain — and therefore it can be encapsulated into the NRM module in our system.
External components — such as RSVP capable routers — can then query this server

G-QoSM: Grid Service Discovery Using QoS Properties 365

to verify a policy. Our approach also explores the description of policy (based on
constraints) in the context of software services. Czajkowski et al. [6] define a model
and protocol for negotiating access to resources in distributed systems such as Grids.
An SLA mechanism is introduced that may be used to describe application activi-
ties (“tasks”), resources with QoS information and a SLA to bind applications with
resources. In [11] Gu et al. propose a model for QoS-aware service aggregation in
Peer-to-Peer (P2P) systems. Tuecke et al. [22] introduce the concept of service

data, which refers to descriptive information about a Grid service instance. Our
extensions to the Grid service description (with service-QoS properties) builds on
these service data extensions.

2 THE ARCHITECTURE OF THE G-QOSM FRAMEWORK AND ITS

SCOPE

AQoS

S1 S2 Sn

AQoS

S1 S2 Sn

AQoS

S1 S2 Sn

AQoS

S1 S2 Sn

Domain2Domain1

RM

User2User1User2User1

Interconnections between components within the same domain
Interconnections between components within different domains

RM

AQoS

Resource manager

ServiceS

Application QoS management layer

NRMNRM

Network resource managerNRM

RM

Fig. 1. The G-QoSM architecture

In the context of our framework, QoS may be characterised at three levels:
(1) application level QoS, (2) middleware level QoS, and (3) network level QoS. For
application QoS it is important to view both (1) user perception, and (2) application
perception. The first is relevant when a user is accessing a remote service and the
response that the user is likely to get. The second is related to when a service is being
offered to multiple users, and the response (access times) that the service is likely to
see from the users. This is particularly relevant in the context of applications which
require data to be obtained from a user in order to proceed — such as in interactive
visualisation applications, where users must send data to a remote service in order to
alter the simulation control parameters. Application QoS also relates to the number
of concurrent users that can be allowed to access a service, and therefore also relates
to application security issues such as authentication mechanisms. The middleware

366 R. J. Al-Ali, O. F. Rana, D. W. Walker, S. Jha, S. Sohail

QoS is of particular importance as our work is based on existing middleware, namely
Globus, and may use third party software which does not have middleware QoS
awareness. This QoS model addresses large scale distributed computing — within
which single or multiple services interact to exchange control parameters and data
for computational steering applications, for instance, and therefore the responses
have to be delivered within limited time frame to users/services — hence the need
for network QoS.

The framework uses a hierarchical discovery scheme, and is therefore similar to
work in [13, 26]. The hierarchy in our framework, however, does not represent the
replication of similar services at high levels, but the provision of specialised services
which are shared between domains. Different parameters need to be specified and
monitored at each of the three levels above. The parameters at the network level are
generally better understood than at the application level — and work undertaken at
the application level has generally been in the context of very specialised services —
such as a multimedia service altering its transmission quality based on network
metrics such as latency and bandwidth [16]. The primary activity supported through
the framework is the discovery of suitable services, managed locally or remotely,
based on QoS criteria. Service execution and management, once a suitable service
has been discovered, are not supported, and rely on the existence of systems such as
Globus. The results of executing a service are recorded and used to aid subsequent
service discovery operations.

Hence, the Grid QoS Management (G-QoSM) framework is aimed at supporting
service discovery foremost, and monitoring services to ensure that the QoS require-
ments for these services are being met in the context of a distributed computing
environment such as the computational Grid — as illustrated in Figure 1. It con-
sists of the following modules:

• Resource Manager (RM): A single RM exists within a given administrative do-
main. A domain can be defined through an IP mask or a Globus domain, for
instance, and contains a set of services over which the RM has administrative
and configuration control. A RM is considered in this context as a combination
of Globus Resource Allocation Manager (GRAM) and a Universal Description
and Discovery Integration (UDDI) registry. Globus is used to host the service
and to create an execution environment with specific QoS specifications; UDDI
on the other hand is used as a registry service, to record service capability and
QoS provisions.

• Network Resource Manager (NRM): The NRM is conceptually a Bandwidth
Broker (BB) — the concept of a BB can be found in [21]. NRM manages the
QoS resources within a given domain based on the SLA that have been agreed
upon in that domain. The NRM is also responsible for managing interdomain
communication, with the NRMs in neighbouring domains, with a view to coor-
dinate SLAs across the domain boundaries. It will also communicate with local
enforcers to determine the state of the network as well as configure the network.
The NRM also gathers and monitors the state of resources within its domain

G-QoSM: Grid Service Discovery Using QoS Properties 367

and on the edges of the domain (edge routers connected to and from adjacent
domains). The NRM accounts for the ability of the entire network to deliver
a particular policy request.

In our framework a single NRM exists within an administrative domain, and is
responsible for monitoring network parameters, and supports admission control.
For monitoring purposes, the measurements taken by the NRM are based on
those outlined by Lowekamp and Tierney [15].

• Application QoS (AQoS) manager: The AQoS manager interacts with all the
other components in the G-QoSM to find services with specific QoS require-
ments, coordinates with the resource managers to allocate resources for sub-
sequent service execution and finally monitors the service execution. Further,
the AQoS is also responsible for aggregating metrics across a series of opera-
tions needed to run an application. Once a service to run has been discovered,
the next step involves initiating execution of the service by sending the control
parameters, locating and transferring the data, invoking the executable corre-
sponding to the service, and subsequently transferring the results (achieved via
Globus). The response time for each of these operations is measured and ag-
gregated by the AQoS manager. This is recorded by the AQoS manager as
a three-tuple, (RMj, Si, m), where RMj corresponds to the broker within the
jth remote domain, Si represents a service within that domain, and m is a real
number corresponding to the total time required to transfer data and initiate
execution of the remote service. The AQoS manager may either assign the same
value for m to all services within a particular domain, or it may distinguish
between services.

• Service: The IETF has proposed two major architectures to support QoS:
(1) Intserv [4] provides QoS guarantees on per-flow basis using RSVP [5], (2) Diff-
serv enables scalability across large networks but may not be able to support
per-flow QoS guarantees [3]. A hybrid architecture that takes Intserv at the edge
of the network (as state explosion is unlikely to happen at the edge), and Diffserv
at the core, called “Intserv over Diffserv” (IS/DS), can address the scalability
problem associated with either of these approaches. Because the hosts are still
connected to Intserv at the edge, IS/DS can support end-to-end per-flow QoS.
As IS over DS is emerging as an architecture of choice, the G-QoSM utilises this
service model. Hosts connected to Intserv at the edge use one of the three classes:
(1) Guaranteed-service [17], (2) Controlled-load [25]; or (3) Best-effort-service.
These services are invoked by individual flows. The Guaranteed-service delivers
QoS based on pre-defined constraints identified by a user, and agreed upon by
the provider in a SLA (delay bounds are stringent). In this type of service,
the QoS parameters are enforced, monitored, and the service provider is com-
mitted to deliver the service with such specifications. In the Controlled-load,
the user states the QoS requirements, the brokering service finds the most suit-
able resources to execute the service, and the service is eventually executed.
However, the main difference is that the QoS requirements are a less stringent

368 R. J. Al-Ali, O. F. Rana, D. W. Walker, S. Jha, S. Sohail

(i.e. the service provider is not committed to deliver the service as per the user
specifications, and the QoS parameters are not enforced). There are two oc-
casions where the Controlled-load service might be appropriate; one is when
the brokering service fails to find reliable resources to undertake the execution
of the service and the user still wants to attempt executing the service with
whatever resources are available. Another occasion is when the user and the
service provider could not reach a mutual agreement on the SLA contract (all
constraints identified by the user, or the service provider, cannot be satisfied).
The third type of QoS level is Best-effort-service, and occurs when there is nei-
ther a SLA involved nor the user specifies QoS requirements. The brokering
service now has full control to configure the execution environment based on the
available resources. This type of service might be suitable for users who do not
know the exact configuration or the QoS requirements needed for their desired
service.

2.1 Interaction with the NRM

The AQoS interacts with a network resource manager (NRM), where the NRM
is responsible for provisioning of network resources, monitoring and supporting
admission control (based on a domain specific policy). Once an appropriate service
has been identified, the AQoS communicates with the NRM to determine a commu-
nication path between the source and the destination. This utilises the QoS range
in the service advert from the provider. Typically the AQoS will work out the traffic
characteristics (such as RSVP TSpec [5] parameters described using token bucket).
As RSVP is a receiver-oriented protocol, it must be customised to make it sender-
oriented whereby the NRM will act as a proxy sender on behalf of the user, and
the service (or NRM of Service domain) will act as receiver of the RSVP messages.
This assumption is based on the fact that RM has already performed match making
(resource requirements for a service and user capability).

We describe how this communication takes place in an IS over DS architecture
below. For simplicity we take a single point-to-point connection. The DS domain
is RSVP unaware. We describe the process of establishing end-to-end QoS through
the following steps:

• The NRM generates RSVP PATH message describing the user’s traffic profile;

• The PATH message is processed (path state is installed) by all routers in the
IS domain and it is forwarded to the DS domain towards the Service;

• Routers in the DS domain ignore the PATH message (no path state processing)
and forward it to the IS domain towards the Service;

• Finally, Service (or NRM in the service domain) receives the PATH message and
generates a RESV message (subject to authentication/authorisation for charging
etc);

G-QoSM: Grid Service Discovery Using QoS Properties 369

• IS domain carries the RESV message toward the NRM of service user; if any
router has insufficient resources to support this reservation, it will generate an
error message and will reject the request;

• When the RESV message reaches an edge router, the NRM of the domain checks
the service level specification (SLA) of the DS interface to see if there is enough
unused resources in the agreement to support this reservation request. If not,
the request is rejected, otherwise the RESV is forwarded toward the AQoS. In
order to support IS over DS model, a new Diffserv code point (DSCP) is also
allocated for the session;

• Receipt of the RESV message by AQoS’s RSVP process indicates that the re-
source reservation has been successful.

Furthermore, NRM is the management entity that has a complete and up-to-date
topology of the domain, and maintains a record of network resources within it.
In order to provide strict QoS guarantees the NRM monitors network resources
periodically and then performs off-line analysis to calculate different attributes of Per
Domain Behaviour (PDB). PDB is the edge-to-edge treatment that traffic receives in
a Diffserv domain. PDB depends upon the service type as well as the load conditions
and some domain specific parameters like domain topology, links used to transfer
traffic etc. The sum of same type of PDB parameters of all the domains from which
the flow will pass gives the end-to-end QoS parameters for the particular flow. The
attributes that can be part of the PDB include delay, packet loss and throughput.

2.2 Interaction with the AQoS Manager

The RM interacts with the AQoS manager for aggregating metrics across the multi-
ple sessions required to execute a remote service. The AQoS manager also maintains
aggregate metrics corresponding to a particular remote RM and service, and uses
this as a means to subsequently select a remote service. The service requester also
interacts with the AQoS for requesting services with QoS properties and negotiating
SLAs. Figure 2 shows a sequence diagram between the AQoS and other G-QoSM
components — the legends on the figure indicate the various stages involved.

2.3 Interaction with the Resource Manager

In the context of our G-QoSM framework, the RM is meant to integrate Globus
GRAM and the UDDI registry service. The AQoS interacts with the RM to (i) pass
requests for services to be discovered based on QoS properties and (ii) create a ser-
vice execution environment with regard to the middleware QoS as described in
Section 3.2. The RM can further interact with a remote RM to find services with
similar capacities or to allocate resources for service execution as both RMs are part
of the service-oriented Grid.

370 R. J. Al-Ali, O. F. Rana, D. W. Walker, S. Jha, S. Sohail

User AQoS RM NRM Serv

QS

SR

QS−R

QR

QR

QR−R

QR−R

N

RA

RA

N

QM

QM

QM

QM

SI

SR: service request, requesting service
 with QoS attributes

QS: querying the UDDI for services

QR: querying the correspoinding resource

 manager for resources

N: exchanging negotiation documents to

 establish SLA

RA: requesting resource allocation

SI: service invocation

QS−R: reply to a service request message

QR−R: reply to a QR message

QM: exchanging parameters about allocated

 resources for QoS management purposes

Fig. 2. Sequence diagram between the AQoS and other G-QoSM components

3 SPECIFICATION OF QOS CRITERIA

QoS parameters are defined with respect to the three levels defined in Section 2. QoS
parameters also differ depending on whether they are measured and administered
by the NRM, the AQoS manager or the middleware such as Globus.

3.1 Application QoS

We characterise application QoS (as managed by the AQoS manager) as comprising
the following operations: (1) Send configuration (control) information to a remote
service, (2) transfer data to the remote service, (3) execute the remote service, and
(4) transfer data from the remote service to the requesting service. These operations
may need to be replicated, in the context of computational steering applications
(for instance), for a set of interactions between two services. Associated with these
operations are times which can be measured and recorded by the AQoS manager,
and primarily measure the interaction between two services.

3.2 Middleware QoS

We assume that middleware such as Globus will manage the creation of an exe-
cution environment for a service, along with subsequent management and control.
Moreover, we provide here QoS metrics for describing the execution environment and
we do not guarantee QoS enforcement; it is totally up to the middleware to provide
such a guarantee. The Libra project [19] aims to explore middleware QoS in parti-
cular developing a QoS-based scheduler for resource management on a homogeneous
cluster.

G-QoSM: Grid Service Discovery Using QoS Properties 371

3.3 Network QoS

The network QoS in our framework is primarily concerned with managing band-
width. The network resource manager (NRM) takes raw network measurements
and generates statistics about the network link. The measurements taken by the
NRM are based on those outlined in [15] and consist of the following metrics: (1) Ca-
pacity: the maximum bandwidth a path can provide to an application when there is
no competing traffic load (cross traffic), (2) Availability: the maximum throughput
that the path can provide to an application, given the path’s current cross traffic
load, and (3) Utilisation: the aggregate bandwidth currently used by all applications
on that path.

4 SPECIFICATION OF SERVICE LEVEL AGREEMENTS

Service Level Agreements (SLAs) are used as a means of managing and monitoring
QoS attributes at the three levels (outlined in Section 2, and to enforce contracts.
Once an AQoS has discovered a RM or a remote RM (or RM-group) which contains
the required service, a SLA needs to be established between the service provider and
the service requester. If the requesting service requires “Guaranteed-service” QoS,
then the SLA consists of exact constraints which must be met by the AQoS, RM and
NRM. If a “Controlled-load” QoS is being requested, then the QoS requirements are
more relaxed and the parameters are specified as a range constraint — allowing the
AQoS and the corresponding RM and NRM to find bounds on QoS parameters which
can match the required constraints. All attributes of the SLA are measurable and
quantifiable — and measured by the corresponding resource manager or the AQoS
manager, Figure 3 shows a sample SLA specification document. It is important to
remember that the AQoS maps these SLA parameters to the corresponding resource
managers; for example in the case of network QoS specifications, TSpec parameters
such as token rate, token bucket size and peak rate will be generated based on
the specified SLA parameters and passed to the network resource manager (NRM).
We believe that in order to establish an effective SLA mechanism, three essential
requirements should exist in the context of the G-QoSM framework:

1. A management entity should have a comprehensive view of the existing infras-
tructure and all the capability that can be provided by the resource managers.

2. A contract-based agreement should include the QoS parameters and the ability
to negotiate its parameters.

3. A mechanism is needed to verify and monitor the agreement contract and to
enforce its elements to meet the overall contract requirements.

Our AQoS has the ability to provide these three requirements. It consults the NRM
for network QoS, and the RM to gather information about the existing infrastructure
and its capability. It has the capability to initiate negotiation between two services.

372 R. J. Al-Ali, O. F. Rana, D. W. Walker, S. Jha, S. Sohail

<Service_SLA>

<Service_Information>

<Service_Name> MathCompService </Service_Name>

<Service_Description>

Scalar and Matrices Comp.

</Service_Description>

<Service_URL_Address> http://localhost/Services/MyMathService

</Service_URL_Address>

<Service_Cost> 52 </Service_Cost>

</Service_Information>

<User_Information>

<Service_Requester_Name> Application DffEQ

</Service_Requester_Name>

<Service_Req_IP_Address> 192.200.168.33

</Service_Req_IP_Address>

<User_Information/>

<QoS_Class> Guaranteed-Service QoS </QoS_Class>

<Temporal_QoS>

<Start_Time> 20/6/2002 11:05 </Start_Time>

<End_Time> 20/6/2002 13:18 </End_Time>

<Temporal_QoS/>

<Appl_QoS>

<Availability> > 99.5% </Availability>

<Accessibility> > 90% </Accessibility>

<Reliability> High </Reliability>

<Security> Normal </Security>

</Appl_QoS>

<Middleware_QoS>

<Node_IP_Address> 135.200.50.101 </Node_IP_Address>

<CPU_Count> 4 </CPU_Count>

<Real_Storage> 240 MB </Real_Storage>

<Disk_Storage> 40 MB </Disk_Storage>

</Middleware_QoS>

<Network_QoS>

<Source_IP> 192.200.168.33 </Source_IP>

<Dest_IP> 135.200.50.101 </Dest_IP>

<Throughput> 256 Kbps </Throughput>

<Packet_Loss> 10% </Packet_Loss>

</Network_QoS>

</Service_SLA>

Fig. 3. SLA specification

G-QoSM: Grid Service Discovery Using QoS Properties 373

It also monitors and enforces the QoS parameters as per the agreed contract with
regard to the QoS class.

4.1 Contract-Based Agreement

A contract-based agreement forms the main constituent of the SLA. The content of
the contract covers mainly the three levels of the QoS. Furthermore, our contract
is similar to the work in [2]; however, their contract is in the context of multiple
control domains providing services such as E-commerce, web hosting, etc. The con-
tract elements are measurable and quantifiable, and have interdependencies among
them, meaning that the contract is atomic in its nature and all elements must hold
in order for the desired service to function properly. Furthermore, the set of contract
elements must be consistent and verifiable, meaning that there must not be depen-
dencies between the contract elements in such a way that if one is TRUE another
one is forced to be FALSE. Verifiability requires a programming tool to evaluate
the contract elements at any given time. Our G-QoSM framework supports mecha-
nisms to examine contract consistency and contract verification through its “AQoS”
component.

We define a contract C in terms of assertions A, where A is a set of QoS at-
tributes that are required for service delivery and agreed on with the service re-
quester. Each service requester must specify its QoS requirements for the AQoS
manager. Therefore, we define v as the QoS vector consisting of QoS properties, so
that:

v = v(Application−QoS) ∪ v(middleware−QoS) ∪ v(network−QoS).

Similarly, depending on the QoS class being requested (Guaranteed or Controlled-
load), we define the assertion A to be a set of relationships that exist over v, as R(v).
The set of relations R primarily specifies the contract agreement between the service
requester and provider. The relations are expressed in statements which contain
logical predicates, which are measurable, and the predicates are composed further
of variables and logical operators. Moreover, the assertion A = R(v) must be eva-
luated at any given time to be either TRUE or FALSE depending on the attributes
described in the relation. In the case of a Guaranteed QoS, for instance, it consists
of assertions which must evaluate to TRUE. In the case of “Controlled-load” QoS
it consists of assertion constraints which must hold within the specified bounds.

For example; a Guaranteed-QoS request may arrive for a Grid service with the
following QoS attributes: service accessibility of more than 99%, 64MB of main
memory, with 4 parallel CPUs, and 2Mbps bandwidth. These QoS specifications
can be expressed as an assertion A of relation R(v) as follows:

A = {ServiceAccess > 99%,

A = Memory = 64MB ∧ CPU = 4, Bandwidth = 2Mbps} .

When a service request is received by a remote RM, it needs to verify if the re-
quired QoS criteria can be met. This is achieved by confirming the request with

374 R. J. Al-Ali, O. F. Rana, D. W. Walker, S. Jha, S. Sohail

parameters recorded by the NRM, and with summary statistics maintained by the
AQoS manager for the remote service. If the request for a given service has not been
obtained before, parameters from the NRM corresponding to the entire traffic for
the domain are used. As additional requests to a service are obtained, the response
time, execution time and data transfer time are recorded. These values constitute
the aggregate times for all requests which have been received by the service — and
are maintained by the AQoS manager.

4.2 Service Budget Estimation

We introduce a service cost factor as a QoS criteria; the user is expected to specify
the maximum budget that s/he is willing to spend, or the budget range to be
associated with the service QoS specification. The user is also expected to specify
the budget level of tolerance with respect to other QoS criteria; in this way we can
utilise this tolerance information to make a number of tradeoffs such as service cost
versus service accuracy. For instance, a user might request a graphics service that
is network-QoS sensitive, with a certain budget tolerance level that indicates the
user is willing to accept a lower level QoS of network resource but not to exceed the
specified budget.

Service software cost is associated with the extended service interface description
in the Web Services Description Language (WSDL) document along with other QoS
attributes that the service is sensitive to, and the minimum set of QoS attributes that
are associated with the service. The total service cost is the aggregation of all costs
of the various resources associated with the service plus the service license/usage
cost. The resource costs include the network-QoS cost, computation-QoS cost, and
the data transfer cost. We estimate the total cost of a service as follows; every
service has QoS properties P (s), so that:

P (s) = Pappl−QoS(s) ∪ Pcomp−QoS(s) ∪ Pstorage−QoS(s) ∪ Pnet−QoS(s).

Every set of QoS properties such as Pappl−QoS(s), Pnet−QoS(s), etc. has resource QoS
and usage costs associated with it. The AQoS consults the corresponding resource
manager, such as the NRM, for the usage cost in the case of network resources,
whereas in the case of middleware resources the AQoS has its own mechanism to
compute the resources budget that works in coordination with Globus. Therefore,
the total service cost C(s) is:

C(s) = ssoftware−cost +
n∑

i=1

C(RiQoS),

where C(RiQoS) is the cost of resource QoS (i), and (i) is the ith resource associated
with the given service s.

G-QoSM: Grid Service Discovery Using QoS Properties 375

5 EXTENDING WSDL&UDDI TO INCLUDE QOS PROPERTIES

Having defined the QoS matrix for Grid services, we now need a mechanism for
users to express their requirements with regard to QoS criteria, for the system to
recognise these requirements, and also for the service providers to advertise their
services with QoS capabilities. Further, the system should be able to search for
services on the basis of QoS requirements. Therefore, to facilitate this feature,
firstly we need to provide the users with an environment enabling them to state
their QoS requirements so the system can capture them; secondly we need to make
sure that the matchmaking broker can indeed discover services based on such QoS
attributes.

We associate QoS criteria with the service interface description, and include ser-
vice software usage cost and all the QoS attributes that the corresponding service
is sensitive to. The service software usage cost is the cost of the actual software
provided by the service provider during service interface creation. It is worth men-
tioning that this cost is distinct from the total service cost and represented by
the variable ssoftware−cost in the cost equation derived in Section 4.2. The other
QoS attributes that should be included in the service interface are the QoS that
the service is sensitive to, with the minimum/recommended QoS levels necessary
to run the service in an acceptable form; similarly, this information should be sup-
plied by the service provider. This extension enhances the matchmaking process
and subsequently leads to better matches. We have therefore provided means for
the service requesters, who are concerned about the QoS and budget associations
with particular services.

The OGSA specification for service interface definition documents [22], which
defines the elements tags and their grammars in WSDL, does not include any tags for
QoS provisions. Therefore, we suggest the incorporation into the main definitions

element tag a new sub-element tag called QoS with various QoS attributes, as in
the following WSDL service interface definition document:

In this way, service providers will be able to define their services using ser-
vice interface definition documents along with their QoS capabilities, and subse-
quently services would be registered with a registry service such as the UDDI.
Having considered the technologies used by OGSA, namely WSDL, Simple Ob-
ject Access Protocol (SOAP) [24] and Universal Description Discovery and Inte-
gration (UDDI) [23], it can be said that the UDDI is the primary registry and
service discovery engine, although it does not provide the support to discover Web
services based on QoS criteria. Nevertheless, it supports service discovery based
on other criteria, which include the following five XML data-structures, each of
which contains a number of data fields that serve either a business or technical de-
scriptive purpose: businessEntity, tModel, businessService, bindingTemplate,
and publishAssertion. These XML data structures are generated on the ba-
sis of both WSDL documents, the service interface definition and the service im-
plementation; therefore, in order for our proposed element tag QoS to be recog-
nised, and hence searched, QoS attributes need to be associated via a new category

376 R. J. Al-Ali, O. F. Rana, D. W. Walker, S. Jha, S. Sohail

<?xml version="1.0" encoding="UTF-8"?> <wsdl:definitions

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

...

targetNamespace="http://MyService-Interface">

<wsdl:messagename="printNameResponse">

</wsdl:message>

...

<QoS>

<service_cost> 5 </service_cost>

<network_bandwidth> 256K </network_bandwith>

<memory> 48MB </memory>

...

</QoS>

...

</wsdl:definitions>

called serviceQoS, along with the QoS-related data fields. Furthermore, this allows
search of the serviceQoS category, which would result in finding all the services
with these specified QoS properties. With these extensions to the service interface
definition (in the WSDL-based document and the UDDI categorization), service
providers will be able to advertise their services with QoS attributes, users will be
able to state their QoS requirements for services, and the matchmaking broker will
be able to match queries and services based on QoS properties.

We utilise the UDDI4J APIs and the UDDI-M APIs [9] to demonstrate this idea
in a prototype system using the IBM Web Services Toolkit (WSTK) [14]. This is
discussed in more detail in Section 6 (Implementation). UDDI-M is an extension
to the core registry functions of UDDI — and provides additional interfaces for
handling service leasing, service search on keyword attributes, and provides addi-
tional extensions for searching the registry based on range based attributes. This is
achieved by providing an additional query management layer over the core UDDI
implementation.

6 IMPLEMENTATION

A prototype of the G-QoSM framework has been implemented to demonstrate the
following ideas; i) extending WSDL and UDDI to include QoS provisions in the ser-
vice interface definition and showing how this extension leads to the enhancement of
the service discovery process; ii) handling the network QoS specifications, by show-
ing how the AQoS manager requests, allocates and monitors network QoS-aware
resources through interaction with the network NRM to provide network QoS guar-
antees.

G-QoSM: Grid Service Discovery Using QoS Properties 377

6.1 UDDI and WSDL Extension

We use the IBM Web Services Toolkit (WSTK) version 3.1 that includes UDDI,
Axis server, and several other tools and development products to create, publish,
find and bind web services. We also use the JDK version 1.3 as the development
technology for our implementation. We use the Java2WSDL tool in the IBMWSTK to
create WSDL service interface and implementation from Java classes. This interface
definition is subsequently extended with the QoS properties defined previously, using
a Java based tool. The QoS information is assumed to be specified by the service
provider. These attributes are: i) the service software cost; ii) the QoS attributes
that the service is sensitive to with their minimum and recommended values and
any other constraints the service provider may think it necessary to advertise.

After associating the service provider-supplied QoS attributes with the service
interface definition, the service interface and implementation documents are pub-
lished and the service then becomes registered with UDDI; hence our tool publishes
the service and associates its QoS properties with the proposed serviceQoS cate-
gory. The UDDI APIs [23] are utilised to develop a search mechanism that searches
UDDI for services based on QoS attributes, such as the cost of service; furthermore
this search mechanism also reveals to the service requester information about the
minimum and recommended QoS levels required in order to execute the service in
an acceptable form based on the service provider-supplied QoS specifications and
constraints.

Fig. 4. The AQoS requests network resources

We demonstrate this idea by populating the UDDI with a number of services and
various QoS attributes; our prototype provides tools that takes in two WSDL-based
documents: i) service interface definition, and ii) service implementation and pub-
lishes the service in the UDDI. Furthermore, the tool helps service providers include
QoS attributes in the service interface definition document and associates the at-
tributes with the newly defined <QoS> element tag. On execution, the tool takes
requests from users and searches for services with particular QoS specifications.
The result is a list of services with similar QoS properties. Figures 4, 5 and 6 show
screen shots of our prototype that illustrate the process whereby the AQoS requests
network resources with specific QoS levels. In Figure 4 the AQoS queries for avail-

378 R. J. Al-Ali, O. F. Rana, D. W. Walker, S. Jha, S. Sohail

Fig. 5. The AQoS confirms resources reservation

Fig. 6. A state information about allocated network resources

able resources, in Figure 5 the AQoS confirms the reservation for previously queried
resources and in Figure 6 the AQoS displays the result of the requested state infor-
mation about the allocated resources for QoS monitoring purposes. The result is
aggregate of allocated network resources including assured forwarding (AF) services
and expedited forwarding (EF) services.

7 CONCLUSION

A framework for QoS-based service management in service-oriented Grids is de-
scribed. The main focus of this framework is to provide a means for the service
requesters to search for services based on QoS criteria in computational Grids, to
provide QoS guarantees for service execution and to enforce these guarantees by exe-
cuting service level agreements. We provide extensions to UDDI to incorporate QoS
definitions in WSDL-based documents, in the context of computational Grids —
and based on service data extensions, and we show how our framework treats
requests for resources with QoS specifications.

This work builds on the Open Grid Services Infrastructure (OGSI) being devel-
oped within the Global Grid Forum (GGF) — and will involve close interaction with
the Grid Resource Allocation Agreement Protocol (GRAAP) working group. The
framework outlined supports service discovery with QoS properties. The framework
also enables a user to specify their QoS requirements, which are then checked against
both network and computation/data resources using specialised management modu-

G-QoSM: Grid Service Discovery Using QoS Properties 379

les. These modules interact by either reserving resources or undertaking allocation
based on a budget.

Acknowledgement

We would like to acknowledge the implementations work undertaken by Ali Shaikh-
Ali as part of his honours project — using UDDI and WSDL provided with the Web
Services Toolkit (from IBM). We also would like to acknowledge Jonathan Giddy’s
(from the Welsh E-Science Centre) comments on utilising Globus in the G-QoSM
framework.

REFERENCES

[1] Argonne National Laboratory The Globus Project. See Web site at:
http://www.globus.org/, last visited: April 2002.

[2] Bhoj, P.—Singhal, S.—Chutani, S.: SLA Management in Federated Environ-
ments. Technical Report HPL-98-203, Internet Systems and Applications Laboratory,
HP Labs, Palo-Alto, CA 94034, USA.

[3] Blake S. et al.: An Architecture for Differentiated Service. Internet RFC 2475, 1998.

[4] Braden, R.—Clark, D.—Shenker, S.: Integrated Services in the Internet Ar-
chitecture: an Overview. Request for Comments (Informational) RFC 1633, Internet
Engineering Task Force, June 1994.

[5] Braden, R.—Zhang, L.—Berson, S.—Herzog, S.—Jamin, S.: Resource
Reservation Protocol (RSVP) — Version 1 Functional Specification. RFC 2205, In-
ternet Engineering Task Force, November 1997.

[6] Czajkowski, K.—Foster, I.—Kesselman, C.—Sander, V.—Tuecke, S.:
SNAP: A Protocol for Negotiating Service Level Agreements and Coordinating Re-
source Management in Distributed Systems. 8th Workshop on Job Scheduling Strate-
gies for Parallel Processing, Edinburgh, Scotland, July 2002.

[7] Chandra, P.—Chu, Y.-H.—Fisher, A.—Gao, J.—Kosak, C.—Eugene Ng,

T. S.—Steenkiste, P.—Takahashi, E.—Zhang, H.: Darwin: Customisable
Resource Management for Value-Added Network Services. IEEE Network, Vol. 15,

2001, No. 1.

[8] Damianou, N.—Dulay, N.—Lupu, E.—Sloman, M.: The Ponder Policy Speci-
fication Language. Proceedings of workshop on Policies for Distributed Systems and
Networks, Bristol, UK, January 2001.

[9] Dialani, V.: UDDI-M Version 1.0 API Specification. University of Southampton,
UK, 2002.

[10] Foster, I.—Kesselman, C.—Lee, C.—Lindell, B.—Nahrstedt, K.—

Roy, A.: A Distributed Resource Management Architecture that Supports Advance
Reservation and Co-Allocation. Proceedings of the International Workshop on QoS,
pp. 27–36, 1999.

380 R. J. Al-Ali, O. F. Rana, D. W. Walker, S. Jha, S. Sohail

[11] Gu, X.—Nahrstedt, K.: A Scalable QoS-Aware Service Aggregation Model for

Peer-to-Peer Computing Grids. Proceeding of the HPDC11, 2002.

[12] Foster, I.—Kesselman, C.—Nick, J. F.—Tuecke, S.: The Physiology of the
Grid: An Open Grid Services Architecture for Distributed Systems Integration.

Downloadable as: http://www.globus.org/research/papers/ogsa.pdf, 2002.

[13] Haas, R.—Droz, P.—Stiller, B.: A Hierarchical Mechanism for the Scalable

Deployment of Services over Large Programmable and Heterogeneous Networks. In
Proceedings of ICC 2001, Helsinki, June 2001.

[14] IBM: Alpha Works Web Site, http://www.alphaworks.ibm.com/tech/

webservicestoolkit/.

[15] Lowekamp, B.—Tierney, B.: Network Metrics for Grid Applications and Ser-
vices. GWD-C, Network Measurements Working Group at GGF. See Web site at:

http://www-didc.lbl.gov/NMWG/, 2002.

[16] Nakao, A.—Peterson, L.—Bavier, A.: Constructing End-to-End Paths for

Playing Media Objects. Proceedings of IEEE Open Architectures and Network Pro-
gramming, 2001.

[17] Shenker, S.—Partridge, C.—Guerin, R.: Specification of Guaranteed Quality

of Service. Request for Comments (Standard Track) RFC 2212, Internet Engineering
Task Force, September 1997.

[18] Durham, D. et al.: The COPS (Common Open Policy Service) Protocol. Internet
RFC 2748, 2000.

[19] Sherwani, J.—Ali, N.—Lotia, N.—Hayat, Z.—Buyya, R.: Libra: An Econo-

my driven Job Scheduling System for Clusters. Technical Report, The University of
Melbourne, July 2002. Available from: http://www.gridbus.org/.

[20] Stevens, M.: Service-Oriented Architecture Introduction, Part 1. See

Web site at: http://softwaredev.earthweb.com/microsoft/article/0,,

10720 1010451 1,00.html.

[21] Teitelbaum, B.—Hares, S.—Dunn, L.—Neilson, R.—Narayan, R. V.—

Reichmeyer, F.: Internet2 QBone: Building a Testbed for Differentiated Services.
IEEE Network, Vol. 5, 1999, No. 13, pp. 8–16.

[22] Tuecke, S.—Czajkowski, K.—Foster, I.—Frey, J.—Graham, S.—

Kesselman, C.: Grid Service Specification. Argonne National Laboratory, Argonne,
IL. Draft3 (7/17/2002).

[23] Universal Description, Discovery and Integration of Bunsiness for the Web — Speci-
fications. http://www.uddi.org/specification.html.

[24] W3C: Simple Object Access Protocol (SOAP). See Web site at: http://www.w3.

org/TR/SOAP/.

[25] Wroclawski, J.: Specification of the Controlled-Load Network Element Service.

Request for Comments (Standard Track) RFC 2211, Internet Engineering Task Force,
September 1997.

[26] Xu, D.—Nahrstedt, K.—Wichadakul, D.: QoS-Aware Discovery of Wide-
Area Distributed services. Department of Computer Science, University of Illinois
at Urbana-Champaign, {d-xu,klara,wichadak}@cs.uiuc.edu, Technical Report
UIUCDCS-R-2000-2189, November 2000.

G-QoSM: Grid Service Discovery Using QoS Properties 381

[27] Yemini, Y.—Goldszmidt, G.—Yemini, S.: Network Management by Delegation.

Proceedings of Intl. Symposium on Integrated Network Management, 1991.

Rashid J. Al-Ali is a doctoral candidate at the Computer
Science Department, in the Parallel and Scientific Computation
Research Group at Cardiff University, UK. His research interests
are in QoS and resource management in Grid computing, and
Grid services. He received his BS degree from the University
of the Pacific, Stockton, CA, USA, in 1992, and his MS de-
gree from the George Washington University, Washington DC,
USA, in 1997. His work experience covers foremost mainframe
computers and UNIX systems, network administration and IT
project management.

Omer F. Rana is a Senior Lecturer in computer science at
Cardiff University, and the Deputy Director of the Welsh
E-Science/Grid Computing Centre. He also acts as advisor to
Grid Technology Partners — a US based company specialising
in Grid technology transfer to industry. He holds a PhD in
Computer Science from Imperial College, London University in
parallel architectures and neural algorithms, an MSc in micro-
electronics from Southampton University, and a BEng in in-
formation systems engineering from Imperial College, London.

His research interests are in the areas of high performance dis-
tributed computing, multi-agent systems and data mining. Prior to joining Cardiff Uni-
versity, he worked for over 5 years in the use of neural algorithms in a number of fields,
including biotechnology, instrumentation and control.

David W. Walker is the Director for the Welsh E-Scien-
ce/Grid Computing Centre at Cardiff University. He received
a B.A. degree in mathematics from Jesus College, University

of Cambridge, in 1976. His M.Sc. degree in astrophysics was
obtained from Queen Mary College, University of London, in
1979, and his Ph.D. from the same institution in 1983. He has
held appointments at the University of London, the Jet Propul-
sion Laboratory, California Institute of Technology, University of
South Carolina, and at Oak Ridge National Laboratory. His re-
search interests focus on software, algorithms, and environments

for computational science on high performance computers. He has been closely involved
in the development of the ScaLAPACK parallel software library, and the MPI message
passing standard. In recent years he has also been active in problem solving environments
and agent based computing.

382 R. J. Al-Ali, O. F. Rana, D. W. Walker, S. Jha, S. Sohail

Sanjay Jha is an Associate Professor (Networks) at the School

of Computer Science and Engineering (CSE) at the University
of New South Wales. He has a PhD degree from the Uni-
versity of Technology, Sydney, Australia. He is the founder
of the Network Research Laboratory at CSE, UNSW. His re-
search activities cover a wide range of topics in networking in-
cluding quality of service (QoS), mobile/wireless Internet, and
active/programmable network. He is the principal author of the
book Engineering Internet QoS (Artech House, 2002). He has
been working as an industry consultant for major organizations

such as Canon Research Lab (CISRA), Lucent and Fujitsu. In his previous job, he was
a Lecturer at the School of Computing Sciences, University of Technology (UTS), Syd-
ney. He also worked as Systems Engineer for the National Informatics Centre, New Delhi.
He was a visiting scholar at the Distributed Computing and Communications Labora-
tory, Computer Science Department, Columbia University, New York, and Transmission
Systems Development Department of Fujitsu Australia Ltd, Sydney.

Shaleeza Sohail is a PhD student in the School of Computer
Science and Engineering at the University of New South Wales,
Sydney, Australia. She received her Masters degree from UNSW
in 2000. She is a member of the Network Research Laboratory
of UNSW and currently is supervised by Dr Sanjay Jha. Her
research focuses on providing extensions to the Bandwidth Bro-
ker, for supporting network level QoS for next generation appli-
cations.

