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It is shown that the coupling between spins of conduction and localized electrons due 

to a covalent mixing between them can be expressed by a usual exchange type interaction 

with negative (antiferromagnetic) sign. 

It is proposed that the mixing effect is large in gadolinium metal under the assumption 

that the energy level corresponding to a trivalent gadolinium ion is very near and below 

the Fermi surface. Then it is shown that the mixing effect gives rise to a large negative 

g·shift for the localized spin, which substantially cancels the positive g-shift which comes 

from the exchange interaction, thus leading to a good .agreement with the observation. 

Furthermore, by introducing a spin-orbit coupling of localized electrons, we can obtain 

an anisotropic interaction between conduction and localized electrons, which is found to 

account for a large anomalous Hall effect observed in gadolinium metal. 

§ I. Introduction 

From measurements of specific heats and magnetic susceptibilities1l and also 

from spin structures found at low temperatures,2l it is clear that most of rare

earth metals consist of nearly free trivalent ions and nearly free conduction 

electrons which are released by the ionization of metal atoms. Then each ion 

has the same number off electrons as an atom of the element does. Vve may 

assume that the Hartree-Fock solution for the free ion is a good approximation 

to the wave function of f electrons in the metal and plane waves for those of 

conduction electrons and that they are nearly independent of each other. Pos

sible models for the interaction between them are then as follows: (1) The 

direct exchange coupling between spins of a conduction electron and an ion. 

This has been proposed by Zener3l for transition metals and has extensively 

been studied by Kasuya4l and Yosida.5l (2) Covalent mixing between an f 
orbital and the conduction band. A divalent ion is formed by transferring a 

conduction electron to an f orbital or a tetravalent ion is formed by transferring 

an f electron to the conduction band. This has been proposed by Anderson 

and Clogston6l for transition metals. This mechanism gives rise to an antiparallel 

coupling between spins of f and conduction electrons, because the orbital into 

which an electron is transferred must not be occupied by another electron with 

the same spin direction as that of the transferred electron. (3) Non-orthogonality 

between the wave functions off and conduction electrons. For alkali metals, 

noble metals and other metals, the non-orthogonality between core wave functions 
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g-Shift and Anomalous Hall Effect in Gadolinium Metals 847 

and plane, waves is taken into account by the orthogonalized plane-wave 

method. It makes an appreciable contribution to the cohesive energy. In the 

present case, the wave function of a conduction electron must be orthogonalized 

to those of f orbitals which are occupied by the electrons with the same spin 

direction as that of the conduction electron. This fact also leads to a spin 

coupling between f and conduction electrons with the negative sign. 

The purpose of this paper is to study the spin coupling arising from the 

effect of covalent mixing, neglecting the non-orthogonality of wave functions, 

and apply the results to the problems of the g-shift and the anomalous ·Hall 

effect of gadolinium metal. 

According to Kasuya/l the anomalous electrical resistivity of rare-earth 

metals is due to the exchange coupling between spins of conduction and f 
electrons and thus depends on the magnitude of the spin of the ion. If the 

exchange integral involved is assumed to have the same value for all of the 

rare-earth elements, the magnitude of the anomalous part of the resistivity at 

high temperatures agrees fairly well with experiments for various elements.7J,BJ 

On the other hand the anomalous Hall effect of a few rare-earth metals has 

been accounted for by that part of the exchange interaction which depends on 

the orbital angular momentum of the ion.8l Thus we see that the exchange 

interaction may be 'the most dominant one of the three mechanisms mentioned 

above. In gadolinium, however, this is not the case, because (1) it shows the 

largest anomalous Hall effect of rare-earth metals whereas it has no orbital 

angular momentum and (2) the g-shift of the metal is much less than that 

calculated from the value of the exchange integral assumed above. We assume 

that these two facts are connected with the covalent mixing, i.e., we assume 

that in this metal various energy levels are so arranged that it takes only a 

little energy to push a conduction electron at the Fermi surface to an empty f 
orbital and make a divalent rare-earth ion or to push an f electron to a con

duction level just above the Fermi surface and make a tetravalent rare-earth 

ion. We shall see, in fact, that this mechanism gives rise not only to an 

exchange-type coupling of spins which causes a negative g-shift of magnetization 

but also to an anisotropic scattering of conduction electrons which gives rise 

to the anomalous Hall effect. On the contrary, we shall see that its effect on 

the electrical resistivity is rather small, so that the conclusion drawn earlier4l'7J,BJ 

that the exchange coupling is the dominant mechanism of the anomalous electrical 

resistivity need not be altered. 

§ 2. Effective Hamiltonian 

We shall first consider an 8-electron problem, seven in f orbitals of an ion 

with the total spin quantum number S = 7/2 and one in the conduction band. 

An unperturbed state of this system is specified by the z components of the 
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848 J. Kondo 

spms of the ion and the conduction electron and by the wave vector of the 

conduction electron. Let two such states be ?ffg and ?ff/: 

?ffg= (8 !) - 112 :EP~PP¢k(ro) II~=1¢i(ri)x(Co) esM(C1···C7)' (1) 

?ffg' = (8 !) -l/2 :Ep~ PP¢kl (ro) IIL1¢i (ri) x' (Co) eSMf (C1·. 'C7)' (2) 

where :EP is the summation over all permutations P of space and spin coordinates 

(r., C,) of the eight electrons, ¢k is a plane wave function with the wave vector 

k, ¢i an atomic f function, i specifying the z component of the orbital angular 

momentum. x and @ are the spin eigenfunctions of the conduction and f elec

trons, respectively. 

Let us consider a perturbation process in which a conduction electron with 

the wave number k is transferred to an empty f level ¢m and then returns to 

a conduction level with another wave vector k'. Since we shall later be con

cerned only with the conduction electrons near the Fermi surface, their energies 

are assumed to be equal .to the Fermi energy E1. Then the corresponding ex

cit~d state and the second-order perturbation energy are as follows : 

?F.= (8 !) - 112 :Ep~ PP¢m (ro) II~=1 ¢i (ri) em (Co·. ·C7)' 

- (?ff/ I V.al ?F.)( ?F. I V.al ?Fg) I (E_- E,), 

(3) 

(4) 

where em(Co· .. C7) is a spin function in which the zeroth and m-th spins are 

coupled anti parallel, E_- E1 the energy necessary to take an electron near the 

Fermi surface and place it on ¢m, V.a the perturbation which causes the electron 

transfer. In Eq. (4) we shall first integrate over the space coordinates and 

then express it in terms of a spin operator which gives the same matrix element 

as Eq. (4) does when integrated with the spin functions of the ground states on 

both sides. The part of space integral in (?ff.J V.al ?Fg) is given by 

(5) 

When the expansion 

¢k(r) = N-112 e•k·R:Ez (2l + 1) i 1 Jz (kr) Pz (cos e/cr) (6) 

IS inserted, this becomes 

Im=N- 112 Vo eik·R i 1 (4n/2l+ 1) 112 Y 1 ~(8~c, ((J~c), (7) 

where R Is the position vector of the ion, l = 3 for rare-earth metals, V 0 given 

by 

ro 

Vo = {4n (2l + 1)} 112 ~ P(r) V.a(r) J 1 (r) r 2dr, 
., 
0 

(8) 

P(r) being the radial part of the atomic f function. The dependence of the 

matrix element on the direction of k is given by the l-th spherical harmonics 
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g-Shift and Anomalous Hall Effect in Gadolinium Metals 849 

because V.tt(r) has been assumed to be spherically symmetric. We shall see 

.later that its axial part is important for the anomalous Hall effect. The spin 

part of the matrix element (4) is given by (x'@sM'I@m)(@mlx@sM), which is identi

cally equal to 

(9) 

where r m is a projection operator which picks up those spin functions in which 

s0 and sm are antiparallel : 

(10) 

where 2112 is Serber's factor. 9> When summed over all excited spin functions, 

Eq. (9) becomes 

(x'@sM'IT;,.Ix@sM)=(x'@sM'I {(1/2) -2so·sm} !x@sM) 

=(x'@s,;,l { (1/2)- (so·S/S)} lx@sM), (11) 

where S is the total spin angular momentum of the seven f electrons. Thus 

we see that ( 4) is equivalent to 

{V0
2/N(E_-E1)}exp[i(k-k') -R] {(s0 ·S/S)- (1/2)} 

x {4n/ (21 + 1)} Y?;,. (8," ({J~c) Ytm (8~c,, ({J~c,), (12) 

when integrated over spin functions of the ground states. Summing over all 

excited orbital states (summation over m), neglecting the spin independent part 

and noting that the wave vector of the conduction electron has been changed 

form k to k', we see that Eq. (4) is equivalent to the following expression in 

our 8-electron problem ; 

N- 1 ""E,kk'e•ck-k'J·R{V0
2/(E_-E1)S}Pt(cos 8~c~c,) (so·S)a~;-,* a~;-, (13) 

where a~;- is the destruction operator of the conduction electron with the wave 

number k. 

Let us next consider the other perturbation process in which an f electron 

is excited to a conduction level with the wave number k' near the Fermi surface 

and then another conduction. electron with the wave number k near the Fermi

surface is transferred to the empty f level. The excited state pertinent to this 

process is 

lJI".= (8 !) - 1/2 ""E,pO pPijik (ro) lfikl (rmHL+m \b. (r.) X (~o) esM(~1·. -~7). (14) 

It is convenient in this case to rewrite lJI"g', Eq. (2), as follows : 

-lJI"g' = - (8 !) - 112""E,p0 pP\fim (ro) lfik, (rm) Ili+m \fii (ri) X1 (~m) (H)SM' (~1·. ·~o·. ·~7), (15) 

where @SM' (~1···(o···(7) differs from @SM' ((1···(7) in Eq. (2) in which f:m has 

been replaced by ( 0• The corresponding perturbed Hamiltonian is given by 

(16) 
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850 J. Kondo 

where E1 -E+ is the energy necessary to put an f electron on the Fermi surface. 

The orbital part of the integral is the same as before. The spin part IS 

(x' e:.m) (H)SMI ((1·. ·(o·. ·(7) I X ((o) @sM((1·. ·(7) ><x@sMI x@sM> 

= (x' ((o) (H)SM' ((1· · ·(7) IPomiX ((o)@sM((1· · ·(7)) 

= (x'@ SM'I { (1/2) + 2so · sm} I x@ sM) 

=(x'@sMtl {(1/2) + (so·S/S)} lx@sM), (17) 

where Pom is the permutation operator which interchanges ( 0 and (;,.. Thus in 

this case the equivalent Hamiltonian is expressed by 

N-1 L;kk' ei(lr-k')·R {V0
2/ (E1- E+) S} Pz (cos ()kk') (so· S) a~<,* ak. (18) 

Now considering the whole crystal, summing contributions from each ion 

m the crystal and adding the both processes, we have the following expressiOn 

as our effective Hamiltonian : 

H N -1" i(kl-k)·Rn A p ( {) ) (2 S) * 1 = £ ..... mJr.J.-.t C o l COS kk;l So" n ak akt, 

where 

which IS positive. The direct exchange interaction IS expressed by 

Hex= - N-l :Enkkl ei(kl-k)·Rn Jo (2so. Sn) ak* a"'' 

(19) 

(20) 

(21) 

where J 0 IS the exchange integral between the Bloch function and an f orbital.*> 

§ 3. g-shift and electrical resistivity 

We shall first discuss the g-shift of a 4f spin due to the interactions (19) 

and (21). The g-shift of electron spins is like ·the Knight shift in NMR ex

periments. Averaging Eqs. (19) and (21) over the coordinates of conduction 

electrons which are in thermal equilibrium under the applied magnetic field H 

and adding both, we have 

where Z is the valence of the ion. Since (2s0,) is expressed m terms of the 

Pauli susceptibility x of the conduction electrons from 

xH = (2so.)!1BZN, 

this expression becomes 

*l J 0 is the same as F 0 in reference 8) where its definition is given. In Eq. (21) we have 

neglected the dependence of the exchange integral ov~r k and k'. 
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g-Shift and Anomalous Hall Effect in Gadolinium Metals 851 

Thus we have 

(22) 

where p (E1) is the state density of the conduction band at the Fermi energy. 

This expression for the g-shift has been obtained by Y osida"> without the mixing 

term. The latter term gives a negative contribution as predicted by Anderson 

and Clogston.6> 

The electrical resistivity due to the interactions (19) and (21) is also easily 

obtained4l and is expressed in the paramagnetic region by 

_ 3n m V S(S+1) (J.2+ A0
2 

) 

Ppar•m•g- 2 e2h N E, o 2l+ 1 ' 
(23) 

where V is the total volume of the crystal. 

According to the observation by Elliott, Legvold and Spedding/0> an ex

trapolated value of magnetization to absolute zero is 7.12 f.J.B per ion, which 

corresponds to .dg = 0.034,*> whereas Pparamag is 106 fl.!.? em as measured by Colvin, 

Legvold and Spedding.11> Then assuming the free-electron value of pj N = 0.61 

(ev) -I, we have from these values of .dg and Pparamag 

J 0 =0.230 ev, A 0 =0.174 ev. '(24) 

The value of J0 is in reasonable agreement with the previous estimate,8> 0.25 ev, 

which was determined to agree with measurements of resistivities of more than 

half-filled rare-earth metals assuming A 0 = 0. As will be seen later from the 

sign of the anomalous Hall effect, we have E1 - E+ <E-- E1, i.e., the level cor

responding to a trivalent .gadolinium ion is very near and below the Fermi 

surface. Then from (24) and (20) we have 

(25) 

As can be seen from (23), the effect of covalent m1xmg on resistivity is 

greatly reduced as compared with the exchange term due to the factor 1/ (2l + 1), 

whereas it makes a comparable and negative contribution to the g-shift. (This 

would be 0.14 with the exchange term only.) 

§ 4. The anomalous Hall effect 

In this section we shall calculate the anomalous Hall effect by putting 

forward the perturbation calculation to the third-order, taking the spin-orbit 

coupling of f electrons as an additive perturbation. The third-order perturbed 

Hamiltonian is expressed by 

*l Kip, Kittel, Portis, Barton and SpeddinglOa) have measured ESR of gadolinium metal; 

their result gives .dg= -0.05. 
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852 J. Kondo 

(26) 

where li is the operator representing the orbital angular momentum of the i-th 

electron, taking the nucleus of the ion as the origin of the position vector, J... 

the constant of spin-orbit coupling, which has the value 0.2 ev for a trivalent 

ion.12> JE is the difference in energies of lJ!"g and lJ!"., which is assumed to be 

equal to that between lJfg' and lJ!".'. lJf.' may or may not be different from lJf. 

in the assignment of the f orbital which is doubly occupied or wholly empty. 

Thus it is given by Eq. (3) or (14) with m replaced by m'. 

Carrying a similar calculation to the previous section, we obtain an equiva

lent operator, which gives the same matrix element as Eq. (26) does when 

integrated with the spin functions of lJ!"g and lJfg' on both sides. Adding con

tributions of two processes and summing over the whole ions in the crystal, 

we find that the operator is expressed by 

N -1 '"' i(l<.f-T.')•Iln ·pI ( e ) 
.L..J ,.1,.1,,, e z 1 cos ""' 

where B 1 and B 2 are defined by 

Br= (J.VN2S) [ {1/2(E1 -E+) 2}- {1/(E_-Et) 2}], (28) 

B2= {J.VNS(2S-1)} [ {1/2(E1 -E+) 2} + {1/(E_-E1) 2} ], (29) 

IC and IC1 are unit vectors in the directions of k and k'. The prime on the 

Legendre function P 1 denotes differentiation with respect to the argument. Since 

the matrix element of (27) between r/JJ, and rfJ~<' changes its sign, when k and k' 

are interchanged, one might expect that it might give rise to the anomalous Hall 

effect when the transition probability of scattering of conduction electrons is 

calculated to the second Born approximation, using (27) and (21) as perturba

tions causing scattering.8> It is found, however, that this is not the case unless 

l = 1. This is because the above mentioned transition probability gives rise to 

a deviation from spherical symmetry of the distribution function of conduction 

electrons, which is represented by the l-th spherical harmonics and thus gives 

nothing to the total current density unless l = 1. 

This conclusion is connected with the assumption that V.d(r) is spherically 

symmetric. There must be, however, an axially symmetric part of V.d(r), because 

gadolinium metal has a hexagonal structure, although this may be much smaller 

than the spherical part. Then let V2 (r)P2 (cos8) be the axial part of V.d(r), 

where e is the angle between the position vector and the crystallographic c axis, 

which we shall call the z axis. When this is substituted, Eq. (5) is expressed 

by a sum of spherical harmonics of k with l = 1 .. · 5, of which we take only the 

term of l= 1. Then we find from (5) 
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g-Shift and Anomalous Hall Effect in Gadolinium Metals 853 

2112 iY1±1* (8,., ([J~c) 

3112iY10 * (8,., q;,.) 

0 

co 

m=±1 

m=O 

otherwise, 

vl = (12n/7) 112 (3/5) I R(r) v2 (r) Jl (kr) r2 dr.*l 
~ 

0 

(30) 

(31) 

Carrying a similar perturbation calculation, adding contributions of two 

processes and summing over the whole ions in the crystal, we find that the 

equivalent operator is expressed by 

H2 = N-1 .L;,J.,J.,I ei(k'-k)·Rn iAl {3Sn ° (1C1 X !C) - 2S,. (1C1 X !C) .}ak* ak.l (32) 

plus a term involving { (S, · s~) S, · (!C.' X !C) + S, · (1C 1 X !C) (S, · s0)} as a factor, which 

we shall neglect, because it contributes nothing to the anomalous Hall effect as 

we have already seen in reference 8) . A 1 is defined by 

A 1= l.V12 
{ 1 _ 1 } 

S (E_-E1) 2 2(E1 -E+) 2 • 

(33) 

Equation (32) is anisotropic in the sense that the z axis is distinguished from 

the x and y axes. The Hall effect resulting from it is anisotropic, too. How

ever, we shall not be concerned with the anisotropy here, firstly, because an 

experiment has been made only on a polycrystal and secondly, because it is 

when we know about the anisotropies of band structure and scattering mechanism 

that we can make any accurate prediction of the anisotropy of the anomalous 

Hall effect. Thus we consider in the following discussion the Hamiltonian of 

the form 

(32') 

instead of · (32). This may amount to an overestimation of the effect, because 

the real matrix element is one-third of (32') when Sn is in the z direction. 

But a qualitative result may be correct. 

A calculation of the anomalous Hall effect has been made in reference 8) 

with the exchange interaction (21) and a Hamiltonian which has the same form 

as (32') as interactions causing scattering of conduction electrons. The result 

for the Hall resistivity is expressed by 

27n4 3A1Jo2 (T) h 
PH=24 E 0

3 r e2kF ' 
(34) 

*> It is possible that the Bloch function is modulated from the plane wave by a function u/c 

with the periodicity of the lattice, which might contain a d component. Then Im can contain a 

component of l=l, even when V 8a(r) is spherically symmetric, and can be expressed by the same 

expression as Eq. (30), though the definition of V1 may be different from Eq. (31). 
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854 J. Kondo 

where kF is the magnitude of the wave vector at the Fermi surface, Eo and 

r(T) are defined by 

Eo= (h2/2m) (3n2N/V) 2i3, 

r(T) =((M-(M)) 3), 

(35) 

(36) 

M denoting the component of a spin S in the direction of the effective field. 

The average is taken over thermal equilibrium. In the paramagnetic region 

r(T) becomes 

r (T) = - f.J.BH2S (S + 1) (2S 2 + 2S + 1) /15k (T- e p) , (37) 

where H is the applied field, e p the asymptotic Curie temperature. 

The Hall coefficient, which is PH devided ·by H, has been determined ex

perimentally by Kevane, Legvold and SpeddingiaJ (Fig. 1) and is represented 

quite well by 

R = ( 0.95 + 1400 ) X 10-I2 volt· em/amp· oersted (38) 
T-290 

above T = 300° K. The constant term represents the usual Hall effect and cor

responds to 2 negative carriers per atom in the free,electron approximation.I3J 

The second term is an anomalous one, which may correspond to that calcu

lated in this section. Taking Eo= 3.5 ev (free-electron value), J0 = 0.23 ev and 

AI= - 0.022 ev, we :find that the agreement with the experiment is satisfactory 

as shown in Fig. 1. *> The value of AI may be reasonable, because it is smaller 

than Ao. The negative sign of AI indicates that 1/ (E1 - E+) 2 dominates over 

XlQ-12 

1W~~--------------------------------------~ 

o expenmental 

100 theoretical 

R(V•cm) 
A·Oe 

0 o~--------~1~00~--------~~--------~xo~--------~4oo 
roc 

Fig. 1. The Hall effect in gadolinium metal above the Curie temperature. 

*> See notes added in proof, 1). 
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g-Shift and Anomalous Hall Effect in Gadolinium Metals 855 

1/ (E_- Ef) 2, so that the level corresponding to a trivalent gadolinium ion is 

very near and below the Fermi surface. Then we have from A1 = -0.022 ev 

A.VN(Ef-E+) 2 =0.15 ev. 

§ 5. Discussion 

We have shown in this paper that the coupling between spins of conduction 

and localized electrons due to a covalent mixing between them is expressed by 

a usual exchange-type interaction. We have also found that the coupling is 

negative (antiferromagnetic). We can expect that this interaction between 

conduction and localized electrons can have an appreciable effect on various 

phenomena of transition metals, rare-earth metals and dilute alloys. 

Thus we have calculated its contributions to the g-shift and the electrical 

resistivity of gadolinium metal, which are found to consistently account for the 

experimental observations of both phenomena, if compounded with the direct 

exchange interaction. Moreover it is quite possible that a part of the anomalous 

electrical resistivity of ferromagnetic transition metals is caused by the mixing 

effect. 

An indirect coupling between localized spins can also arise from this inter

action through the second-order perturbation process. Its magnitude may be of 

the order of V,V (LiE) 2Ef. It should be noted, however, that other terms 

of the same order may result from many other processes which are not included 

in the above-mentioned second-order process. Thus it may be an interesting 

subject to investigate this point. 

The spin polarization of conduction electrons due to mixing is interesting, 

too. It should be noted that its spatial distribution may be quite different from 

that due to the usual exchange interaction, especially near the localized spins, 

because the k- and k'-dependence of the interaction is expressed by a Legendre 

function of the cosine of the angle between k and k'. If the scattered waves 

are analysed in terms of the partial waves, only the l-th wave is modified. This 

means. that the spin polarization at the center of the localized spin vanishes*>. 

This point and a similar problem arising from the non-orthogonality of the wave 

functions will be a subject of further publication. 
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Notes added in proof: 1) Recently K. J. Tauer measured the anomalous Hall effect of gadoli

nium below the Curie temperature. The temperature dependence has a close resemblance to that 

calculated from Eq. (36) (see Fig. 1 of reference 8)). However, its magnitude is about three 

times as large as Eq. (34) with the values of parameters determined in the text. In our opinion 

the discrepancy may be due to our neglect of the inelastic scattering,sl whose contribution relative 

to that of the elastic scattering should be different below and above the Curie temperature. We 

thank Dr. K. J. Tauer for showing us his result before publication. 

2) Recently J. Ehara measured ESR of manganese in palladium. (We thank him for showing 

us his results before publication.) According to his result Llg is negative and large (--0.02). He 

also observed a hyperfine splitting which is about 60% of that in ionic crystals. Since the hyper

fine field in ionic crystals is negative, this result indicates that the contribution from conduction 

electrons to the internal field is positive if S=5/2 is assumed. These apparently contradictory 

results (the negative g·shift and the positive polarization) can be reconciled in· the light of the 

present theory, if A 0>J0>0 is assumed. Then the g·shift. is negative, while the internal field at 

the nucleus, which is caused solely by J 0, is positive. 
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