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C7-SPACES WITH PRESCRIBED EQUIVARIANT COHOMOLOGY

GEORGIA TRIANTAFILLOU'

Abstract. Let G be a finite group. In this note we study the question of realizing a

collection of graded commutative algebras over Q as the cohomology algebras with

rational coefficients of the fixed point sets X" ( H < G) of a G-space X.

Let tí be a graded commutative algebra over Q. The question of realizing & as the

cohomology with rational coefficients of a space X is answered by Quillen [4] and

more directly by Sullivan [5], In particular, Sullivan constructs a space X of finite

type, i.e. ir¡(X) is a finitely generated abelian group for every /, which realizes 68.

Now let G be a finite group which acts on tf from the left by algebra isomorphisms.

Because of the functoriality of the constructions in [4] and [5] one can construct a

G-space X such that H*(X;Q) = tf, where the isomorphism is G-equivariant. The

space X in both cases is a rational space.

In this note we consider a more general question. Let 6C be the category of

canonical orbits of a finite group G [1], The objects of 0C are the quotient spaces

G/H, where H is a subgroup of G (H < G), and the morphisms are the G-maps

between them, where G acts on G/H by left multiplication.

Definition 1. A system of graded commutative algebras (GA's) for G is a

covariant functor from (3C into the category of graded commutative connected

algebras over Q.

We recall that a GA tí is said to be connected if 68° = Q and is said to be of finite

type if tf " is a finite-dimensional vector space over Q.

Let A be a G-space such that each fixed point set XH, H < G, is nonempty and

connected. Given A, a system of GA's H*( X) is defined by

H*(X)(G/H) =H*(X";Q)

on objects of (P0. If/: G/H — G/K is a G-map, then there exists an element g E G

such that g~lHg < K, and the map /is determined by H t-> gK. The map/induces a

map /: XK -» X" by x i-> gx and therefore a unique map H*(X)(f)=f*:

H*(X";Q) - H*(XK;Q).

The main result of this paper is the following

Theorem 2. Given a system H of connected GA's of finite type, there exists a

G-CW-complex X of finite type such that H*(X) = H.
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We say that a G-space X is of finite type if each XH (H < G) is of finite type.

For the proof of the theorem we need some additional terminology and the

following lemmas.

Definition 3. A coefficient (respectively rational coefficient) system for G is a

contravariant functor from Gc into the category of abelian groups (respectively the

category of vector spaces over Q).

For instance, if X is a G-CW-complex [1], one can define coefficient systems 77„( X)

andÇ„(A)by

7rn(X)(G/H)=%(XH)    and    C„(X)(G/H) = C„(XH;Z),

where the latter is the cellular complex of X".

Definition 4. Let A be a coefficient system of finitely generated abelian groups

and let M be a rational coefficient system. Let /: A -* M be a monomorphism. The

system A is called a system of lattices for M if f(G/H) ® id:

A ( G/H )®Q=-M( G/H )    for all subgroups H < G.

Lemma 5. Every rational coefficient system M has a system of lattices A.

Proof. The construction of A is done by induction on the subgroups of G. We

first choose a lattice for the vector space M(G/G).

Let H < G be a subgroup and assume inductively that A(G/K) is constructed for

all subgroups K<G which contain H properly. M(G/H) is a Q^/Z/Z/ymodule

and there exists a Z(A/////)-submodule B such that B ®ZQ s M(G/H) (cf. [2, p.

495]). We consider bases for B and A(G/KX).A(G/Km) regarded as Z-modules,

where A',.Km are representatives of all conjugacy classes of subgroups of G

which contain H as a maximal subgroup. Let Ax,...,Am be the matrices which

represent the linear maps M(G/Ki) -* M(G/H) (induced by the projections G/H —

G/AT-) with respect to the bases above. Let N be an integer such that NAX,.. -,NAm

are matrices with integral entries. We multiply the basis elements of B by l/N and

consider the new Z-module generated this way. Obviously, it is a Z(NH/H)-module

and it has the property that it contains the images of A(G/K) (K > H) via the maps

induced by the projections. Hence, we have constructed A(G/H). This completes the

proof of the lemma.

Lemma 6. Let A' be a coefficient system of finitely generated abelian groups and let

M be a rational coefficient system. Let fi: A' -» M be a monomorphism. Then M has a

system of lattices A which extends A', i.e. there exist monomorphisms i and f such that

the diagram

A'      -»      M

i\ /f

A

commutes.
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Proof. The same inductive argument works as above. In order to construct

A(G/H) D A'(G/H) we use the semisimplicity of Q(NH/H) to split off

A'(G/H)®Q EM(G/H).

Let M be a Q(NH/H)-submodule of M(G/H) which is a complement of A'(G/H)

® Q, and let B be a Z( NH/H )-submodule of M such that B ® Q = M. We choose

a basis for A'(G/H) © B and proceed as above.

Proof of Theorem 2. We first use D. Sullivan's spatial realization of an algebra

[5]. It is a functor F from the category of differential graded commutative algebras

(DGA's) into the category of simplicial sets such that H*(F(Cl);Q) s //*(68) in a

canonical way. Composing F with the geometric realization functor S i-> | S\, we get

a functor into the category 'Tof CW-complexes.

Let F: 6C -» *5 be the functor defined by F(G/H) =\F(H(G/H))\ on objects of

Cc, where H(G/H) is considered as a DGA with differential equal to 0.

Such a functor is called an t^-space in [3], Given an t^-space T, Elmendorf

constructs a G-space C(T) in a functorial way such that C(T)" is naturally

homotopy equivalent to T(G/H), for H < G. Let Y = C(F). By construction, Fis a

G-CW-complex which realizes H. Moreover, F (and each Y") is a rational space.

Next we construct a G-CW-complex X of finite type and a G-map /: X — Y such

that /": X" -* Y" is a rationalization for every subgroup H < G. We proceed by

induction on the equivariant Postnikov decomposition of Y [6] starting from a point.

Let Xn be a G-CW-complex of finite type and let

be a G-map which is a G-rationalization, i.e.

Here Yn is the «th stage of the equivariant Postnikov decomposition of Y. The

(n + l)st equivariant /V-invariant of Y is an equivariant cohomology class repre-

sented by a natural transformation

k--Çn+2(Y„)^ï„+l(Y).

We compose k with /'„: Cn + 2(Xn) — Cn + 2(Yn) and consider the image of k ° in in

77,I+,( Y). By Lemma 6, we can extend it to a system of lattices A of 7¡rn+ ,(F). Let Â

be any coefficient system of finitely generated abelian groups which surjects onto A,

0->T-A-*A-*0,

where T(G/H) is finite for every G/H. Consider the diagram:

Çn+i(Yn)      -     vn+x(Y)DA

in î Î

Çn+2(X„)-> i
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Since Ç„ + 2(Xn) is projective in the category of coefficient systems [1], there is a

lifting k'. Since k ° in is a cocycle, it annihilates the cycles of C„ + 2( Xn). Therefore, k'

maps the cycles of Ç„ + 2( Xn) to torsion elements of A. Hence a multiple m ■ k' is a

cocycle. Now, we construct Xn+X from Xn such that vTn+i(^n+i) — A, and with

m ■ k' as the (« + l)st /(-invariant. Note that over the rationals, k and m ■ &

determine the same (n + l)st stage YH+X of the Postnikov tower. So Y„+x is an

equivariant rationalization of Xn+X.

In exactly the same way as in Theorem 2, we can prove the following statement.

Theorem 7. Given a system tí of connected nilpotent differential graded algebras-

over Q of finite type there exists a G-CW-complex X of finite type and a morphism

tf -» t¡2x which induces an isomorphism on cohomology for every G/H (H < G).

The definition of a system of DGA's is analogous to Definition 1. A system of

DGA's may not be injective in the sense of [6]. The system of DGA's &x was

introduced and studied in [6]. By definition, &X(G/H) = &xn on objects, where &x

is the Sullivan-De Rham complex of PL forms on X [5],

A DGA tf is said to be connected if H°( tf ) = Q and it is said to be of finite type

if //'(tf) is a finite-dimensional vector space over Q. For the definition of

nilpotency see [5].

Theorem 7 generalizes a result by Sullivan [5] in the nonequivariant case (trivial

G-action).
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