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G-STRUCTURES OF SECOND ORDER
DEFINED BY LINEAR OPERATORS

SATISFYING ALGEBRAIC RELATIONS

Demetra Demetropoulou-Psomopoulou

Abstract
The present work is based on a type of structures on a differential
manifold V , called G-structures of the second kind, defined by
endomorphism J on the second order tangent bundle T 2(V ). Our
objective is to give conditions for a differential manifold to admit
a real almost product and a generalised almost tangent structure
of second order. The concepts of the second order frame bundle
H2(V ), its structural group L2 and its associated tangent bundle
of second order T 2(V ) of a differentiable manifold V , are used
from the point of view that is described in papers [5] and [6].
Also, the almost tangent structure of order two is mentioned and
its generalisation, the second order almost transverse structure, is
defined.

Introduction

A special type of first kind G-structures on an n-dimensional differ-
entiable manifold Vn, are those defined by a differentiable field of linear
operators Jx, such that at each point x ∈ Vn, Jx maps the tangent space
Tx(Vn) into itself and satisfies algebraic relations.

Thus if J2
x = 0 and Jx is of rank p (2p ≤ n) everywhere, then there

is defined a G1-structure ([12], [14]), the so called generalised almost
tangent structure ([2]). In particular, if n = 2p, then the manifold Vn

has an almost tangent structure, briefly (a.t.)-structure ([4], [11]).
If J2x = I, then there is, defined on Vn, a real almost product struc-

ture, briefly πR-structure, of dimension (n1, n2) with n1 +n2 = n ([13]).
A generalisation to the second order of the πR-structure and the

G1-structure, respectively π2
R-structure and G2

1-structure, is given in [5]
and [6], by means of a differential field of linear operators Jx, acting on
the space T 2

x (Vn) of the second order tangent vectors and satisfying the
same algebraic equations.
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For this purpose the concepts of the frame bundle and tangent bundle
of second order are given with the use of the jet theory discussed in
works of C. Ehresmann ([7], [8], [9], [10]). The notions of the second
order tangent vector coincides with that defined by [3]. However there
must be noticed that there are other, different definitions of the tangent
bundle of higher order, in general ([15], [17]).

From the same standpoint in the present paper, there is given on Vn,
at first, a (a.p.)2R-structure of dimension

(
n +

(
n + 1

2

)
−

(
p +

(
p + 1

2

))
, p +

(
p + 1

2

))
,

(that is an almost product structure of second order), induced from an

G2
1-structure of rank p +

(
p + 1

2

)
.

Additionally, the second order almost tangent structure, briefly (a.t.)2-
structure, a special case of the G2

1-structure ([6]), is mentioned. This
structure is a particular case of the (a.tr.)2-structure too, that is also de-
fined, and is a generalisation to the second order of the almost transverse
structure ([16]).

Finally, with the help of the previous structures, to a G2
1-structure

of rank p +
(

p + 1
2

)
, there is given a compatible (a.p.)2R-structure of

dimension(
n +

(
n + 1

2

)
− 2

(
p +

(
p + 1

2

))
, 2

(
p +

(
p + 1

2

)))
.

1. Preliminaries

We recall the following, from the concepts given by C. Ehresmann ([7],
[8], [9], [10]) and used in [5] and [6]:

Let Vn be an n-dimensional differentiable manifold of class C∞. The
second order frame bundle H2(Vn) =

⋃
x∈Vn

H2
x(Vn) is a principal fibre

bundle with basis Vn and structural group L2
n, where H2

x is the set of all
invertible 2-jets of Rn into Vn with source 0 ∈ Rn and target x ∈ Vn. It
can be identified ([5]) with the space of bases of the vector space T 2

x (Vn),
at x ∈ Vn, of the second order tangent vectors, as those are defined by
[3].

The Lie group L2
n, that is the set j2

0f of all invertible 2-jets with source
and target 0 ∈ Rn of a 2-mapping f at the point 0 ∈ Rn, can be identified
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([5], [6]), with a subgroup of matrices Gl(N,R), where N = n+ n(n+1)
2 .

To the element a ∈ L2
n,

(1.1) a = (ai
j1 , a

i
j1j2), i, j1, j2 = 1, 2, . . . n, det(ai

j) �= 0 and ai
j1j2

symmetric with respect to j1, j2,

corresponds, the matrix A of the form,

(1.2) A =

[
ai

j1
0

ai
j1j2

ai1
j1
ai2

j2

]
.

We have, dimL2
n = n2 + n

(
n + 1

2

)
.

The tangent bundle of the second order, T 2(Vn) =
⋃

x∈Vn

T 2
x (Vn) has

([5], [6]) basis Vn, structural group L2
n and fibre F 2 = (L2

1,n)∗, where
L2

1,n is the set j2
0g of all 2-jets with source 0 ∈ Rn and target 0 ∈ R of

a 2-mapping g at 0 ∈ Rn. This bundle is ([5]) the dual vector bundle
of T 2∗

1 (Vn) =
⋃

x∈Vn

T 2∗
1,x(Vn), with basis Vn, structural group L2

n and

fibre L2
1,n.

Each element ω of the vector space L2
1,n, isomorphic to the fibre

T 2∗
x (Vn) = T 2∗

1,x(Vn), can be written in the form,

ω =
[

ωi1

ωi1i2

]
, i1, i2 = 1, 2, . . . , n and ωi1i2

symmetric with respect to the indices i1, i2.

Also, dimL2
1,n = dimT 2∗

x (Vn) = n +
(

n + 1
2

)
.

For two given charts, the transformation law for the coordinates of an
element of T 2∗(Vn), is given by the form,

(1.3)

xi′ = xi′(xj),

[
ωj′

1

ωj′
1j′

2

]
=


 ai1

j′
1

0

ai1
j′
1j′

2
ai1

j′
1
ai2

j′
2


[

ωi1

ωi1i2

]
,

where(
ai1

j′
1

=
∂xi1

∂xj′
1
, ai1

j′
1j′

2
=

∂2xi1

∂xj′
1∂xj′

2

)
∈L2

n and {xi}i=1,2,... ,n, {xj′}j=1,2,... ,n
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are two systems of local coordinates at x ∈ Vn.

Let the n +
(

n + 1
2

)
second order tangent vectors,

(1.4) (ei1 , ei1i2), i1, i2 = 1, 2, . . . , n and ei1i2

symmetric in the indices i1, i2,

define the natural basis for T 2
x , for the local chart {xi}i=1,2,... ,n at the

point x ∈ Vn. Then, every v ∈ T 2
x can be expressed uniquely in the form,

v = [vi1vi1i2 ], i1, i2 = 1, 2, . . . , n and vi1i2

symmetric in the indices i1, i2.

For another system of local coordinates {xj′}j=1,2,... ,n at x ∈ Vn the
second order tangent vectors (ej′

1
, ej′

1j′
2
) of a new basis of T 2

x , are trans-
formed to the basis (1.4) by the matrices,[

ei1

ei1i2

]
=


 a

j′
1

i1
0

a
j′
1

i1i2
a

j′
1

i1
a

j′
2

i2


[

ej′
1

ej′
1j′

2

]
,

and 
 a

j′
1

i1
0

a
j′
1

i1i2
a

j′
1

i1
a

j′
2

i2




is the corresponding matrix to the element (aj′
1

i1
, a

j′
1

i1i2
) ∈ L2

n (inverse of
that given in the relations (1.3)). The transformation law for the local
coordinates of v ∈ T 2

x is given by the matrices,

[ vj′
1 vj′

1j′
2 ] = [ vi1 vi1i2 ]


 a

j′
1

i1
0

a
j′
1

i1i2
a

j′
1

i1
a

j′
2

i2


 .

If Jx is a differentiable field of linear operators acting on the space T 2
x ,

then the corresponding element F of T 2
x ⊗T 2∗

x can be represented by the
matrix,

(1.5) F =

[
F j1

i1
F j1j2

i1

F j1
i1i2

F j1j2
i1i2

]
, i1, i2, j1, j2 = 1, 2, . . . , n,

F j1j2
i1

symmetric in j1, j2, F
j1
i1i2

symmetric in i1, i2

and F j1j2
i1i2

symmetric in i1, i2 and j1, j2.

It is defined by the relations,


(Jxv)j1 = F j1
i1

vi1 + F j1
i1i2

vi1i2 ,

(Jxv)j1j2 = F j1j2
i1

vi1 + F j1j2
i1i2

vi1i2 ,

where v = (vi1 , vi1i2), is a 2-tangent vector at x ∈ Vn.
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2. A (a.p.)2R-structure induced from a G2
1-structure

I. A real almost product structure of second order is defined ([5])
on an n-dimensional differentiable manifold Vn of class C∞, by a linear
operator Jx acting on the space T 2

x (Vn) of the second order tangent
vectors at each point x ∈ Vn and satisfying the equation

(2.1) J2
x = I.

Then Jx gives a decomposition of T 2
x in a direct sum of two complemen-

tary subspaces.

If we assume that,

(i) L and M are the two proper supplementary subspaces of T 2
x cor-

responding to the eigenvalues −1 and +1 respectively, according
to the relation (2.1),

(ii) dimL = n +
(

n + 1
2

)
−

(
p +

(
p + 1

2

))
= q +

(
q + 1

2

)
+ qp,

q = n− p, dimM = p+
(

p + 1
2

)
, then, there is defined on Vn an

(a.p.)2R-structure of dimension
(
q+

(
q + 1

2

)
+qp, p+

(
p + 1

2

))
,

with n − p = q. It is, also a generalisation of the real almost
product structure of the first order, briefly πR-structure ([13]).

Remark. It must be noticed that in [5] there is discussed a real
almost product structure of second order, the π2

R-structure, with different
dimension.

Its adapted basis can be defined by

{(eα1 , eA1)(eα1α2 , eα1A2 , eA1A2),
α1, α2 = 1, 2, . . . , q, A1, A2 = q + 1, 2, . . . , q + p = n,

where the 2-tangent vectors,

{eα1 , eα1α2 , eα1A2} and {eA1 , eA1A2},

form a basis of L and M respectively.
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The matrix A of the transformation for the adapted bases is of the
form,

(2.2) A =




[
a

β′
1

α1 0

0 a
B′

1
A1

] [
0 0 0
0 0 0

]



a

β′
1

α1α2 0

a
β′
1

α1A2
0

0 a
B′

1
A1A2






a

β′
1

α1a
β′
2

α2 0 0

0 a
β′
1

α1a
B′

1
A1

0

0 0 a
B′

1
A1

a
B′

2
A2






,

with [
a

β′
1

α1 0

0 a
B′

1
A1

]
∈ L(n−p,p), a

β′
1

α1 ∈ Lq, a
B′

1
A1

∈ Lp,

where L(n−p,p) is ([13]) the structural group of the πR-structure.
Thus, this (a.p.)2R-structure is a G-structure of second order whose

structural group L2
(n−p,p) is consisting of matrices of the form (2.2), sub-

group of L2
n.

The corresponding tensor F to the operator J for the (a.p.)2R-adapted
basis can be represented by the matrix,

(2.3) F =




[−δβ1
α1

0

0 δB1
A1

] [
0 0 0
0 0 0

]


 0 0

0 0
0 0






−δβ1

α1
δβ2
α2

0 0

0 −δβ1
α1

δB1
A1

0

0 0 δB1
A1

δB2
A2






,

and we have
FA = AF

for every element A of the structural group L2
(n−p,p) of the (a.p.)2R-

structure.

II. An n dimensional differentiable manifold Vn admits ([6])
a generalised almost tangent structure of second order, briefly
G2

1-structure, if there exists a differentiable field of linear operators Jx

of constant rank p +
(

p + 1
2

)
, such that at each point x ∈ Vn,

(2.4)

{
Jx maps T 2

x (Vn) into itself,

J2
x = 0.
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The differentiable manifold Vn is called G2
1-manifold, and

n +
(

n + 1
n

)
> 2

(
p +

(
p + 1

2

))
, n ≥ 2p.

Let

{(eα1(1), eα1 , eα1(2)), (eα1(1)α2(1), eα1(1)α2 , eα1(1)α2(2),

eα1α2(2), eα1α2 , eα1(2)α2(2))},
α(1) = 1, 2, . . . , p, α = p + 1, . . . , q, α(2) = q + 1, . . . , q + p = n,

be a basis of T 2
x (Vn), such that the 2-tangent vectors

{(eα1(1), eα1), (eα1(1)α2(1), eα1(1)α2 , eα1(1)α2(2), eα1α2 , eα1α2(2))}

form a basis of KerJx and the tangent vectors of second order basis of
Sx (complement space of Ker Jx in T 2

x (V ))

{eα1(2), eα1(2)α2(2)},

satisfy two conditions,

(2.5)
{

Jxeα1(2) = eα1(1),

Jxeα1(2)α2(2) = eα1(1)α2(1).

Such a basis is called ([6]) an G2
1-adapted basis. The matrix B of the

transformation for the G2
1-adapted bases is of the form,

(2.6) B =


 b

j′
1

i1
0

b
j′
1

i1i2
b
j′
1

i1
b
j′
2

i2


 ,

with

b
j′
1

i1
=



b
β′
1(1)

α1(1)
0 0

b
β′
1(1)

α1 b
β′
1

α1 0

b
β′
1(1)

α1(2)
b
β′
1

α1(2)
b
β′
1(1)

α1(1)


 ∈ G1,

b
β′
1(1)

α1(1)
= b

β′
1(2)

α1(2)
∈ Lp, b

β′
1(1)

α1 ∈ Hom(Rp, Rn−2p), b
β′
1

α1 ∈ Ln−2p, b
β′
1(1)

α1(2)
∈

End(Rp, Rp), bβ′
1

α1(2)
∈ Hom(Rn−2p, Rp), G1 is the structural group of the
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G1-structure ([2], [12], [14]), and

b
j′
1

i1i2
=




b
β′
1(1)

α1(1)α2(1)
0 0

b
β′
1(1)

α1(1)α2
b
β′
1

α1(1)α2
0

b
β′
1(1)

α1(1)α2(2)
b
β′
1

α1(1)α2(2)
0

b
β′
1(1)

α1α2 b
β′
1

α1α2 0

b
β′
1(1)

α1α2(2)
b
β′
1

α1α2(2)
0

b
β′
1(1)

α1(2)α2(2)
b
β′
1

α1(2)α2(2)
b
β′
1(1)

α1(1)α2(1)




,(2.8)

b
β′
1(1)

α1(1)α2(1)
= b

β′
1(2)

α1(2)α2(2)
.

It can be noticed that the matrices,

(2.9)


 b

β′
1(1)

α1(1)
0

b
β′
1(1)

α1 b
β′
1

α1


 and




b
β′
1(1)

α1(1)α2(1)
0

b
β′
1(1)

α1(1)α2
b
β′
1

α1(1)α2

b
β′
1(1)

α1(1)α2(2)
b
β′
1

α1(1)α2(2)

b
β′
1(1)

α1α2 b
β′
1

α1α2

b
β′
1(1)

α1α2(2)
b
β′
1

α1α2(2)




from (2.7) and (2.8) respectively, express the basis transformation of
Ker Jx.

Thus, a G2
1-structure is a G1-structure of the second order whose struc-

tural group G2
1 is consisting of matrices of the form (2.6) (with (2.7) and

(2.8)), subgroup of L2
n.

The tensor F for the G2
1-adapted basis can be represented by the
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matrix

H =







0 0 0

0 0 0

δ
β1(1)
α1(1)

0 0





 0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0







0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0







0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

δ
β1(1)
α1(1)

δ
β2(1)
α2(1)

0 0 0 0 0







,

and we have
HB = BH,

for every element B of the structural group of the G2
1-structure.

On the other hand, we have ([2]), that a differentiable manifold Vn

admits a distribution of dimension n−p = q of the tangent space Tx(Vn),
if and only if, Vn admits a G(n−p,p)-structure, with structural group
G(n−p,p), consisting of matrices of the form,[

c
β′
1

α1 0

c
β′
1

A1
c
B′

1
A1

]
, c

β′
1

α1 ∈ Lq, c
β′
1

A1
∈ End(Rq, Rp), cB′

1
A1

∈ Lp,

α = 1, 2, . . . , q, A = q + 1, . . . , q + p = n,

subgroup of Ln.
Similarly, a differentiable manifold Vn admits a distribution of dimen-

sion n +
(

n + 1
2

)
−

(
p +

(
p + 1

2

))
= q +

(
q + 1

2

)
+ qp of the sec-

ond order tangent space T 2
x (Vn), if and only if, Vn admits a G(n−p,p)-

structure of second order, that is a G2
(n−p,p)-structure, with structural

group G2
(n−p,p), consisting of matrices of the form,

C =




[
c
β′
1

α1 0

c
β′
1

A1
c
B′

1
A1

] [
0 0 0
0 0 0

]




c
β′
1

α1α2 0

c
β′
1

α1A2
0

c
β′
1

A1A2
c
B′

1
A1A2







c
β′
1

α1c
β′
2

α2 0 0

c
β′
1

α1c
β′
2

A2
c
β′
1

α1c
B′

2
A2

0

c
β′
1

A1
c
β′
2

A2
c
β′
1

A1
c
B′

2
A2

c
B′

1
A1

c
B′

2
A2






.
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Obviously, the matrix B ((2.6) with (2.7) and (2.8)) of the group G2
1 is

a special case of the above matrix C. Therefore,

Proposition 2.1. If there is a given on the differentiable manifold Vn

a G2
1-structure, there exist two distributions L and L1

of the second order tangent space T 2
x (Vn), of dimension n +

(
n + 1

2

)
−(

p +
(

p + 1
2

))
and p +

(
p + 1

2

)
respectively, such that L1 ⊆ L.

Proof: The spaces L(x) = KerJx and L1 = Jx(Sx) satisfy the above
conditions.

Thus, if the distribution L of dimension n+
(

n + 1
2

)
−

(
p+

(
p + 1

2

))
is given, it is sufficient to define a distribution M supplementary of L in

T 2
x (Vn) of dimension p +

(
p + 1

2

)
.

Consequently,

Proposition 2.2. If the differentiable manifold Vn admits a G2
1-struc-

ture, then the tensor field F induces an (a.p.)2R-structure of dimension(
n +

(
n + 1

2

)
−

(
p +

(
p + 1

2

))
, p +

(
p + 1

2

))
.

3. (a.t.)2 and (a.tr.)2 structures

I. The almost tangent structure of the first order, briefly (a.t.)-struc-
ture, is a particular case of the G1-structure ([13]), if the differentiable
manifold V is of dimension 2n and the rank of Jx is equal to n. Then
the group G1 (relation (2.7)) reduces to the structural group G(n

n,n) of
the (a.t.)-structure ([4], [11]), consisting of matrices of the form,

[
K 0
N K

]
, K ∈ Ln, N ∈ End(Rn, Rn).

To the above structure there is a generalisation to the second order
by means of a differentiable field of linear operators Jx, acting on the
space T 2

x (V2n) of the second order tangent vectors, with constant rank

n +
(

n + 1
2

)
. Obviously this second order almost tangent structure,

briefly (a.t.)2-structure, is a particular case of the G2
1-structure, too.
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Thus, the components of the tensor F are given by the matrix,

(3.1) F =




[
0 0

δβ1
α1

0

] [
0 0 0
0 0 0

]


 0 0

0 0
0 0







0 0 0

0 0 0

δβ1
α1

δβ2
α2

0 0






,

and the element a = (aj′
1

i1
, a

j′
1

i1i2
) ∈ L2

2n, by the matrix,

A =




[
a

β′
1

α1 0

a
β′
1

A1
a

β′
1

α1

] [
0 0 0
0 0 0

]




a
β′
1

α1α2 0

a
β′
1

α1A2
0

a
β′
1

A1A2
a

β′
1

α1α2







a
β′
1

α1a
β′
2

α2 0 0

a
β′
1

α1a
β′
2

A2
a

β′
1

α1a
β′
2

α2 0

a
β′
1

A1
a

β′
2

A2
a

β′
1

A1
a

β′
2

α2 a
β′
1

α1a
β′
2

α2






,(3.2)

α1, α2 = 1, 2, . . . , n, A1, A2 = 1, 2, . . . , 2n (that is A = n + α),

with

[
a

β′
1

α1 0

a
β′
1

A1
a

β′
1

α1

]
∈ G(n

n,n), aβ′
1

α1 = a
B′

1
A1

∈ Ln, a
β′
1

A1
∈ End(Rn, Rn).

We have,
AF = FA

for every element A of the structural group G2(n
n,n), of the (a.t.)2-

structure.

II. The notion of the almost transverse structure of the first order,
briefly (a.tr.)-structure, is defined ([16]) on an n-dimensional manifold
Vn equipped with a foliation L of codimension n−p. That is, for an atlas
{U, xα, xα(1), xα(2)}, α = 1, 2, . . . , n−p, α(1), α(2) = 1, 2, . . . , p, adapted
to the foliation L the transformation functions verify the relation,

(3.3)
∂xβ′

∂xα(2)
= 0.
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Then the space L of the tangent vectors to the foliation L, and the
quotient space Q = T (Vn)/L, (dimQ = codimL = n − p) define an
(a.tr.)-structure with structural group formed by matrices:

(3.4)


T S 0

0 K 0
0 N K


 , T ∈ Ln−p, S ∈ Hom(Rp, Rn−p),

K ∈ Lp, N ∈ End(Rp, Rp).

As it can be seen, this structure is a generalisation of the (a.t.)-structure,
too.

Generalising the almost transverse structure to the second order, by
adding the condition,

(3.5)
∂2xβ′

∂xα1(2)∂xα2(2)
= 0,

it can be defined an (a.tr.)2-structure, whose structural group is of the
form:

(3.6)


 l

j′
1

i1
0

l
j′
1

i1i2
l
j′
1

i1
l
j′
2

i2


 ,

with

(3.7)

l
j′
1

i1
=



l
β′
1

α1 l
β′
1(1)

α1 0

0 l
β′
1(1)

α1(1)
0

0 l
β′
1(1)

α1(2)
l
β′
1(1)

α1(1)


 ,

l
j′
1

i1i2
=




l
β′
1

α1α2 l
β′
1

α1α2 0

l
β′
1

α1α2(1)
l
β′
1(1)

α1α2(1)
0

l
β′
1

α1α2(2)
l
β′
1(1)

α1α2(2)
0

0 l
β′
1(1)

α1(1)α2(1)
0

l
β′
1

α1(1)α2(2)
l
β′
1(1)

α1(1)α2(2)
0

0 l
β′
1(1)

α1(2)α2(2)
l
β′
1(1)

α1(1)α2(1)




.

The above structure is also a generalisation of the (a.t.)2-structure.
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4. Compatible G1
2 and (a.p.)2R structures

An n-dimensional differentiable manifold Vn of class C∞ admitting a
G1-structure of rank p, with n ≥ 2p, can also have ([1]) a structural
group consisting of matrices of the form,

 T S 0
0 K 0
P N K


 , T ∈ Ln−2p, S ∈ Hom(Rp, Rn−2p),

K ∈ Lp, N ∈ End(Rp, Rp), P ∈ Hom(Rn−2p, Rp).

Then, the tensor J will be represented by the matrix,
 0 0 0

0 0 0
0 I 0


 .

The G1-adapted basis is of the form,

{eα, eα(1), eα(2)}, α = 1, 2, . . . , n− 2p, α(1), α(2) = 1, 2, . . . , p

where {eα, eα(2)} and {eα(1)} define a basis of KerJx and Sx, respec-
tively.

Similarly, the G2
1-structure of rank p +

(
p + 1

2

)
and n +

(
n + 1

2

)
≥

2
(
p +

(
p + 1

2

))
, can have a structural group G2

1 with matrices of the

form given by (3.6) where,

(4.1)

l
j′
1

i1
=




l
β′
1

α1 l
β′
1(1)

α1 0

0 l
β′
1(1)

α1(1)
0

l
β′
1

α1(2)
l
β′
1(1)

α1(2)
l
β′
1(1)

α1(1)


 ,

l
j′
1

i1i2
=




l
β′
1

α1α2 l
β′
1(1)

α1α2 0

l
β′
1

α1α2(1)
l
β′
1(1)

α1α2(1)
0

l
β′
1

α1α2(2)
l
β′
1(1)

α1α2(2)
0

0 l
β′
1(1)

α1(1)α2(1)
0

l
β′
1

α1(1)α2(2)
l
β′
1(1)

α1(1)α2(2)
0

l
β′
1

α1(2)α2(2)
l
β′
1(1)

α1(2)α2(2)
l
β′
1(1)

α1(1)α2(1)




.
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The tensor J can be represented by the matrix,







0 0 0

0 0 0

0 δ
β1(1)
α1(1)

0 0





 0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0







0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0







0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 δ
β1(1)
α1(1)

δ
β2(1)
α2(1)

0 0 0







.

The G2
1-adapted basis is of the form

{(eα1 , eα1(1), eα1(2)), (eα1α2 , eα1α2(1), eα1α2(2),

eα1(1)α2(1), eα1(1)α2(2), eα1(2)α2(2))},
α = 1, 2, . . . , n− 2p, α(1), α(2) = 1, 2, . . . , p,

where {(eα1 , eα1(1)), (eα1α2 , eα1α2(1), eα1α2(2), eα1(1)α2(1), eα1(1)α2(2))}
and {eα1(2), eα1(2)α2(2)} define a basis of KerJx and Sx, respectively.

Now, we assume that the manifold Vn admits a distribution ∆ of

the second order tangent space T 2
x (Vn) of dimension n +

(
n + 1

2

)
−

2
(
p +

(
p + 1

2

))
.

Definition 4.1. A distribution ∆ is compatible with the G2
1-structure

defined by the tensor J , if ∆ is supplementary of J(T 2
x (Vn)) in the KerJx.

Comparing the matrices (3.7) and (4.1) we have:

Proposition 4.1. The differentiable manifold Vn admits a distribu-
tion ∆ compatible with the G2

1-structure, if and only if, Vn is equiped
with an (a.tr.)2-structure.
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Definition 4.2. An almost product structure of second order is com-
patible with the generalised almost tangent structure of second order,
if

i) KerJx contains ∆ and

ii) Jx applies the p+
(

p + 1
2

)
second order base vectors of the com-

plement space of ∆, on the rest, not in ∆, p +
(

p + 1
2

)
base

vectors of Ker Jx.

Proposition 2. A necessary and sufficient condition, that an (a.p.)2R-

structure of dimension n+
(

n + 1
2

)
− 2

(
p +

(
p + 1

2

))
, with 2p+ q =

n is compatible with the G2
1-structure of rank p +

(
p + 1

2

)
, is the n

dimensional differentiable manifold Vn of class C∞ to admit a structure
defined by matrices of the form (3.6) with,

(4.2)

l
j′
1

i1
=



l
β′
1

α1 0 0

0 l
β′
1(1)

α1(1)
0

0 l
β′
1(1)

α1(2)
l
β′
1(1)

α1(1)


 ,

l
j′
1

i1i2
=




l
β′
1

α1α2 0 0

l
β′
1

α1α2(1)
0 0

l
β′
1

α1α2(2)
0 0

0 l
β′
1(1)

α1(1)α2(1)
0

0 l
β′
1(1)

α1(1)α2(2)
0

0 l
β′
1(1)

α1(2)α2(2)
l
β′
1(1)

α1(1)α2(1)




,

l
β′
1

α1 ∈ Ln−2p, l
β′
1(1)

α1(1)
∈ Lp, l

β′
1(1)

α1(2)
∈ End(Rp, Rp).
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13. G. Legrand, Ètude d’une géneralisation des structures presques
complexes sur les variétés différentiables, Thése, Paris (1968).
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