G-TAG: A Lexicalized Formalism for
Text Generation inspired by Tree
Adjoining Grammar

LAURENCE DANLOS
TALANA, Université Paris 7 & LORIA

Introduction

G-TAG is a formalism to generate texts from their conceptual represen-
tation. It is inspired from the framework of lexicalized tree adjoining
grammar (noted as TAG). It is designed to use the syntactic and lexical
information of a TAG grammar. We extended this TAG grammar to handle
multi-sentential texts and not only isolated sentences. We also added a
conceptual-semantic interface. This conceptual-semantic interface is
lexicalized, as it is the case for the semantic-syntax interface, i.e. the TAG
grammar. Therefore, G-TAG is thus a lexicalized formalism for text ge-
neration. This innovative approach shows that lexicalization can also be
used for texts and not only for sentences as is the case for most other
generation systems.

G-TAG transforms a conceptual representation into a text. This
representation should be language independent and enriched with pragmatic
information. It can come from two sources:

* a What to say module which selects the information to convey from an
intended communicative act and which establishes conceptual links
between them;

2 / G-TAG : a Lexicalized Formalism for Text Generation

* a user providing the information by answering questions through a

cascading menu, as in DRAFTER (Paris et al. 1995).

The structure of the conceptual input is not committed to any particular
linguistic realization. G-TAG thus deals with the How fo say it? issue,
understood as covering all and only linguistic decisions: segmentation into
sentences, ordering of sentences, choice of connectives, choice of lexical
items and syntactic constructions within a sentence, etc.

As shown in Figure 1, the basic idea underlying G-TAG is to use a
kind of derivation tree, called a "g-derivation tree", as a semantic level
intermediary between a conceptual representation and a text. From the
parsing point of view, the derivation tree in TAG is seen as the "history" of
the derivation, but also as a linguistic representation, closer to semantics,
which can be the basis for a further analysis. A g-derivation tree in G-TAG
is closer to semantics than a derivation tree in TAG: it is a semantic
dependency tree (annotated with syntactic information).

A g-derivation tree specifies a unique "g-derived tree", in the same way
as a derivation tree specifies a unique derived tree. A g-derived tree is a
syntactic tree annotated with morphological information. From a g-derived
tree, a post-processing module computes a text by performing
morphological computations and formatting operations. This module can
also produce surface variants of the text specified by the g-derived tree.

The conceptual-semantic interface is made up of concepts each
associated with a lexical data base. A lexical data base for a given concept
records the lexemes lexicalizing it with their argument structure, and the
mappings between the conceptual and semantic arguments (semantic
arguments are pseudo thematic roles, i.e. argl, arg2, arg3). The conceptual-
semantic interface is thus similar to the semantic-syntactic interface based
on a TAG grammar which is made up of lexical data bases. A data base for a
given lexical entry records the syntactic structures realizing it with their syn-
tactic arguments. I assume moreover that the TAG grammar records the
mappings between the semantic and syntactic arguments.

With such a lexicalized conceptual-semantic interface, the process for
computing a g-derivation tree relies upon a single type of operation:
lexicalization, i.e. the choice of a lexeme and its syntactic realization to
convey an instance of a concept. Since all the main decisions are made
during this process, G-TAG can be considered as a "lexicalized formalism for
text generation". The architecture of G-TAG and its data bases are outlined
in Figure 1.

L. Danlos / 3

Conceptual Representation

\

Building a
g-derivation tree \

4

/) lexical data bases

associated with concepts

v

Semantico-syntaxic representation
(g-derivation tree)

v

[lexical data bases
Computing a < associated with lexems
derived tree \ (TAG grammar)

\

Syntactico-morphological representation
(g-derived tree)

v

Post-processing module

O\

Text T Surface variants of T

Figure 1. Architecture and data bases of G-TAG

'y

Inflexion rules
\ Automatons

This paper is organized as follows:

e Section 1 describes briefly the conceptual level, input to G-TAG;

e Section 2 presents the semantico-syntactic level (i.e. g-derivation trees
both for sentences and texts), the syntactico-morphological level (g-
derived trees) and the post-processing module;

e Section 3 presents the lexical data bases that constitute the conceptual-

semantic interface;

Section 4 describes how to compute a g-derivation tree;

4 / G-TAG : a Lexicalized Formalism for Text Generation

e Section 5 compares G-TAG with other related work;

e Section 6 presents the implementations and applications of G-TAG and
ends on future research.

In all these sections, the same reference example will be used: the different

levels of representation to generate the text in (1) will be presented.

e Jean a passé l'aspirateur pour étre récompensé par Marie. Ensuite,
il a fait la sieste pendant deux heures.

(John vacuumed in order to be rewarded by Mary. Afterwards, he
took a nap for two hours.)

1 Conceptual level

The domain model is a hierarchically organized collection of concepts. The
universe is dichotomized between THING and RELATION (names of concepts are
written in upper cases):

- THING comprises "things" such as HUMAN, CONCRETE, etc.;

- RELATION is divided into 1ST-ORDER-RELATION (i.e. mainly relations between
things, e.g. REWARDING, VACUUMING, NAPPING) and 2ND-ORDER-RELATION (i.e.
relations between relations, e.g. SUCCESSION, GOAL). 2ND-ORDER-RELATIONs
correspond roughly to "discourse relations", while I will explain in Section
5 why I want to avoid the term "discourse relation".

A concept is associated with a structure, namely a set of arguments
which are also written in upper cases (RWDER and RWDEE for RWDIND'). The
value of each argument is conceptually restricted (the RWDER of RWDING must
refer to an HUMAN). A 2ND-ORDER-RELATION has two arguments? each of which
have to refer to a RELATION. I use the following representations for RWDING and
SUCCESSION.

RWDIND < 1ST-ORDER-RELATION [RWDER => HUMAN, RWDEE => HUMAN]

SUCCESSION < 2ND-ORDER-RELATION [1ST-EVENT => RELATION, 2ND-EVENT => RELATION]

A token identifies an instance of a concept and it specifies the values of
the arguments which are instances of concepts or constants. Figure 2 gives
the conceptual representation of our reference example (1), without
pragmatic nor temporal information.

EQ =: SUCCESSION [1st-EVENT => E1, 2ND-EVENT => E2]
E1l =: GOAL [action => E11l, PURPOSE => E12]

E2 =: NAPPING [NAPPER => H1], with [DURATION => D1]3
E11 =: VACUUMING [VACUUMER => H1]

I RWDING (= REWARDING) could include a third argument, i.e. the reward as baiser in
(i), but I will leave this issue aside here.

(i) Marie a récompensé Jean d'un baiser. (Mary rewarded John with a kiss.)

2 An n-ary relation, e.g. SUCCESSION, is turned into a cascade of binary relations
in a classic way.

3 This notation means that DURATION is not an argument of NAPPING but is a
modifier.

L. Danlos / 5

E12 =: RWDING [RWDER => H2, RWDEE => H1]
H1 =: HUMAN [NAME => "Jean", Sex => masc]
H2 =: HUMAN [NAME
D1 =: DURATION [UNITY => hour, QUANTITY => 2]

> "Marie", Sex => fem]

Figure 2: Conceptual representation of (1)
G-TAG takes as input an instance of RELATION (most often an instance of
2ND-ORDER-RELATION) enriched with pragmatic information. It produces as
output a text of one or more sentences.

2 G-derivation trees, g-derived trees and post-processing
module

We will first summarize the discussions on how and to what extent a TAG
derivation tree can be considered as a semantic dependency tree. Afterwards,
we will present how a g-derivation tree and a derivation tree differ. Next, we
will show how to extend a TAG grammar to handle texts and not only
isolated sentences. Finally, we will show how to compute a text from a g-
derivation tree.

2.1 TAG derivation trees / semantic dependency trees

I assume that the TAG grammar embedded in G-TAG is made up of
elementary trees sharing the following properties: an elementary tree corres-
ponds to exactly one semantic unit* and respects the predicate argument co-
occurrence principle (predicates anchor trees with positions for all and only
their semantic arguments). With these properties, a derivation tree in the
sense of (Shieber & Schabes 1994) can be considered as a linguistic
representation close to semantics.

Yet, even with these properties, it has been argued that there exist cases
where a derivation tree shows incorrect dependencies either at the semantic or
deep-syntactic level. These incorrect dependencies arise mainly because
bridge verbs are generally represented as auxiliary trees in TAG in order to
account for unbounded dependencies. However, unbounded dependencies
almost never occur in technical texts. Since technical texts are the only kind
of texts for which automatic generation can be contemplated, this phe-
nomena giving rise to derivation trees with incorrect dependencies can be put
aside. G-TAG thus handles only (g)-derivation trees with correct semantic
dependencies. Moreover, the notion of a g-derivation tree used in G-TAG is
closer to semantics than the one of a derivation tree in TAG, as explained
below.

4 An elementary tree can thus have several lexical anchors, either because some
are semantically empty (functional words), or because the several anchors form
an idiom, whose semantic is not compositional.

6 / G-TAG : a Lexicalized Formalism for Text Generation

2.2 G-derivation trees
Let us first present lexical entries. In G-TAG, a lexical entry ¢ (a lexical
entry is underscored) corresponds to a lemma and points to a set of
elementary trees via its family as in TAG: ¢ -> {e0, el, ..., en}. €0 is
considered as the canonical representative, the other elementary trees ej (with
j > 0) being identified by one or several "T-features", noted as [Tk]. The
values of Tk are + and -. [Tk] is equivalent to [Tk = +]. For example, in the
family of transitive verbs (with two arguments argl and arg2):
e the elementary tree for the construction in the active is the canonical
representative,
* the tree for the construction in the passive is identified with the T-
feature [T-passive],
e the tree for the construction in the absolute is identified with [T-
without-arg2],
e the tree for the construction in the passive without agent is identified
with [T-passive] and [T-without-argl].
In the French applications of G-TAG (Section 6), the elementary trees
identified by T-feature(s) have been automatically generated out of the
hierarchical representation of (Candito 1996, 1998).
Let us now present g-derivation trees. The nodes in a g-derivation tree
are names of lexical entries. They can receive two kinds of features: T-
features to select one of the elementary trees pointed to by the lexical entry
while computing the g-derived tree (Section 2.4), and morphological features
to compute the inflected forms in the post-processing module (Section 2.4).
Like in a derivation tree, there are two kinds of arcs in a g-derivation tree:
substitution arcs (which are not ordered and represented by simple dashes)
and adjunction arcs (which are ordered for adjunctions at the same address,
see (Shieber & Schabes 1994), and represented by thick dashes). The
addresses for substitution arcs are thematic roles, which stay invariant
regardless of the features that are added to the nodes. Let us say again that
the TAG grammar is supposed to record (one way or another) the mappings
between the thematic roles and the syntactic arguments (in this paper, these
mappings are recorded in the elementary trees?).
The g-derivation trees for (2a), (2b) and (2c) are respectively shown
in (3a), (3b) and (3c) (il is the French referential subject pronoun which is
realized as il, elle, ils or elles).

(2) a Marie arécompensé Jean . (Mary rewarded John.)

b Jean a été récompensé par Marie. (John was rewarded by Mary.)®

5 However, they can also be recorded in the lexical entries if the TAG grammar is
written in such a way that the syntactic arguments are semantic invariants (a
choice made in the French TAG grammar described in (Abeillé 1991, Abeillé &
Candito this volume)).

6 The g-derivation tree for the infinitival clause étre récompensé par Marie (be
awarded by Mary) will be shown in Section 4.

L. Danlos / 7

b 1 a fait la sieste pendant deux heures. (He took a nap for two

hours.)
’ (3b) récompenser
(3a) récompenser [T-passive]
{tense=pas-comp} {tense=pas-comp}
argl rg2 argl arg2
Marie Jean Marie Jean

(3c) faire-la-sieste
{tense=pas-comp}

N

i pendant
{gendeér=masc
{number=sing} arg2
heure
|
deux

In comparison with the "classic" derivation trees used in TAG, we can

hlghhght the following differences:

naming of nodes: tree sketch name + inflected anchor in TAG versus

name of a lexical entry + syntactic and morphological features in G-

TAG,

* addresses for substitution arcs: Gorn numeric addresses in TAG versus
thematic roles in G-TAG,

* auxiliary verbs: in analysis, they are typically handled by adjunction and
so appear as nodes in derivation trees, while temporal and aspectual
information is recorded as features in g-derivation trees.

There exists another crucial difference between a g-derivation tree and a
derivation tree: a g-derivation tree corresponds to a set of surface variants
(with respect to word order, for example), while a derivation tree represents a
unique surface form. This will be explained in Section 2.4. Beforehand, let
us present how to extend a TAG grammar to handle texts consisting of
several sentences’.

7 Recently, (Webber & Joshi 1998) have proposed also a TAG grammar for text.
Their approach will be compared with mine in Section 6.

8 / G-TAG : a Lexicalized Formalism for Text Generation

2.3 TAG grammar for texts
There are two ways to link two sentences to build a text: either with an
adverbial phrase as in (1) or (1a) (the position of the adverbial phrase within

the second sentence will be discussed in the next section), or without any
adverbial as in (4a) and (4b).

e Jean a passé l'aspirateur Ensuite, il a fait la sieste pendant
deux heures.

(1) Jean a poussé Marie. Donc, elle est tombée. (John pushed Mary.
Therefore, she fell.)

(4 a Jean a poussé Marie. Elle est tombée. (John pushed Mary. She
fell.)

b Marie est tombée. Jean 1'a poussée. (Mary fell. John pushed her.)

Let us first examine adverbials such as ensuite (afterwards) or donc
(therefore). At the semantic level, they are predicates with two sentential ar-
guments (Danlos 1998). One evidence for this claim is that a sentence
(clause) which comprises a discourse cue (e.g. Ensuite, il a fait la sieste)
cannot be understood when the left context is empty. Moreover, the two
arguments of a discourse cue have the same importance: the claim that the
second sentence is the "satellite" (modifier) of the first one which is the
"nucleus" (modifee) (in RST terms (Mann & Thomson 1988)) seems
unjustified. As a proof, SI. Ensuite S2. is paraphrased by D'abord S1I.
Ensuite S2. (First S1. Afterwards S2.) and D'abord S1. cannot be understood
when the right context is empty. Therefore, in G-TAG, the canonical
elementary tree whose anchor is ensuite is an initial tree with two sentential
arguments, (5)8. The same kind of initial tree is used for every discourse cue
(whatever its rhetorical versus descriptive nature). It corresponds to a unique
semantic unit and it respects the predicate argument co-occurrence principle.
However, it is not the kind of tree used in TAG: at the syntactic level, a
discourse cue (adverbial phrase) anchors an auxiliary tree with one sentential
(or verbal) argument. This discrepancy between the argumentarity of
discourse cues at the semantic and syntactic level, which is also outlined in
Meaning to Text Theory (Iordanskaja & Mel'cuk 1999), means that the
transition from the syntactic sentential level to the semantic textual level
cannot follow a totally compositional path.

With (5) as elementary tree for ensuite, the g-derivation tree underlying
(1) is (6) in which 6bT1 and GDT2 represent respectively the g-derivation trees
for the first and second sentences.

8 This tree could have two lexical anchors: d'abord in the first sentence marked as
optional, and ensuite in the second sentence. For Advl SI. Adv2 S2. texts (e.g.
D'une part S1. D'autre part S2. (On the one hand S1. On the other hand S2.))
elementary trees with two lexical anchors (advl and adv2) are also needed.

L. Danlos/ 9

(5) s
6
e \ © ensuite

s | S

A 7
Adv s | GDT GDT2

| (arg2)

ensuite

As shown in (5), a text is represented with the category S, which represents
either a text or a sentence. This allows to build a text consisting of more
than two sentences. However, a text and a sentence are distinguished through
a "form feature" which will be explained in Section 3.

Let us now examine S7/.52. texts such as (4) without a connective to
link the two sentences. In most of the cases, a S1.S52.text can be seen as the
result of an "adverbial ellipsis" from a S7. Ad S2. text, e.g. (4a) is an
elliptical form of (1a)°. This adverbial ellipsis does not follow from the
ellipsis of an element occurring in the left context, as it is the case in VP
ellipsis. Let us say that a S7. S2. text is a "pure elliptical form". Such a
pure elliptical form requires extra-linguistic knowledge to be understood like
the "Push Causal Law" (Lascarides & Asher 1991) for (4)!°. The question
arises on how to represent pure elliptical forms. The only possible way
seems to be by means of a special predicate, noted as @, which refers to an
elementary (initial) tree similar to that in (5) but without a lexical head, (7).
In TAG, it is postulated that each elementary tree must be anchored by a
(non empty) lexical head and that the treatment of elliptical forms such as
VP ellipsis should not make use of elementary trees without a lexical head.
However, for a pure elliptical form, one is driven to postulate an elementary
tree without a lexical head. The g-derivation tree for a S7/.52. text is
therefore (8), where @ points to the elementary tree without a lexical head
given in (7), and GDT1 and GDT2 represent respectively S1 and S2. The
similarity between (8) for a S1. S2. text and (6) for a S1. Adv S2. text is
satisfactory: it reflects the analysis of a §1.52. text as an elliptical form of a
S1. Adv S2. text.

9 However, some S/. S2. texts expressing an elaboration (e.g. Ted bought a
painting. It was painted by K. Beurrier.) are better seen as the result of the
ellipsis of the coordination conjunction and (Ted bought a painting and it/this
painting was painted by K. Beurrier.). A variant of this analysis by ellipsis of
S§1.52. texts is proposed in (Harris 1982): the period between S/ and S2 is
considered as a "degenerated" discourse cue.

10The use of these elliptical forms depends on the target language. For example,
in Arabic or Korean, the equivalent of (4a) is excluded: there exists only the
equivalent of (1a) with a connective to link the two sentences.

10 / G-TAG : a Lexicalized Formalism for Text Generation

(8)
(7) s ®

argl rg2

Sl sl
(argl) (arg2) GDT1 GDT2

2.4 Computing a text from a g-derivation tree

A g-derivation tree specifies a unique g-derived tree, in the same way as a
derivation tree specifies a unique derived tree. In a g-derived tree, the leaves
are lemmas, their father node bearing morphological features. These features
come either from the conceptual level if they are meaningful (e.g. number
for an N) or from equations in the tree sketches (e.g. number for a V). The
g-derived tree computed from (3a) is shown in (9).

©)

(8) S
N. Vm Vv PP
{nber=sing} ryood=ind} {mood=Vpp}
{gender=masc} {iense=pas-comp} {nber=sing} S
s=3rd der=mas ,
gg:r:sirng} {gender=masc} Prep {nber=sing}
\ {gender=masc}
Jean étre récompenser par Marie

A post-processing module linearizes a g-derived tree: it computes the
inflected forms of the leaves, concatenates and formats them. The linea-
rization of (9) yields naturally (2a) (i.e. Jean a été récompensé par Marie.).

However, the post-processing module performs more operations than
the ones given before: it may synthesize surface variants of the text produced
by linearization of a g-derived tree. Consider again the predicate ensuite
(afterwards). First, at the lexical level, it seems that ensuite and puis (next)
are pure variants: there seems to be no pragmatic, conceptual, semantic or
syntactic criterion which would allow a generation system to choose
between (1) and (1)1,

€)) Jean a passé l'aspirateur Ensuite, il a fait une sieste
pendant deux heures.

1" Jean a passé l'aspirateur Puis, il a fait une sieste pendant
deux heures.

Therefore, only the g-derivation tree of (1) is computed from the conceptual
representation E@ given in Section 1 (Section 4 will explain how). However,
(1") can be produced by the post-processing module. This module can either

' The only possible criterion to distinguish ensuite from puis (afterwards from
next) may be a register question.

L. Danlos / 11

randomly activate the rule in (10a) or contextually activate the rule in (10b)
or (10c).

(10)a ensuite --> puis
b ensuite ... ensuite --> ensuite ... puis
c ensuite ... ensuite... ensuite --> ensuite ... puis... finalement

Such lexical operations performed in the post-processing module simplify
the lexical choice module (see Section 4), while offering some lexical
variations.

Secondly, at the word order level, ensuite can be either at the beginning
of its second sentential argument, (1), or within it, (1").

e Jean a passé l'aspirateur Ensuite, il a fait une sieste
pendant deux heures.

am" Jean a passé l'aspirateur Il a ensuite fait une sieste pendant
deux heures.

Again, no criterion would allow a generation system to choose between (1)
and (1"). Therefore, the generation process produces only (1) which is
considered as the canonical form. (1") is produced randomly by the post-
processing module when it activates the (simplified) rule given in (11).

an ensuite NP (ne) Vgyx (pas) --> NP (ne) Vg (pas) ensuite

More generally, the following methodological principle is applied in the
case of several surface variants of a text: the canonical variant is produced by
the generation process , the other ones are generated by the post-processing
module.

To sum up, a g-derivation tree (or the g-derived tree it specifies)
corresponds to a set of surface variants. One is considered as canonical and
produced by linearization of the g-derived tree, the other ones are produced
from the canonical one in the post-processing module. This approach seems
sound from the generation perspective (see the methodological principle
above) and it avoids the difficulties encountered in TAG with word order
variants. For example, analyzing or generating (1") in which ensuite occurs
within the VP requires a formalism more powerful than TAG (e.g. a D-Tree
grammar) if one wants to maintain that ensuife has two sentential
arguments, see (Rambow et al. 1995) or (Nicolov et al. 1997).

3 Conceptual-semantic interface

A concept is lexicalized in a target language as one or several lexemes. For
example, RWDING is lexicalized in French as récompenser (reward), donner une
récompense (give a reward) or recevoir une récompense (receive a reward).
The mappings between the arguments of a concept and the arguments of a
lexeme lexicalizing it have to be recorded. For example, the RWDER of RWDING
corresponds to argl of récompenser and to arg2 of recevoir une récompense.

12 / G-TAG : a Lexicalized Formalism for Text Generation

In G-TAG, these data are recorded in lexical data bases, noted as LBs, made
up of "underspecified g-derivation trees". Let us give an example. The
French LB associated with RWDING, noted as LB(RWDING), comprises the three
underspecified g-derivation trees given in (15).

(1)

récompenser donner-recompense recevoir-recompense
argl rg2 argl rg2 arg2 rgl
RWDER RWDEE RWDER RWDEE RWDER RWDEE

An underspecified g-derivation tree differs from a g-derivation tree to the
extent that it comprises two kinds of nodes: constant and variable nodes. A
constant node is the name of a lexical entry, e.g. récompenser. A variable
node is a conceptual argument, e.g. RWDER. The variable nodes are specified
during the generation process: they are first instantiated (e.g. in E12, instance
of RWDING, RWDER is instantiated as H2); next their instantiated values are
replaced by g-derivation trees. The full process will be explained in the next
section.

A lexical data base made up of underspecified g-derivation trees is
associated with any kind of concept, be it a sub-type of 2ND-ORDER-RELATION,
1ST-ORDER-RELATION or THING. Let us illustrate an LB for a 2ND-ORDER-RELATION,
i.e. SUCCESSION < 2ND-ORDER-RELATION[1ST-EVENT => RELATION, 2ND-EVENT =>
RELATION]. Different lexicalizations are illustrated in (16)!2.

(16) a Jean a passé l'aspirateur. Ensuite, il a fait une sieste. (John
vacuumed . Afterwards, he took a nap.)

b Jean a fait une sieste. Auparavant, il avait passé l'aspirateur.
(John took a nap. Beforehand, he had vacuumed.)

¢ Jean a passé l'aspirateur avant de faire une sieste. (John vacuumed
before taking a nap.)

d Jean a fait une sieste apres avoir passé l'aspirateur. (John took a
nap after vacuuming.)

The adverbials ensuite (afterwards) and auparavant (beforehand) are used to
build a text, while the subordinating conjunctions avant (before) and apres
(after) are used to build a sentence. These data must be recorded, for example
to avoid incorrect embeddings such as embedding a text in a matrix clause.
The categories of the arguments of these connectives must also be recorded
so as to avoid incorrect embeddings, such as embedding a text in a
subordinate clause. For this purpose, a "form" feature is added to an
underspecified g-derivation as a whole and to each variable node. The form

12 Other lexicalizations, e.g. an NP whose head is succession (Danlos 1998),
are omitted here for the sake of simplicity.

L. Danlos / 13

feature (+T, +S) is used for a text, (-T, +S) for a sentence, (+S) for a text or a
sentence, (-T, -S) for an NP, (-T) for a sentence or an NP. These features
are illustrated in LB(SUCCESSION) shown in (17). Two points need to be
emphasized:

an underspecified g-derivation tree whose constant node is a
subordinating conjunction looks like a classic semantic dependency tree
(a conjunction is a predicate with two sentential arguments) even if a
conjunction anchors an auxiliary tree in the TAG grammar. This
characteristic of G-TAG will be explained in Section 6.

1ST-EVENT corresponds to argl of ensuite and to arg2 of auparavant. The
right ordering of sentences is thus obtained, since, in the elementary
trees anchored by adverbial connectives (e.g. (5) or (13) for ensuite),
argl corresponds to the first sentence and arg?2 to the second one.

(+T+S) (+T,+S)
ensuite auparavant

ary\Qz arg2 rgl

1ST-EVENT 2ND-EVENT 1ST-EVENT 2ND-EVENT
+S) +S) +S) +S)
(-T.+S) (-T,+S)
avant apres
1ST-EVENT 2ND-EVENT {ST-EVENT OND-EVENT
(-T,+S) (-T,+S) (-T,+S) (-T,+S)

The form features are also used in the LBs associated with concepts

which are subtypes of 1ST-ORDER-RELATION. Consider NAPPING. It can be lexi-
calized in French either with the verbal predicate faire la sieste (take a nap),
or as the nominal predicate sieste (nap). So LB(NAPPING) is made of the two
underspecified g-derivation trees in (21), where the left tree is marked as
building a sentence - form feature (-T, +S), the right one as forming an NP -
form feature (-1, -S).

(21) (-T,+S) (-T,-S)
faire-la sieste sieste
argl argl

NAPPER NAPPER
(-T,-S) (-T,-S)

Finally, let us give an example of a LB associated with a concept which

is a subtype of THING. LB(BIKE) is made of the two underspecified g-derivation

14 / G-TAG : a Lexicalized Formalism for Text Generation

trees bicyclette and vélo, each one with a nominal constant node and without
variable nodes.

To sum up, the conceptual-semantic interface is a set of LBs. LBs are
made of underspecified g-derivation trees and are designed along the same
principles, whatever the type of the concept involved (subtype of 2ND-ORDER-
RELATION, 1ST-ORDER-RELATION or THING) and whatever the maximal projection
(text, sentence or NP) of constant nodes'3. This makes the process of
computing a g-derivation tree homogeneous. It relies upon a unique
operation: choice of an underspecified g-derivation tree in a LB, as explained
in the next section.

4 Building a g-derivation tree

The basic principle used to build a g-derivation tree from a conceptual
representation identified by a token is recursivity. The first step consists of
lexicalizing the concept Co of which the token is an instance, that is select
an underspecified g-derivation tree in LB(C@)!*. For this selection, the
underspecified g-derivation trees are equipped with tests and these tests may
result in adding one or several T-features to the constant nodes, as illustrated
below. When an underspecified g-derivation tree has been selected, it is
instantiated, i.e. the variable nodes are replaced by tokens. The tokens are
recursively lexicalized. This algorithm is similar to the semantic head-driven
algorithm described in (Shieber et al. 1990). It is however more complex.
This will be illustrated by building a g-derivation tree from the conceptual
representation E@ of our reference example (Section 1).

E0 is an instance of SUCCESSION whose LB was presented in (17). Recall
that this LB is structured (thanks to the form features) in underspecified g-
derivation trees which give rise to a text (those with ensuite and auparavant)
and trees which give rise to a sentence (those with avant and apres). When
synthesizing the first token, a stylistic heuristics says to select an
underspecified g-derivation tree which gives rise to a text, so as to avoid
producing a long sentence with a lot of subordinate clauses. Moreover, each
element in LB(SUCCESSION) is annotated with a feature (not represented in (17))
which indicates whether the chronological order is respected or not: this is
the case for ensuite, but not for auparavant. The chronological order is
chosen by default. Therefore, the underspecified g-derivation tree for ensuite
is selected and instantiated, which leads to the tree in (22).

I3 The elementary trees for adjectives in their predicative use include a verbal
anchor (the copula). The sentences Jean est amoureux de Marie (John is fond of
Mary) et Jean aime Marie (John loves Mary) comprise respectively the
predicates étre amoureux and aimer. When they are modifiers, adjectives are
handled by adjunction as usual.

14 In fact, the lexicalization process leads to a list of underspecified g-derivation
trees in order of preference, so as to reduce backtracking in case of
incompatibility with other decisions. However, the complete data flow is not
within the scope of this paper (see Meunier 1997).

L. Danlos / 15

(22) (+T+S)
ensuite
ar arg2
E1 2
(+S) (+S)

The next step consists of lexicalizing E1 whose class is GOAL. LB(GOAL)
comprises only the underspecified g-derivation tree for the subordinating
conjunction pour (que) '3(in order that / to). So LB(GoAL) is (23) which is
instantiated in (24) for E1.

(-T,+S) (-T.+S)
(23) (24)
EOUI’ EOUI’
arg1 N2 argNZ
ACTION PURPOSE Ell El12
(-T.+S) (-T,+S) (-T+S) (-T,+S)

The lexical entry pour points to the elementary trees shown in (25) and
(26)'° (putting aside the trees marked with the T-feature [T-Anteposition] for
anteposed subordinate clauses). The tree in (25) is the canonical tree where
the conjunction introduces a finite clause; the tree in (26), marked with the
T-feature [T-reduc-cunj], is used when the conjunction introduces an
infinitive clause.

| T-reduc-conj]
(25) S (26) s
S PP st PP
(argl) (arg1)
/ \S 8 /\
/T~
Prep C S | Prep s
J mood=subj m?od;mf
pour q (arg2) pour (arg2)

Since the subordinating conjunction pour (que) can introduce an infinitival
clause, a special mechanism is used to lexicalize E11 and E12 in (24) (they
have to be lexicalized as sentences because of their feature (-T, +S)). This
mechanism comes from a French stylistic heuristics: an infinitival clause is

15 The conjunction pour (que) has lexical variants (Section 2.4) like dans le but
(que).

16 For the sake of simplicity, these trees are initial trees. However, they could
be auxiliary trees (with the node S corresponding to argl as foot node) as well,
see Section 6.

16 / G-TAG : a Lexicalized Formalism for Text Generation

better than a finite one. Therefore, the lexicalization operations for E11 and
E12 in (24) are not carried out independently, but in such a way that they
yield (if possible) sentences with the same subject, so that pour introduces
an infinitival clause. This could apply to E11 and E12 since they share a
token, i.e. H1. So the goal is to find sentential lexicalizations for E11 and E12
so that H1 is subject in both sentences. The only possible lexicalization for
E11l is passer-l'aspirateur (ran-the-vacuum-cleaner) whose argl is H1, see
(27a). For E12, instance of RWDING, there are the three underspecified g-
derivation trees given in (15) which are instantiated in (27b).

(27a)
argl

HA1

H2 H1 H2 Fi1 H2 Hi

The syntactic functions of the NPs synthesizing H1 in these trees have to be

known to select the trees in which H1 will be synthesized in the subject po-

sition. For that purpose, data bases are extracted from the TAG grammar

which record for each family the functions of the syntactic arguments

according to the syntactic constructions. For example, in the transitive verb

family:

- argl is the subject and arg2 is the object in the canonical construction
(without T-feature),

- argl is the by-object and arg2 is the subject in the passive construction
(identified with the T-feature [T-passive]),

- etc.

Therefore it is known that:

- in (27b) for E12:

e arg? of rfécompenser (i.e. H1) is the subject in the passive construction,

e arg2 of donner-récompense (i.e. H1) can never be subject!”’,

e argl of recevoir-récompense (i.e. H1) is the subject in the canonical
construction;

- in (27a) for E11:

e argl of passer-laspirateur (i.e. H1) is the subject (in the canonical
construction).

(27b)

17 The English passive form John was given a reward by Mary does not exist in
French.

L. Danlos / 17

As the goal is to build sentences whose subjects refer to H1, the tree with
donner-récompense is eliminated for E12 (the tree with passer-l'aspirateur is
selected right away for E11). So two possibilities are left for E12: either
récompenser marked with [T-passive] or recevoir-récompense without T-
feature. In order to illustrate an alternation, let us suppose that the generator
chooses the former, i.e. récompenser [T-passive]. The lexicalization of E1 is
therefore (28), which is obtained from (24) by substituting the tree in (27a)
for E11 and the leftmost tree in (27b) with the T-feature [T-passive] for E12.
Moreover, as it is known that the subordinating conjunction will introduce
an infinitival clause, [T-reduc-conj] is added to pour to indicate that it will
introduce an infinitival clause, [T-reduc] is added to récompenser [T-passive]
to indicate that the sentence will have an empty subject, and the symbol
€ (which represents the empty sequence) is added to arg2 of récompenser to
indicate that it will be synthesized as an empty sequence!®. The elementary
tree defined by récompenser [T-passive] [T-reduc] is shown in (29) in which
the node N which dominates the empty sequence allows to transmit the
agreement features to the past participle thanks to morphological features!®.

18 This node is not deleted because it is not empty at the semantic level
(although it is empty at the phonological level). On the other hand, a node
which corresponds to a conceptual argument which is not specified is deleted.
For example, from an instance of EAT in which EATEE is not specified, the node
corresponding to the arg2 of manger (eat) is deleted and the T-feature [T-without-
arg?] is added to manger.

19 In French, these morphological features are needed for agreement rules in the
infinitival clause: see (i) versus (ii).

(1) Jean a passé l'aspirateur pour étre récompensé par Marie.

(ii) Sue a passé l'aspirateur pour étre récompensée par Marie.

18 / G-TAG : a Lexicalized Formalism for Text Generation

(28) pour

[T-reduc-conj]

Mz

passer-I'aspirateur récompenser
-passive
argl [T-reduc]
H2 H1
(€)
(29)
S
. %P
(arg2) ‘ mood=ppart /\
€ etre récompenser Prep N |
| (argl)
par

Since all the instances of RELATION should be lexicalized before the instances
of THING (for pronominalization issues, see below), the lexicalization of E2,
instance of NAPPING, in (22) is performed after that of E1. As E2 includes the
modifier DURATION, the lexicalization of this token is its lexicalization
without a modifier to which is adjoined the lexicalization of its modifier.
Recall that the underspecified g-derivation trees in LB(NAPPING) shown in (21)
have respectively the constant nodes faire-la-sieste which builds a sentence -
form feature (-T, +S), and sieste which builds an NP - form feature (-T, -S).
As E2 is marked in (22) with the feature (+5), the g-derivation tree for faire-la
sieste is selected. The lexicalization of E2 is therefore (30).

L. Danlos / 19

(30) e

H1 pendant

arg2

D1

At this stage, all the instances of RELATION have been lexicalized and the
result is shown in (31), in which the trees in (28) and (30) have been
substituted respectively for E1 and E2 in (22).

(31) ensuite
pour faire-la-sieste
[T-reduc-conj]
argl 0
argl arg2
i pendant
passer-I'aspirateur récomgerjser
[T-passive] ard2
argl [T-reduc]
1

H2 H

(e)

In (31), three tokens which are instances of THING have to be lexicalized:

- H2 and D1 which occur only once. Therefore, their lexicalization is
straightfoward.

- H1 which occurs three times, one occurrence being marked with (g). There
is no room to describe the pronominalization module, which is quite
complex in French because of pronominal clitics (Namer 1990, Danlos
1992). However, one can assume that, in this simple case for
pronominalization, this module computes that the occurrence of H1 which is
argl of faire-la-sieste is pronominalized as the subject pronoun il. So
finally, the g-derivation tree computed from E@ is shown in (32), in which
the morphological features added to € and il come from Jean.

20 / G-TAG : a Lexicalized Formalism for Text Generation

(32) ensuite
pour faire-la-sieste
[T-reduc-conj]
argl 0
argl arg2
il pendant
passer-I'aspirateur récompenser {gender=masc
[T-passive] {number=sing}
argl [T-reduc] arg2
Jean V w heure
Marie € 0 I
{gender=masc
{number=sing} deux

One type of information is missing in (32) to compute a g-derived tree

(Section 2.4), namely the temporal and aspectual information for verbal

items. I have not studied this topic and for the time being use a default

value, e.g. "passé composé" (roughly perfect). So (1) is produced from (32).
To sum up, the algorithm for building a g-derivation tree from an

instance of RELATION goes as follows:

1. lexicalization of the instances of 2ND-ORDER-RELATION. At the end of this
step, an evaluation of the global text structure is carried out (although it
has not been illustrated here). If this evaluation returns a bad result,
backtracking is used to make other choices.

2. lexicalization of the instances of 1ST-ORDER-RELATION. This step may use
special procedures to deal with parallelism issues, as illustrated above
for the subordinating conjunctions which can introduce infinitival
clauses (which is a special case of parallelism).

3. lexicalization of the instances of THING. This step calls upon a
pronominalization module.

5 Related works

I first compare the architecture of G-TAG with other architectures proposed
for text generation. Next, I compare G-TAG with other generation systems
inspired from TAG.

G-TAG is a system in which lexical choice is made after the content
specification, and before the surface realization, but very importantly, lexical
choice is interleaved with syntactic realization. A g-derivation tree specifies
a "thematic structure" (in the terms of Elhadad et al. 1997) with information
for syntactic realization encoded in T-features. Therefore, the surface realizer
(which builds a g-derived tree from a g-derivation tree and transmits it to the
post-processes module) does not make significant linguistic decisions
(except to produce surface variants). It just uses of the syntactic information
encoded in a lexicalized TAG grammar (extended to handle texts) and to the

L. Danlos / 21

rules of the post-processing module. G-TAG is therefore a "lexicalized"
approach (in the terms of Elhadad et al. 1997).

The lexicalized approach used in G-TAG, where the lexicon drives the
generation process, is also advocated, among others, by (Beale et al. 1998)
and (Stede 1996), but only to generate sentences. The originality of G-TAG
in comparison with other lexicalized approaches is that the lexicon drives
the generation process not only for sentences but also for texts. No
difference is made between texts, sentences and NPs. This position is
linguistically justified because a given 2ND-ORDER-RELATION can be expressed
either in a text or in a sentence or even in an NP (see note 12). This is why
I use the term "2ND-ORDER-RELATION" instead of "discourse relation". Similarly
a given 1ST-ORDER-RELATION can be expressed in a sentence or an NP (so it is
not a "sentence relation"). This position also explains why G-TAG is not
modularized into a "text planner" and a "sentence planner" as generally
admitted (Reiter 1994). As explained in Section 4, G-TAG is modularized
between a component for instances of 2ND-ORDER-RELATION, a component for
instances of 1ST-ORDER-RELATION and a component for instances of THING. This
modularization is naturally based on the input (i.e. the conceptual structure)
and not on the output, i.e. the generated text with its segmentation into
sentences, as it is the case for most systems with a text planner. However, I
should say that G-TAG is designed for a relatively simple conceptual
representation which leads to a paragraph-length text. A more complex
conceptual representation has to be pre-segmented into smaller clusters.
However, this pre-segmentation is not a segmentation into sentences. Let us
underline again that the segmentation of a text (paragraph) into sentences is
a "surface matter" which depends (among other things) on the lexical
resources of the target language. For example, GOAL can only be expressed in
a (complex) sentence in French (Section 4), while SUCCESSION can be
expressed in a text, a sentence or an NP (Section 3). Another example:
RESULT can be expressed in English in a resultative construction with only
one verb (Ted hammered the metal flat), while two clauses (with two verbs)
are needed in French like in Ted hammered the metal. He flattened it.

Let us now move to works in text generation inspired from TAG. Since it
has been put forward that TAG is an especially well suited grammatical
theory for text generation - see (Joshi 1987), (McDonald & Pustejosky
1985), (McDonald 1993) - adapting TAG for generation has already been
explored, mainly by (McDonald & Meteer 1990), (Harbusch & al. 1991),
(Shieber & Schabes 1991), (McDonald 1993), (Stone & Doran 1997), and
(Becker 1998). Most of these authors address issues related to the generation
of a single sentence from its logical or deep syntactic representation. G-TAG
differs from these approaches, as it is a completely integrated text generation
formalism: it is designed to take a conceptual representation as its input, to
handle textual phenomena and to produce texts of good quality. However,
the system proposed in (Stone & Doran 1997) takes as its input the
conceptual representation of a sentence, so let us compare their system with

22 / G-TAG : a Lexicalized Formalism for Text Generation

G-TAG. In their system, there is no semantic level. There is a direct
mapping between a conceptual structure (enriched with pragmatic
information) and the syntactic level, the TAG grammar. Consequently, the
elementary trees are annotated both with conceptual information (e.g. in the
canonical elementary tree for reward, the subject is marked as being the
RWDER) and with pragmatic information (in the topicalized construction
illustrated in This book, the library has., the entity referred to by this book
is roughly salient). There seems to be no major drawback with this direct
conceptual-syntax interface, except for the organization of the lexical
information. The conceptual-syntax data base for a given concept has to
record not only all the predicates lexicalizing it but also, for each of those
lexemes, all its syntactic realizations. The size of such a lexical data base
can be unacceptable (it could have 350 elements if there are 10 lexemes per
concept and 35 syntactic realizations per lexeme). In G-TAG, this problem
does not occur: in the conceptual-semantic interface, a data base for a given
concept records all the lexemes lexicalizing it, and in the semantic-syntax
interface, a data base for a given lexeme records all the syntactic
constructions realizing it. Each data base is relatively small. Moreover, in
the system of Stone & Doran, if a lexeme lexicalizes several concepts, i.e.
has several meanings, while keeping the same syntactic properties, a set of
elementary trees has to be created for each meaning (since elementary trees
record conceptual information). This is useless. In G-TAG such a lexeme
appears in several LBs in the conceptual-semantic interface, but it appears
only once in the semantic-syntax interface. To sum up, the system of Stone
& Doran may run smoothly to generate a sentence from its conceptual
representation, but only in a toy implementation where it is assumed that
each concept is lexicalized by a unique lexeme and that each lexeme has a
unique meaning.

6 Implementation and applications of G-TAG, future work

The idea of using a g-derivation tree as a semantic level intermediary
between a conceptual structure and a text is satisfactory and yields a
lexicalized formalism which has been implemented and used in several
applications. G-TAG, which I started to design at the beginning of the 90's -
see (Danlos 1993, 1995, Danlos & Meunier 1996) - has been first imple-
mented in Ada (Meunier 1997). The platform so realized, called Flaubert,
has been used for three applications in technical domains: software,
chemicals and aeronautics (respectively for Sanofi, CEA and Aérospatiale
companies), see (Delaunay 1995, 1996), (Lux 1998), (Meunier & Danlos
1998). The texts produced are both in French and in English. The French
TAG grammar embedded in G-TAG is the one written by (Abeillé 1991) and
revised in (Abeillé & Candito this volume); the English grammar was
especially designed for G-TAG.

G-TAG has been re-implemented in Java in a multi-agent structure, in
collaboration with Thomson-CSF company, (Meunier 1999, Meunier &
Reyes 1999). The platform so realized is called CLEF (Computed Lexical-

L. Danlos / 23

Choice Extended Formalism). Contrary to Flaubert, CLEF has the
following advantage: the linguist in charge of writing the conceptual-
semantic interface does not need to know the TAG grammar in detail. For
example, he/she can ignore whether a subordinating conjunction (e.g. pour
(que)) anchors an initial or auxiliary tree: the semantic dependency tree in
(23) can be used in the conceptual-semantic interface even if pour (que)
anchors an auxiliary tree (as it is the case in the French TAG grammar
embedded into G-TAG). The system computes the corresponding g-
derivation trees according to the elementary trees of the TAG grammar. Let
us underline however that the automatic computation of g-derivation trees
from semantic dependency trees is possible only if the target TAG grammar
respects the predicate argument co-occurrence principle (predicates anchor
elementary trees with positions for all and only their semantic arguments).
In other words, this computation is possible for a lexeme which has the
same number of arguments at the semantic and syntax level, whatever the
nature of the syntactic arguments (substitution or foot node). This
computation is thus possible for a subordinating conjunction. It would not
be possible for a discourse cue such as ensuite with two arguments at the
semantic level and only one argument at the syntactic level (Section 2.3).
This is why elementary trees for adverbials such as ensuite with two
sentential arguments have been created in G-TAG: the classic elementary
trees used in TAG with a single argument would not work.

I will conclude by comparing my work with that of (Webber & Joshi
1998) who present a TAG grammar for discourse (not in the perspective of
generation, but this is not a relevant difference). Without going into details,
in G-TAG the four ways to link two sentences together, i.e. S1 cunj S2.,
S1. Adv §2., Advl S1. Adv2 S2., and S1.52., all involve a predicate with
two sentential arguments (respectively cunj, adv, advl ... adv2, and ®).
Thus, they get the same kind of semantic representation, but this is not the
case in Webber & Joshi's work. As an illustration, even the S7 but S2. and
SI1 and S2. texts do not involve the same kind of elementary trees and
therefore yield different derivation trees. Webber & Joshi want the
distinction between presuppositional versus compositional meaning of
discourse cues to be stated in the elementary trees. I argue that this
distinction should not be taken into account at the level of elementary trees,
which is basically designed for morpho-syntactic phenomena. This point of
view is supported by the following fact: as far as I know, nobody has never
designed two elementary trees for the definite article, one for its
presuppositional meaning (as in The king of France is bald), the other one
for its anaphoric meaning (as in A king entered. The king kissed me.). More
generally, a TAG grammar seems not to be the right tool to handle
presuppositions.

On the other hand, Webber & Joshi can easily handle a S1. Advl Adv2
S2. text, i.e. a text with two discourses cues in the second sentence. This

24 / G-TAG : a Lexicalized Formalism for Text Generation

kind of text is not yet handled in G-TAG but should be dealt with in some
future work.

Acknowledgments

I want to thank Anne Abeillé, Marie Hélene Candito, Sylvain Kahane,
Frédéric Meunier and Owen Rambow for fruitful discussions on this paper.

References

Abeillé A., 1991. Une grammaire lexicalisée d'arbres adjoints pour le frangaisCl
application a l'analyse automatique, These de Doctorat en Linguistique,
Université Paris 7, Paris.

Abeillé A. Candito M.H., 2000 (this volume). "F-TAG : A Lexicalized French
Tree adjoining Grammar", in Abeillé et Rambow (eds), Tree Adjoining
Grammars, CSLI, Stanford

Beale, S., Nirenburg S., Viegas E., Wanner L., 1998, "De-Constraining Text
Generation", in Proceedings of the 9th International Workshop on Natural
Language Generation (INLG'98), Niagara-on-the-Lake.

Becker T., 1998 "Fully Lexicalized Head-Driven Syntactic Generation", in
Proceedings of the 9th International Workshop on Natural Language
Generation (INLG'98), Niagara-on-the-Lake.

Candito M.H., 1998. Représentation hiérarchique des grammaires TAG lexi-
calisées : application au francais et a l'italien, These de Doctorat en
Linguistique, Université Paris 7, Paris.

Candito M.H.,1996. "A principle-based hierarchical representation of LTAGs",
in Proceedings of the 16th International Conference on Computational
Linguistics (COLING'96), Copenhagen.

Danlos L., 1992. "Contraintes syntaxiques de pronominalisation en génération
de textes", Langages, 106, Larousse, Paris.

Danlos L., 1993. "Génération de textes a partir d'un graphe conceptuel dans un
formalisme inspiré de TAG", in Actes de 1'école d'été Informatique linguistique
du CNET, Lannion.

Danlos L., 1995. "Présentation de G-TAG, un formalisme pour la génération de
textes", in Actes de la conférence Traitement Automatique du Langage Naturel
(TALN-95), Marseille.

Danlos L., 1998. "Linguistic ways for expressing a discourse relation in a
lexicalized text generation system", in Proceedings of Discourse Relations
and Discourse markers Workshop, ACL-COLING'98, Montréal.

Danlos L., Meunier, F., 1996. "G-TAG : présentation et applications indus-

trielles", in Actes du colloque Informatique et Langue Naturelle (ILN'96),
Nantes.

de Smedt K., Horacek H., Zock M., 1996. "Architectures for Natural Language
Generation: Problems and Perspectives", in G. Adorni and M. Zock (eds)
Trends in Natural Language Generation, Springer-Verlag.

Delaunay, M. P., 1995, "G-TAG : les bases lexicales dans les domaines de la
chimie et du logiciel", Rapport FLAUBERT, n°3, TALANA-CORA, Paris.

L. Danlos / 25

Delaunay, M. P., 1996, Ecriture d'une grammaire TAG pour la génération
comparaison avec la grammaire d'analyse, Mémoire de DEA, Université de
Paris 7, Paris.

Elhadad M., McKeown K., Robin J., 1997, "Floating Constraints in Lexical
Choice, Computational Linguistics vol 23 n° 2.

Harbusch, K., Finkler, W., Schauder, A., 1991, "Incremental Syntax Generation
with Tree Adjoining Grammars" in Proceedings 4.Int. GI-Kongress
Wissensbasierte Systeme, GWAL

Harris Z., 1982, A Grammar of English on Mathematical Principles, Wiley-
Interscience, New York.

Iordanskaja, L., Mel'cuk, I., 1999. "Traitement lexicographique de deux
connecteurs textuels du francais contemporainCl en fait vs en réalité", in
Mel'cuk I. et al. eds ,Dictionnaire explicatif et combinatoire du francais
contemporain, Volume IV., Presses de 1'Université de Montréal, Montréal.

Joshi, A., 1987. "The relevance of Tree Adjoining Grammar to Generation", in
G. Kempen, ed, Natural Language Generation: New Results in Artificial
Intelligence, Psychology and Linguistics, Martinus Nijhoff Publishers.

Lascarides A., Asher N., 1991. "Discourse Relations and Defeasible Knowledge",
in Proceedings of the 29th American Conference on Computational
Linguistics (ACL'91), Berkeley.

Lux V., 1998, Elaboration d'un Francgais Rationalis¢ Modulaire (FREM). Test du
FREM en génération automatique., These de Doctorat en Linguistique
Informatique, Université Paris 7, Paris.

Mann, W., Thompson S., 1988, "Rhetorical Structure Theory: Toward a
functional theory of text organization", Text, 8 (3), pp 223-281.
McDonald, D., 1993, "Reversible NLP by Linking the Grammar to the

Knowledge Base", in Strzalkowski (ed.) Reversible Grammar in Natural
Language Processing, Kluwer Academic Press.

McDonald, D., Meteer M., 1990, "The implications of Tree Adjoining Grammar
to Generation", in G. Kempen, ed, Natural Language Generation, Dordrecht.

McDonald, D., Pustewosky, J., 1985, "TAG's as a Grammatical Formalism for
Generation", in Proceedings of the 23th Annual Meeting of the Association
for Computational Linguistics (ACL'85), Chicago.

Meunier F., 1997, Implémentation de G-TAG, formalisme pour la génération

inspirée des grammaires d'arbres adjoints, These de Doctorat en Informatique,
Université de Paris 7, Paris.

Meunier F., Danlos L., 1998. "FLAUBERT: an User friendly system for
Multilingual Text Generation", in Proceedings of the 9th International
Workshop on Natural Language Generation (INLG'98), Niagara-on-the-Lake.

Meunier F. 1999. "Modélisation des ressources linguistiques d'une application
industrielle", TALN'99,Cargese, Corse.

Meunier F., Reyes R., 1999. "Plate-forme de développement de générateurs
multilingues", Actes GAT'99 pp. 145-156, Grenoble, France.

26 / G-TAG : a Lexicalized Formalism for Text Generation

Namer F., 1990, Pronominalisation et effacement du sujet en génération au-
tomatique de textes en langues romanes, These de Doctorat en Informatique,
Université Paris 7, Paris.

Nicolov N., Mellish, C., Ritchie G.,1997 "Approximate Chart Generation from
Non-Hierarchical Representations", in R. Mitkov et N. Nicolov eds, Recent
Advances in Natural Language Processing, Benjamin, Amsterdam.

Paris C., Vander Linden K., Fischer M., Hartley A., Pemberton L., Power,R.,
Scott D., 1995. "A support Tool for Writing Multilingaul Instructions", in in
Proceedings of the 14th International Joint Conference on Artificial
Intelligence (IJCCAI'9S), Montréal.

Rambow O., Vijay-Shanker K., Weir D., 1995, "D-Tree Grammars", in
Proceedings of the 33th Annual Meeting of the Association for
Computational Linguistics (ACL'95).

Reiter E., 1994. "Has a consensus NL generation architecture appeared, is it
psycholinguistically plausible?", Proceedings of the 7th International
Workshop on Natural Language Generation (INLG'94), Kennebunkport.

Shieber S., Schabes S., 1991, "Generation and Synchronous Tree Adjoining
Grammars", Computational Intelligence, vol 4 n°7.

Shieber S., Schabes S., 1994, "An Alternative Conception of Tree Adjoining
Derivation", Computational Linguistics. vol 20 n°1.

Shieber, S., Noord G., Moore R., Pereira F., 1990, "A Semantic Head-Driven
Generation Algorithm for Unification-Based Formalisms", Computational
Linguistics 16:1. 30-42.

Stede, M., 1996, "Lexical paraphrases in Multilingual Sentence Generation",
Machine Translation 11.

Stone M., Doran, C., 1997. "Sentence Planning Using TAG", in Proceedings of
the Joint conference ACL/EACL '97, Madrid.

Webber B., Joshi A.,1998. "Anchoring a Lexicalized Tree-Adjoining Grammar
for Discourse", in Proceedings of Discourse Relations and Discourse Markers,
ACL-COLING'98 Workshop, Montréal, pp 86-92.

