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In a recent paper [Phys. Rev. B 85, 081101(R) (2012)] we presented an approach to evaluate
quasiparticle energies based on the spectral decomposition of the static dielectric matrix. This
method does not require the calculation of unoccupied electronic states, nor the direct diagonal-
ization of large dielectric matrices, and it avoids the use of plasmon-pole models. The numerical
accuracy of the approach is controlled by a single parameter, i.e., the number of eigenvectors used
in the spectral decomposition of the dielectric matrix. Here we present a comprehensive validation
of the method, encompassing calculations of ionization potentials and electron affinities of various
molecules and of band gaps for several crystalline and disordered semiconductors. We demonstrate
the efficiency of our approach by carrying out GW calculations for systems with several hundreds
of valence electrons.

PACS numbers: 71.15.Qe, 31.15.xm, 71.15.Mb

I. INTRODUCTION

Calculations based on density functional theory1

(DFT) are widely used in condensed matter physics and
chemistry to study the structural and electronic proper-
ties of molecules, nanostructures and materials. How-
ever, in principle DFT calculations with approximate ex-
change correlation functionals are limited to ground state
properties; often, when used to describe electronic exci-
tation processes, these calculations do not yield good,
quantitative agreement with experiments, although they
may account for trends in specific properties within given
classes of materials or molecules.2

A formal basis for studying electronic excitation pro-
cesses in materials is provided by many-body pertur-
bation theory (MBPT).3,4 In particular, in the mid-
60s an approach was introduced by Hedin, to describe
the direct and inverse photoemission spectra of solids
and to compute ionization potentials and electron affini-
ties of molecules, the so called GW approach.5 It then
took two decades to develop efficient techniques to ap-
ply such a method to solids, e.g., crystalline semicon-
ductors. Since the pioneering work of Hybertsen and
Louie,6 the GW approximation to quasiparticle energies
has been widely used to study fundamental band gaps,7

band offsets at interfaces,8 and quantum transport in
molecular contacts.9 In addition, quasiparticle energies
obtained within the GW approximation may be used as
input for the solution of the Bethe-Salpeter equation, an
alternative method to time-dependent density functional
theory for the calculation of absorption spectra.4

Despite its success over the past two and a half decades,
the use of the GW approximation to study materials and
molecules still faces several numerical challenges. One of
the difficulties in computing quasiparticle energies is the

evaluation of the dielectric matrix (ǫ) used to describe
the electronic polarization and screening of a system sub-
jected to an external electromagnetic perturbation. Sev-
eral approximations have been developed to reduce the
computational workload required to evaluate ǫ, includ-
ing the use of plasmon-pole models to approximate the
frequency dependence of ǫ, and the use of modest plane-
wave cutoffs to represent the dielectric matrix with a
plane-wave basis set.6 Furthermore, the direct evaluation
of both the Green’s function (G) and the dielectric matrix
entering the expression of the screened Coulomb interac-
tion (W ) requires summations over an infinite number
of unoccupied electronic states. In practice, such sum-
mations are truncated at a finite number of unoccupied
states, and the convergence of the computed quasipar-
ticle energies as a function of this number needs to be
carefully checked for each specific system.10–13

Recently, we developed a technique14 for the evalu-
ation of quasiparticle energies aimed at improving both
the computational efficiency and the control of numerical
errors of existing methodologies. Our approach does not
require the calculation of unoccupied electronic states,
nor the direct diagonalization of large dielectric matri-
ces, and it avoids the use of plasmon pole models. Most
importantly, its numerical accuracy is controlled by a sin-
gle parameter, i.e. the number of eigenvalues and eigen-
vectors used in the spectral decomposition of the static
dielectric matrix. In the last few years, several other tech-
niques have appeared in the literature, which overcome
or alleviate the problem of summing over large numbers
of unoccupied states.12,15–17

In this paper we discuss in detail the accuracy and effi-
ciency of the approach we first introduced in Ref. 14. We
compare results for ionization potentials, electron affini-
ties and band structures with those of existing GW cal-
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culations, and we address the convergence of quasipar-
ticle energies with respect to the number of unoccupied
states, as well as the use of plasmon-pole models for the
frequency dependence of the dielectric matrix. We pro-
vide well-converged numerical values for excitation ener-
gies of molecules and semiconducting solids, which may
serve as benchmarks for other numerical techniques, and
which allow one to establish the performance of many-
body perturbation theory at the non self-consistent GW
level, with respect to available experiments.
The rest of the paper is organized as follows: In sec-

tion II we briefly summarize the theoretical background
to compute quasiparticle energies based on the spectral
decomposition of the static dielectric matrix, and we
describe several numerical advantages of our approach.
Section III presents calculations of ionization potentials
(IPs) and electron affinities (EAs) of molecules, and com-
parisons of results to those of existing GW calculations.
In section IV we provide data for ionization potentials
of a large set of molecules, which may be used as bench-
marks for future calculations. In section V, applications
to extended systems are presented, including crystals and
armorphous solids. Finally our conclusions and outlook
are given in section VI.

II. THEORETICAL BACKGROUND

Within the framework of many-body perturbation
theory, quasiparticle energies, Eqpn , and wavefunctions,
ψqpn (r), are obtained by solving the following quasiparti-
cle equation:

[T + Vion(r) + VH(r)]ψqpn (r) +

∫
dr′Σ(r, r′;Eqpn )ψqpn (r′)

= Eqpn ψ
qp
n (r), (1)

where T is the kinetic energy operator, Vion(r) is the ex-
ternal potential of the nuclei, VH(r) is the Hartree poten-
tial, and Σ is the non-local, energy-dependent, and non-
Hermitian self-energy operator, which describes many-
body electronic interactions.
In the GW approximation,5 the self-energy is ex-

pressed in terms of the interacting one-electron Green’s
function G and the screened Coulomb interaction W :

Σ(r, r′; iω) =
1

2π

∫
dω′G(r, r′; i(ω − ω′))W (r, r′; iω′),

(2)
where W = ǫ−1 · vc, ǫ is the dielectric matrix, and vc is
the bare Coulomb potential.
In most practical implementations of the GW method,

the one-electron Green’s function is approximated by the
non-interacting one, G◦, evaluated using eigenvalues, εn,
and wavefunctions, ψn, obtained from Kohn-Sham (KS)
Hamiltonians:

G◦(r, r′, iω) =
∑

n

ψn(r)ψ
∗
n(r

′)

iω − εn
. (3)

The screened Coulomb interaction W ◦ is computed
within the random phase approximation (RPA):

W ◦ = ǫ−1 · vc = vc + vc · χ · vc, (4)

where ǫ−1 denotes the inverse RPA dielectric matrix, and
χ is the interacting density-density response function. In
the current notation vc · χ =

∫
dr′′vc(r, r

′′)χ(r′′, r′; iω),
and similarly for all other quantities. Within the RPA, χ
is related to the non-interacting density-density response
function, χ◦, by the equation: χ = (1−χ◦ ·vc)

−1 ·χ◦, and
χ◦ is written in terms of KS eigenvalues and orbitals:

χ◦(r, r′; iω) = 4 Re
∑

cv

ψ∗
v(r)ψc(r)ψ

∗
c (r

′)ψv(r
′)

iω − (εc − εv)
, (5)

where the subscripts v and c indicate valence and conduc-
tion states, respectively (or occupied and virtual states
in the case of molecules). Within first-order perturba-
tion theory, quasiparticle energies (QPEs) are obtained
as corrections to the unperturbed KS eigenvalues:

Eqpn = εn + 〈ψn|ΣG◦W◦(Eqpn )|ψn〉 − 〈ψn|Vxc|ψn〉, (6)

where Vxc is the exchange-correction potential entering
the chosen KS Hamiltonian.

A. Conventional GW approach

In conventional GW calculations,6 one computes the
non-interacting Green’s function G◦(r, r′; iω) and the
density-density response function χ◦(r, r′; iω) directly
from the expressions of Eq. (3) and Eq. (5), respectively.
This approach thus requires a summation over both occu-
pied and unoccupied orbitals, hereafter refered to as the
sum-over-states (SOS) approach. Despite being widely
used, there are serious technical difficulties that limit its
applicability to systems with more than a few tens of
atoms.
First, a large number of unoccupied states is usually re-

quired to converge QPEs.10–13 Even for molecules with a
few atoms, several thousands of unoccupied states might
be required. Due to this slow convergence, an extrapo-
lation scheme is often employed to obtain QPEs in the
limit of infinite number of unoccupied states.13,18 How-
ever, the final result may depend on the specific function
used in the extrapolation procedure.
Second, since the inverse dielectric matrix ǫ−1 enters

the calculation of the screened Coulomb interaction W ◦

(Eq. 4), if one evaluate ǫ directly from the expression of
χ0 in Eq. 5 then ǫ must be stored and inverted. As a
result, large computational resources, in terms of both
memory and CPU time, are usually required in practi-
cal applications. In many cases, the size of the dielectric
matrix is truncated to make the calculation numerically
affordable. Often, a cutoff energy of a few Ry is employed
(much smaller than that adopted for the KS wavefunc-
tions) when using a plane-wave basis set to represent the
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dielectric matrix, leading to a significant reduction of the
computational resources. However, this approximation
may lead to incorrect converged results of QPEs as shown
in the case of ZnO.11

Furthermore, in the conventional GW approach, the
frequency dependence of the dielectric matrix is often ap-
proximated by various plasmon-pole models.6,19–21 This
approximation not only reduces the computational work-
load, but also provides an analytical expression for the
self-energy as a function of frequency. However, it has
been shown that results obtained with different plasmon-
pole models may be significantly different,8,22 and thus it
is important to develop efficient techniques to explicitly
take into account the frequency dependence of W .
In the following, we present in detail the scheme we

proposed in Ref. 14 to compute QPEs, which avoids all
the difficulties mentioned above.

B. GW calculations from a spectral decomposition
of the static dielectric matrix

The self-energy in Eq. (2) can be written as a sum of
an exchange, Σx, and a correlation, Σc, term. Within
a plane-wave, pseudopotential formulation, the exchange
term is evaluated with the techniques of Refs. 23, while
Σc can be written as:

Σc = G◦(v
1

2

c · χ · v
1

2

c ) = G◦(v
1

2

c · (ǫ̃−1 − 1) · v
1

2

c ), (7)

where χ = v
1

2

c · χ · v
1

2

c is the symmetrized interacting

density-density response function, and ǫ̃ = v
− 1

2

c · ǫ · v
1

2

c is
the Hermitian dielectric matrix.

We use a spectral decomposition to represent the in-
verse of the static Hermitian dielectric matrix:24

ǫ̃−1(r, r′)− 1 ≡ χ(r, r′) =

Neig∑

i

(λ−1
i − 1)Φ∗

i (r)Φi(r
′), (8)

where λi and Φi(r) denote eigenvalues and eigenvectors
of ǫ̃(r, r′). These dielectric eigenvectors {Φi(r)} are then
used as a basis to expand the frequency dependent di-
electric matrix and density-density response function:

ǫ̃−1(r, r′, iω)− 1 ≡ χ(r, r′; iω) =

Neig∑

i,j=1

cij(iω)Φ
∗
i (r)Φj(r

′),

(9)
where cij are expansion coefficients.

Finally the expectation value of the correlation self-
energy (Eq. 7) in the imaginary frequency domain for
any KS state is:

〈ψn|Σc(iω)|ψn〉 =
1

2π

Neig∑

i,j=1

∫
dω′ cij(iω

′)〈ψn(v
1

2

c Φi)|(Ĥ
◦ − i(ω − ω′))−1|ψn(v

1

2

c Φj)〉, (10)

where |ψn(v
1

2

c Φj)〉 is a vector whose coordinate represen-

tation is 〈r|ψn(v
1

2

c Φj)〉 = ψn(r)
∫
dr′v

1

2

c (r, r′)Φj(r
′), and

Ĥ◦ is the unperturbed KS Hamiltonian.

The method to compute the correlation self-energy
presented here offers several advantages: (i) dielectric
eigenvectors {Φi(r)} and therefore the dielectric ma-
trix can be constructed without explicit calculations
of unoccupied electronic states by using density func-
tional perturbation theory and iterative diagonalization
algorithms;24 (ii) in constrast to plane-wave represen-
tations of ǫ̃, the evaluation of a large dielectric matrix
is avoided, as a relatively small number of eigenvectors
Neig is necessary to numerically converge the summa-
tion of Eq. (8);24,25 (iii) the correlation self-energy Σc(iω)
over a wide frequency range is evaluated by the Lanczos
algorithm,26 and its value in the real frequency domain
is then obtained by analytical continuation methods,27,28

thus no plasmon-pole model is needed. Details of the
iterative calculations of dielectric eigenvectors and the
Lanczos algorithm can be found in Appendix A and B,

respectively. We implemented this scheme for norm-
conserving pseudopotentials as a postprocessing module
in the Quantum Espresso distribution.29

C. Basis functions for the dielectric matrix

An important step in our calculations is the construc-
tion of the basis functions {Φi(r)} to represent the inverse

TABLE I. Ionization potential (IP) and electron affinity (EA)
(eV) of the benzene molecule computed for different conver-
gence thresholds in the iterative procedure used to iteratively
diagonalize the dielectric matrix.

Threshold 10−6 10−3 10−2 10−1

IP 9.22 9.22 9.21 9.20

EA -0.81 -0.81 -0.81 -0.82
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of the Hermitian dielectric matrix (Eq. 8). In principle,
any complete set of functions may be employed, and sev-
eral choices have been claimed to improve the efficiency of
calculations, with respect to plane-waves.10,15 Our choice
of dielectric eigenvectors at iω = 0 as a polarization ba-
sis set is not only physically sound but also practically
convenient, as only one convergence parameter (Neig) is
involved.
In the iterative procedure chosen for the spectral de-

composition of the dielectric matrix (Eq. 8), any dielec-
tric eigenvector is considered to be converged when the
change of the corresponding eigenvalue in two succes-
sive iterations is less than a given threshold. When the
dielectric eigenvalues are used for calculations of RPA
correlation energies of weakly bound van der Waals sys-
tems, a threshold as small as 10−5 or 10−6 (in Ryd-
berg atomic units) is necessary to converge the energy
within a few meV (typical energy scale of van der Waals
interactions).30,31 Instead, in GW calculations, we found
that much larger thresholds are sufficient to obtain con-
verged QPEs.
An example is given in Table I for the case of the

benzene molecule,32 where the computed values of the
IP and EA show a variation of only 0.02 eV when the
threshold increases from 10−6 to 10−1. These results
indicate that linear spaces spanned by eigenvectors com-
puted with different thresholds are basically the same,
leading to very small differences in the computed QPEs.
This represents a significant advantage, as one can save
considerable amount of CPU time by using eigenvectors
obtained with relatively large thresholds without com-
promising the accuracy of the calculated QPEs.

D. Computational cost

We now turn to a discussion of the efficiency of the
method presented in II. B and II. C. We denote by Nv
and Nc the number of valence and conduction bands, and
by Npwψ and Npwχ the number of plane-waves used to
represent wavefunctions and the response function χ (and
the dielectric matrix), respectively. The computational
workload23,24 to generate the dielectric matrix with Neig
eigenvectors scales as Niter×Neig×Npwψ×N

2
v with Niter

being the number of iterations needed to converge dielec-
tric eigenvectors in iterative diagonalization procedures
(Niter is typically not larger than 10 in all cases consid-
ered here). In addition, the cost of Lanczos chains gen-
eration is NLanczos ×Neig ×Npwψ ×N2

v where NLanczos
is the number of Lanczos iterations (see Appendix B),
which is typically just a few tens. Therefore the total
workload of our approach is (Niter +NLanczos)×Neig ×
Npwψ×N2

v , and it is proportional to the fourth power of
the system size.
This workload represents a substantial improvement

over that of conventional approaches, N2
pwχ × Nv × Nc,

which is also proportional to the fourth power of the sys-
tem size, but with a substantially larger prefactor. In

particular, Npwψ is much smaller than Npwχ: Npwχ is
used to represent density responses and perturbing po-
tentials, whose kinetic-energy cutoff is four times as large
as that needed to represent wavefunctions, in the case
of norm-conserving pseudopotentials. Furthermore, the
number of occupied states Nv is often an order of mag-
nitude smaller than the number of unoccupied states Nc
required to converge summations in the dielectric matrix
and Green’s function; instead the sum (Niter+NLanczos)
is usually less than a few tens, as mentioned above. Fi-
nally, the number of eigenvectors Neig is usually several
orders of magnitude smaller than the size of the response
function Npwχ.

Taking the benzene molecule as an example to illus-
trate the efficiency of our appoach, we found that the
use of Neig = 300 and NLanczos = 25 is sufficient to ob-
tain well converged values of QPEs within 0.05 eV. For
calculations using a kinetic energy cutoff of 40 Ry for
the wavefunction and a cell size of L = 25 a.u., in the
SOS approach, the number of basis functions for the di-
electric matrix and wavefunctions are Npwχ ∼ 5.3 × 105

and Npwψ ∼ 6.6× 104, respectively. Taking Nv = 15 and
Nc ∼ 2.6×103,12 we estimate that the computational cost
of our method is about four order of magnitude smaller
than that of the conventional SOS. Such an efficiency al-
lowed us to compute QPEs of systems with hundreds of
valence electrons.14,33

III. COMPARISON WITH PREVIOUS GW

CALCULATIONS

A. Comparison with plane-wave basis set
calculations

In order to illustrate the importance of converging
the number of unoccupied states in GW calculations, in
this section we compare QPEs obtained with the cur-
rent method to those using the conventional plane-wave
based SOS approach. Two systems were selected, the
benzene diamine-C6H8N2 (BDA) molecule and C60, for
which SOS’s results of the IP and EA have been reported
in the literature.12,13

1. Benzene diamine molecule

The conventional G◦W ◦ approach that requires sums
over unoccupied states was employed in Ref. 13 to inves-
tigate the BDA molecule. In order to directly compare
with this work, we adopted the Perdew-Burke-Ernzerhof
(PBE) exchange-correlation functional34 with a plane-
wave cutoff of 60 Ry, and periodic boundary conditions
with a cell of 30 a.u. The equilibrium geometry of the
gas-phase BDA was determined using DFT with the PBE
functional. We used Neig = 300, which yields values of
QPEs converged within 0.02 eV.
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TABLE II. Ionization potential (IP) and electron affinity
(EA) (eV) of the benzene diamine (BDA) molecule, as ob-
tained from Kohn-Sham eigenvalues (PBE-eig), and from GW

calculations at different levels of theory. G1W 1 corresponds
to calculations where both G and W are updated using the
QPEs from the previous cycle, while only W is updated in the
G◦W 1 calculation. The number of unoccupied states (Nc) in-
cluded in conventional GW calculations is also given.

No. of unocc. orb IP EA

Ref. 13

PBE-eig · · · 4.22 1.03

G◦W ◦ Nc=1024 5.89 -2.18

G◦W ◦ Nc → ∞ 6.64 -1.42

G◦W 1 Nc → ∞ 6.71 -1.65

G1W 1 Nc → ∞ 6.85 -1.59

This work

PBE-eig · · · 4.21 1.02

G◦W ◦
· · · 6.88 -1.02

Expt.35 · · · 7.34 · · ·

Table II summarizes the IP and EA for the gas phase
BDA, computed at different levels of theory. Consistent
with previous work,13 the IP computed at the DFT/PBE
level of theory (PBE-eig) underestimates the experimen-
tal value by 3.12 eV. Our G◦W ◦ calculations significantly
improve the IP value, with the error relative to experi-
ment reduced to 0.46 eV.

The slow convergence of QPEs of the BDA molecule
with respect to the number of unoccupied states has been
discussed in Ref. 13. In particular, at the G◦W ◦ level of
theory, when 1024 unoccupied states are included, the
computed IP shows a deviation as large as 0.75 eV com-
pared with the Nc → ∞ extrapolated value. Extrapolat-
ing the calculated values of IP to infinite Nc reduces the
error with respect to experiment from 1.45 eV to 0.7 eV,
and depending on whether G or W is updated using the
QPEs from the previous cycle, this error may be further
reduced to 0.5 eV.

At the G◦W ◦ level of theory, our result for the IP is
higher and closer to experiment than the extrapolated
value reported in Ref. 13. The discrepancy may be at-
tributed to the use of a relatively small cutoff for the
dielectric matrix (6.0 Ry), as well as the use of a plasmon-
pole model.13 Additional errors may stem from the choice
of the analytical form of the function used to extrapo-
late the value of IP to infinite Nc. Similar to the IP,
our G◦W ◦ result for EA is higher than the extrapolated
value reported in Ref. 13; unfortunately no experimental
value for EA of the BDA molecule is available.

TABLE III. Ionization potential (IP) and electron affinity
(EA) (eV) for buckminsterfullerene (C60) as obtained from
Kohn-Sham eigenvalues (PBE-eig), and from G◦W ◦ calcu-
lations. The number of unoccupied states (Nc) included in
conventional GW calculations is also given. SAPO stands for
simple approximate physical orbitals.12

No. of unocc. orb IP EA

Ref. 12

PBE-eig · · · 5.84 4.19

G◦W ◦ Nc=5370 6.76 2.19

G◦W ◦ 27387 SAPOs 7.21 2.62

This work

PBE-eig · · · 5.81 4.13

G◦W ◦
· · · 7.31 2.74

Expt.35 · · · 7.64 2.69

2. Buckminsterfullerene C60

For buckminsterfullerene C60, we employed the PBE
exchange-correlation functional with a plane-wave cutoff
of 40 Ry, and periodic boundary conditions with a cell
of 40 a.u.. Our computed values of IP and EA at the
DFT/PBE level of theory are in excellent agreement with
previous studies12 (see Table III). QPEs of C60 were
calculated using Neig = 700, that yields converged values
of IP and EA within 0.03 eV.

Calculations of QPEs of C60 using the conventional
G◦W ◦ approach showed a slow convergence with respect
to the number of unoccupied states.12 In particular, using
5370 unoccupied states, the values of the IP and EA are
strongly underestimated compared to experiment, with
errors of 0.88 eV and 0.51 eV, respectively. In contrast,
with the current approach that avoids the direct evalu-
ation of unoccupied states, we found values of 7.31 eV
and 2.74 eV for the IP and EA, respectively, in good
agreement with experiment (within 0.30 eV).

The authors of Ref. 12 also addressed the problem of
the computational cost associated with the construction
of unoccupied states in G◦W ◦ calculations, and proposed
to replace the DFT unoccupied states with simple ap-
proximate physical orbitals (SAPOs) that are compu-
tationally cheaper to generate. As shown in Table III,
our results for EA and IP are in good agreement with
those reported in Ref. 12 when a large number of SAPOs
(27387) is included in G◦W ◦ calculations. We note that
the approach of Ref. 12 still requires to carry out explicit
sums over SAPOs, and the use of a plasmon-pole model
together with a relatively small energy cutoff (6.0 Ry) to
represent the dielectric matrix.
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TABLE IV. Ionization potentials (IP), electron affinities
(EA), and quasiparticle gaps (eV) for a set of molecules (see
text) as obtained from Kohn-Sham eigenvalues (LDA-eig),
and from LDA based G◦W ◦ calculations.

LDA-eig G◦W ◦ Expt.35

Present Ref. 36 Present Ref. 36

C14H10

IP 5.18 5.47 7.25 a 6.89 7.40

EA 2.81 3.22 1.05 0.74 0.50

Gap 2.37 2.25 6.20 6.15 6.90

C18H12

IP 4.85 5.15 7.04 6.37 6.97

EA 3.19 3.58 1.41 1.34 1.07

Gap 1.66 1.57 5.63 5.03 5.90

C22H14

IP 4.63 4.94 6.30 5.98 6.60

EA 3.47 3.84 1.96 1.77 1.40

Gap 1.16 1.10 4.34 4.21 5.20

C60

IP 6.03 6.37 7.45 7.28 7.64

EA 4.35 4.79 3.05 2.88 2.69

Gap 1.68 1.58 4.40 4.40 4.95

H2Pc

IP 5.21 5.56 6.11 6.08 6.40

EA 3.76 4.14 2.35 2.41 · · ·

Gap 1.45 1.42 3.76 3.67 · · ·

a A value of 6.65 eV was reported in Ref. 37 using a TZVPP

Gaussian basis set and the PBE exchange-correlation

functional.

B. Comparison with localized basis set calculations

Recently QPEs of several molecules of interest for pho-
tovoltaic applications were investigated within the GW
approximation.36 These calculations were based on the
conventional implementation of the GW method with
a localized basis-set and a direct sum over unoccupied
states. In order to further validate our scheme, and
to compare our results with those obtained with lo-
calized basis-sets, we computed QPEs for anthracene
(C14H10), tetracene (C18H12), pentacene (C22H14), C60

and phthalocyanine-C32H18N8 (H2Pc) molecules, whose
values were reported in Ref. 36.

Similar to Ref. 36, our calculations were performed
with the local density approximation (LDA) for the
exchange-correlation functional. A kinetic energy cutoff
of 40 Ry for wavefunctions was employed for all systems,
except for the H2Pc molecule where we used 70 Ry due to
the presence of the nitrogen atom. The size of the super-
cell was chosen in such a way that the distance between
periodic images was at least 10 Å. The QPEs of C60,
whose number of valence electrons is the largest in this

set of molecule, were computed using Neig=700, similar
to the calculations with the PBE functional (Table III).
The number of dielectric eigenvectors needed to converge
QPEs of other molecules was also carefully checked, e.g.,
using Neig=600 yields values of the IP and EA converged
within 0.05 eV for the case of H2Pc.
The computed values of the IP, EA and quasiparticle

gap obtained at different levels of theory are summarized
in Table. IV. The IPs computed within the DFT/LDA
(LDA-eig) significantly underestimate experimental val-
ues. In contrast, for molecules whose experimental EAs
are available, we found that DFT-LDA overestimates ex-
periments by ∼ 2.0 eV. Calculations at the G◦W ◦ level of
theory show a significant improvement, bringing the er-
rors of IP and EA to average values of 0.20 and 0.45 eV,
respectively, in satisfactory agreement with experiments.
As seen in Table IV, our G◦W ◦ results for IP and

EA are overall larger than those obtained with localized
basis-set, leading to better (worse) agreement of IP (EA)
with experiment than those reported in Ref. 36. Quasi-
particle gaps for this set of molecule, turned out to be in
excellent agreement with the results of Ref. 36, yielding
an average error of 0.60 eV compared to experiment.
Direct comparison with the G◦W ◦ results reported in

Ref. 36 is not straightforward, due to several technical
differences. As shown in Table IV, there are already sig-
nificant differences in the results of ground state calcu-
lations using localized basis sets and plane-waves. For
all molecules studied here, we found that absolute values
of LDA eigenvalues obtained with plane-waves are sys-
tematically smaller than those reported with a localized
basis set by 0.30-0.40 eV. Such large differences cannot
be attributed to the sole change in the relaxed geometries
of the molecules. More importantly, these discrepancies
are not negligible when compared, for example, to the
quasiparticle corrections of 0.90 eV (this work) and 0.52
eV (Ref. 36) for IPs of H2Pc, respectively.

38

IV. IONIZATION POTENTIALS FOR THE
TEST SET G2/97

In order to provide highly converged ionization poten-
tials that can be used as a benchmark for future cal-
culations, we considered a subset of 80 molecules from
the G2/97 test set.39 The open-shell molecules belonging
to the G2/97 test set were not considered in this work.
To minimize possible effects of molecular geometry on
G◦W ◦ calculations, we employed the relaxed geometries
at the MP2 level of theory with the 6-31G(d) basis set
as published in Ref. 39, without any further structural
relaxation. In addition, we used PBE Troullier-Martins
norm-conserving pseudopotentials taken from the Abinit
distribution.40 Therefore our results are straightforward
to reproduce.
Together with the G◦W ◦ method, we considered other

approaches to evaluate the IP. First, IPs were obtained
from the KS energies corresponding to the highest occu-



7

pied molecular orbital in DFT calculations. We consid-
ered not only the PBE approximation to the exchange-
correlation potential but also fully nonlocal approxima-
tions, including Hartree-Fock (HF) and hybrid function-
als. We choose two popular hybrid functionals, i.e., the
PBE041 and the HSE0642 ones, both of which contain
25% Fock exchange. All G◦W ◦ calculations were per-
formed using ground state PBE eigenvalues and orbitals.

We further evaluated IPs from total energy differences
in a so-called delta self-consitent field (∆SCF) procedure:

I = EN−1
0 − EN0 , (11)

where EN0 is the total energy of the N electron system,
that can be computed, e.g., with the PBE or hybrid
exchange-correlation functionals.

Table V presents the IPs of 80 molecules computed
within different approaches, together with experimental
results. The mean error (ME) and mean absolute error
(MAE) of the computed IPs with respect to experimental
data are summarized in Fig. 1 and Table VI. We also re-
port ME and MAE for three specific classes of molecules
of the test set, specifically non-hydrogen systems, hydro-
carbons, and substituted hydrocarbons. As well known,
IPs obtained from the PBE-HOMO energies suffer from
the self-interaction error,43 and they thus strongly un-
derestimate experiments (negative ME) with a MAE as
large as 4.16 eV. Part of this self-interaction error is re-
moved using the PBE0 and HSE06 functionals due to
the inclusion of 25% Fock exchange. However the IPs
obtained from the HSE06 and PBE0 eigenvalues are still
far from experiment with MAEs of 3.13 eV and 2.73 eV,
respectively.

Since screening is weak in small molecules and HF is
self-interaction free, HF results are much closer to ex-
periment, with a MAE of 0.79 eV. In general, IPs com-
puted within HF overestimate experimental values (pos-
itive ME). The G◦W ◦ approximation based on ground
state PBE eigenvalues and orbitals performs better than
HF, yielding a MAE of 0.40 eV with respect to experi-
ments. This value is in agreement with those reported in
Refs. 44 and 45. Therefore it appears that irrespective of
the implementation, IPs obtained at the G◦W ◦ level of
theory, with PBE ground state eigenvalues and orbitals,
show a MAE in the range of 0.4-0.5 eV, with respect to
experiment. Not surprisingly, the ∆SCF procedure pro-
vides good quality IPs. We find that ∆SCF results with
the PBE0 and HSE06 hybrid functionals perform equally
well, with a MAE of 0.27 eV. They are superior to those
based on the semilocal PBE exchange-correlation func-
tional, with a MAE of 0.47 eV. We note that for some
molecules, the ∆SCF procedure based on the PBE func-
tional severely underestimates experiment, e.g., the de-
viation is as large as 1.58 eV for the BF3 molecule. In
such cases, the G◦W ◦ approximation shows significant
improvement over the PBE based ∆SCF, leading to very
good agreement with the hybrid functionals based ∆SCF
calculations.
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FIG. 1. Deviation of computed ionization potentials, obtained
within different approaches (see text), with respect to exper-
imental data. The upper panel shows the mean error (ME),
and the lower panel the mean absolute error (MAE) for a
80 molecule set (see text). The grey rectangle corresponds
to the MAE and ME computed for all the molecules of the
set. The red, blue and green rectangles correspond to the re-
sults computed for non-hydrogen systems, hydrocarbons, and
substituted hydrocarbons only, respectively.

For all approaches presented here, the hybrid function-
als based ∆SCF performs the best for IPs when compared
to experimental results. However, unlike the G◦W ◦ ap-
proach, it does not allow one to access the full energy
spectrum of the system and its generalization to extended
systems is not straightforward, although approximate
forms of ∆SCF for solids have been recently proposed
in the literature.46

V. BAND GAPS OF SEMICONDUCTORS

In this section, we turn to extended systems and we
consider different semiconductors whose QPEs have been
reported in literature. In addition we present a study of
the band gap of a disordered system represented by a 56
atoms supercell (256 valence electrons). Note that for
the purpose of treating systems with large supercells, in
the present work we sample the Brillouin zone using the
Γ point only.
In extended systems, an accurate sampling of the Bril-

louin zone is necessary to compute the long-wavelength
component of the dielectric matrix.48 In the present work,
the “head” of the dielectric matrix (G = G

′ = 0) at
frequency iω is computed separately using the Lanczos
chain algorithm with dense k-point meshes. Note that
when sampling the Brillouin zone with the Γ point only,
the “wings” of the dielectric matrix (G = 0,G′ = 0)
vanish.49
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TABLE V. Ionization potentials (eV) obtained at different levels of theory (see text), together with experimental results.35

“X-eig” (with X=PBE, HSE, PBE0 and HF) refers to results obtained from the KS eigenvalues while “X-tot” corresponds to
those computed with the ∆SCF procedure.

Molecule PBE-eig HSE-eig PBE0-eig HF-eig PBE-tot HSE-tot PBE0-tot G◦W ◦ Expt.

Non-hydrogen systems

BF3 9.94 11.70 12.09 17.72 14.38 15.17 15.18 15.12a 15.96

BCl3 7.49 8.51 8.91 12.27 10.75 11.30 11.26 11.37b 11.62

AlF3 9.54 11.18 11.58 16.98 13.48 14.28 14.30 14.34 15.45

AlCl3 7.77 8.77 9.17 12.49 10.83 11.36 11.39 11.59 12.01

CF4 10.26 12.07 12.47 18.28 14.48 15.43 15.44 15.38 16.20

CCl4 7.41 8.45 8.84 12.29 10.50 11.07 11.10 11.22 11.69

COS 7.40 8.22 8.61 11.37 11.19 11.23 11.24 11.01 11.19

CS2 6.66 7.32 7.70 10.03 9.96 9.99 9.99 9.89 10.09

CF2O 8.44 9.88 10.28 14.94 13.09 13.27 13.28 12.91 13.60

SiF4 10.49 12.20 12.60 18.14 14.35 15.31 15.33 15.38 16.40

SiCl4 7.87 8.89 9.28 12.64 10.83 11.43 11.46 11.58 12.06

N2O 8.28 9.29 9.68 13.09 12.66 12.66 12.67 12.23 12.89

ClNO 7.35 8.26 8.65 11.55 11.22 11.25 11.25 11.29 10.94

NF3 8.52 9.95 10.35 15.10 13.03 13.44 13.44 13.07 13.60

PF3 7.86 8.86 9.25 12.67 11.81 12.06 12.07 11.85 12.20

O3 7.98 9.46 9.86 13.11 12.58 12.30 12.30 12.20 12.73

F2O 7.63 9.41 9.81 15.58 12.63 13.18 13.18 12.75 13.26

ClF 7.83 9.05 9.45 13.41 12.41 12.65 12.66 12.62c 12.77

C2F4 6.12 7.14 7.54 10.81 9.99 10.26 10.27 10.08 10.69

C2Cl4 5.91 6.66 7.05 9.60 8.89 9.15 9.16 9.07 9.50

CF3CN 9.38 10.43 10.83 14.01 13.36 13.68 13.69 13.3 14.30

Hydrocarbons

C3H4 (propyne) 6.40 7.21 7.61 10.29 10.11 10.11 10.12 10.00 10.37

C3H4 (allene) 6.48 7.25 7.65 10.19 9.95 9.97 9.98 9.82 10.00

C3H4 (cyclopropene) 6.00 6.74 7.13 9.58 9.62 9.62 9.63 9.67 9.86

C3H6 (propylene) 6.15 6.89 7.26 9.64 9.65 9.62 9.63 9.51 9.91

C3H6 (cyclopropane) 7.00 7.90 8.30 11.32 10.68 10.74 10.74 10.60 10.54

C3H8 (propane) 7.65 8.67 9.06 12.62 11.08 11.49 11.50 11.84d 11.51

C4H6 (butadiene) 5.73 6.31 6.69 8.66 8.82 8.79 8.79 8.68 9.03

C4H6 (2-butyne) 5.80 6.59 6.99 9.64 8.19 9.31 9.31 9.25 9.79

C4H6 (methylene) 6.18 6.90 7.30 9.69 9.58 9.54 9.55 9.42 9.60

C4H6 (bicyclobutane) 5.68 6.44 6.84 9.43 9.07 9.11 9.12 9.05 8.70

C4H6 (cyclobutene) 5.93 6.63 7.02 9.35 9.33 9.31 9.32 9.25 9.59

C4H8 (cyclobutane) 7.13 8.08 8.48 11.74 10.52 10.76 10.78 10.81 10.7

C4H8 (isobutene) 5.81 6.51 6.91 9.26 9.11 9.10 9.11 9.04 9.41

C4H10 (transbutane) 7.48 8.48 8.88 12.27 10.64 11.08 11.09 11.58e 11.09

C4H10 (isobutane) 7.50 8.48 8.87 12.33 10.79 11.16 11.18 11.57f 11.13

C5H8 (spiropentane) 6.40 7.22 7.62 10.39 9.56 9.76 9.78 9.62 9.73

C6H6 6.18 6.76 7.15 8.98 9.21 9.20 9.21 9.04g 9.23

a A G◦W ◦ value of 15.21 eV was reported in Ref. 47.
b A G◦W ◦ value of 11.25 eV was reported in Ref. 47.
c A G◦W ◦ value of 10.72 eV was reported in Ref. 47.
d A G◦W ◦ value of 11.60 eV was reported in Ref. 37.
e A G◦W ◦ value of 11.16 eV was reported in Ref. 37.
f A G◦W ◦ value of 11.19 eV was reported in Ref. 37.
g G◦W ◦ values of 9.00 and 8.65 eV were reported in Ref. 37 and Ref. 47, respectively.
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TABLE V. Continued.

Molecule PBE-eig HSE-eig PBE0-eig HF-eig PBE-tot HSE-tot PBE0-tot G◦W ◦ Expt.

Substituted hydrocarbons

CH2F2 8.09 9.50 9.90 14.48 12.41 12.94 12.95 13.05 13.27

CHF3 9.46 10.93 11.33 16.12 13.71 14.34 14.35 14.34 14.80

CH2Cl2 7.18 8.19 8.59 11.99 10.61 11.03 11.05 11.25 11.40

CHCl3 7.29 8.31 8.70 12.01 10.55 11.03 11.05 11.18 11.50

CH3NH2 5.39 6.47 6.87 10.59 9.5 9.53 9.54 9.02 9.65

CH3CN 7.93 8.87 9.27 12.30 11.95 11.98 11.99 11.75 12.46

CH3NO2 6.82 8.23 8.63 12.30 10.97 11.36 11.37 10.71 11.29

CH3ONO 6.48 7.74 8.13 12.39 10.63 10.84 10.85 9.95 10.44

CH3SiH3 7.81 8.72 9.11 12.29 11.24 11.48 11.49 11.35 11.6

HCOOH 6.88 8.12 8.52 12.74 11.25 11.26 11.27 11.06 11.5

HCOOCH3 6.61 7.86 8.26 12.48 10.78 10.84 10.85 10.38 11.0

CH3CONH2 5.66 6.87 7.27 11.17 9.62 9.66 9.67 9.40 10.0

C2H4NH 5.77 6.81 7.21 10.63 9.67 9.71 9.72 9.48 9.85

NCCN 9.10 9.96 10.35 13.14 12.85 12.93 12.93 12.59 13.51

(CH3)2NH 4.99 6.00 6.39 9.96 8.74 8.78 8.79 8.63 8.95

CH3CH2NH2 5.37 6.43 6.83 10.48 9.25 9.31 9.32 9.02 9.50

CH2CO 5.88 6.72 7.11 9.92 9.69 9.70 9.71 9.48 9.64

C2H4O 6.18 7.45 7.85 12.12 10.40 10.43 10.44 10.24 10.57

CH3CHO 5.87 7.06 7.45 11.49 9.98 10.03 10.04 9.77 10.24

HCOCOH 6.30 7.49 7.88 11.95 10.02 10.46 10.47 10.22 10.60

CH3CH2OH 6.13 7.36 7.76 11.89 10.18 10.42 10.43 10.32 10.64

CH3OCH3 5.80 6.97 7.37 11.40 9.73 9.86 9.87 9.82 10.0

C2H4S 5.24 6.08 6.47 9.32 8.87 8.89 8.90 8.90a 9.0

(CH3)2SO 5.26 6.19 6.59 9.88 8.81 8.85 8.86 8.62 9.11

C2H5SH 5.42 6.25 6.65 9.54 9.05 9.01 9.11 9.02 9.28

CH3SCH3 4.96 5.77 6.16 9.02 8.46 8.52 8.53 8.58 8.67

CH2=CHF 6.47 7.30 7.70 10.37 10.32 10.33 10.33 10.18 10.56

C2H5Cl 6.84 7.84 8.24 11.60 10.62 10.86 10.87 10.88 11.06

CH2=CHCl 6.32 7.08 7.47 9.98 9.78 9.86 9.87 9.82 10.2

CH2=CHCN 7.20 7.90 8.29 10.64 10.59 10.61 10.62 10.50 11.1

CH3COCH3 5.55 6.74 7.14 11.11 9.43 9.51 9.52 9.48 9.8

CH3COOH 6.43 7.67 8.07 12.23 10.51 10.59 10.60 10.27 10.9

CH3COF 7.24 8.52 8.92 13.18 11.47 11.56 11.57 11.11 11.51

CH3COCl 6.95 8.06 8.46 12.17 10.69 10.83 10.84 10.71 11.03

CH3CH2CH2Cl 6.78 7.78 8.18 11.49 10.35 10.64 10.66 10.76 10.88

(CH3)2CHOH 6.08 7.30 7.69 11.71 9.91 10.17 10.18 10.06 10.44

C2H5OCH3 5.71 6.88 7.27 11.27 9.47 9.65 9.66 9.52 9.72

(CH3)3N 4.81 5.75 6.14 9.55 8.28 8.31 8.32 8.27 8.54

C4H4O 5.53 6.15 6.54 8.53 8.82 8.77 8.77 8.54 8.90

C4H4S 5.70 6.32 6.71 8.69 8.82 8.80 8.80 8.49 8.85

C4H5N 5.02 5.61 6.00 7.93 8.21 8.15 8.16 7.91 8.23

C5H5N 5.79 6.94 7.34 9.29 9.31 9.47 9.48 9.54 9.51

a A G◦W ◦ value of 8.71 eV was reported in Ref. 47.



10

TABLE VI. Mean error (ME) and mean absolute error (MAE) of the computed ionization potentials (eV) reported in Table V
with respect to experimental data.35 Results for three specific classes of molecules are also presented.

Molecule PBE-eig HSE-eig PBE0-eig HF-eig PBE-tot HSE-tot PBE0-tot G◦W ◦

Non-hydrogen systems

ME -4.72 -3.50 -3.10 0.81 -0.80 -0.41 -0.40 -0.52

MAE 4.72 3.50 3.10 0.84 0.82 0.45 0.44 0.55

Hydrocarbons

ME -3.57 -2.77 -2.38 0.31 -0.25 -0.09 -0.08 -0.08

MAE 3.57 2.77 2.38 0.52 0.31 0.18 0.17 0.29

Substituted hydrocarbons

ME -4.42 -3.13 -2.68 0.53 -0.22 -0.19 -0.16 -0.31

MAE 4.42 3.13 2.68 0.97 0.41 0.25 0.24 0.37

Total

ME -4.16 -3.13 -2.73 0.67 -0.44 -0.23 -0.22 -0.35

MAE 4.16 3.13 2.73 0.79 0.47 0.27 0.27 0.40

A. Quasiparticle energies of Si, AlAs and SiC

We considered Si first, which has been extensively
studied by the electronic structure community, and for
which several GW results are available. In addition, we
present results for AlAs, a medium-gap semiconductor,
and for SiC, a wide-gap semiconductor. We used a ki-
netic energy cutoff of 25 Ry for Si; 40 Ry for AlAs and
SiC. Experimental lattice constants of 10.26 a.u. for Si;
and 10.67 a.u. and 8.24 a.u. for AlAs and SiC were
used, respectively. For all systems we employed a 64-
atom cubic supercell and we sampled the corresponding
Brilloun zone using the Γ point. The “head” of the di-
electric matrix at the frequency iω was computed with
a 4×4×4 k-point grid. In order to compare to available
GW calculations, we used the LDA exchange-correlation
functional. Similar to calculations for molecules, we find
that QPEs are converged with a relatively small number
of Lanczos iterations (∼20-25). For all systems consid-
ered here, the QPEs were converged within 0.05 eV when
using 600 dielectric eigenpotentials.

Table VIII presents the calculated QPEs at points of
high-symmetry for Si, together with available theoreti-
cal and experimental results. For all energy bands, our
results are in excellent agreement with those of other
calculations using pseudopotentials, and plane-wave ba-
sis set, and full frequency integration (no plasmon-pole
models).10,28,50 In the vicinity of the valence band max-
imum (VBM) our results are also consistent with those
obtained with plasmon-pole models.51,52 However, as one
moves away from the VBM, significant differences are
found, e.g., our computed valence-band width is 11.64
eV, while it is 11.90-11.95 eV when using plasmon-pole
models. These large deviations are not surprising, in fact,
for Si the same behavior was observed with conventional
GW approaches, when comparing QPEs obtained with

plasmon-pole models and those with the contour defor-
mation method that takes into account the full frequency
dependence of the screened Coulomb interaction.53 Our
computed value of the valence-band width is in excel-
lent agreement with that reported in Ref. 53 using the
contour deformation method (11.7 eV).

Except for the energy band X1c, our results are also
in good agreement with those using the all-electron full-
potential projector augmented wave method (PAW).54

In addition, the consistency between our results and all
other pseudopotential based calculations indicates that
the large deviation (∼0.35 eV for X1c) from Ref. 54
may stem from the contribution of core-electrons that
are explicitly taken into account in PAW calculations.54

Computed QPEs for AlAs and SiC are shown in Ta-
ble IX and X, respectively. For AlAs our results are in
good agreement with those using pseudopotentials with
a plasmon-pole model, indicating that at least for AlAs,
plasmon-pole models are a good approximation for the
frequency dependence of the dielectric matrix. In con-
strast, for SiC, when comparing to results obtained with
plasmon-pole models, we find small deviations in the
vicinity of the VBM, but large variations away from the
VBM. Similar to the case of Si, when compared to all-
electron PAW approach, large variations (∼0.5 eV) are
observed for the energy band X1c of both AlAs and SiC.

Based on our observations, we conclude that using
plasmon-pole models may be a good approximation only
for energy levels close to the band gap. For all systems
considered here, the convergence of QPEs with respect to
the number of unoccupied states, as well as to the cutoff
of the dielectric matrix does not appear to be as severe
as, e.g. in the case of ZnO.11
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TABLE VIII. Calculated quasiparticle energies at points of high-symmetry for Si (in eV), together with available theoretical and
experimental results (as quoted in Ref. 28). Unless noted otherwise in the “Comment” row, all calculations use pseudopotentials,
plane-waves, and no plasmon-pole models (PPM). GO stands for Gaussian orbitals and PAW for all electron full-potential
projector augmented wave. Energies are measured relative to the valence band maximum.

Present Ref. 10 Ref. 28 Ref. 50 Ref. 51 Ref. 52 Ref. 54 Expt.

Γ1v -11.64 -11.49 -11.57 -11.57 -11.90 -11.95 -11.85 -12.5±0.6

Γ′
25c 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Γ15c 3.25 3.24 3.24 3.23 3.25 3.36 3.09 3.40, 3.05

Γ′
2c 3.92 3.89 3.94 3.96 3.86 3.89 4.05 4.23, 4.1

X1v -7.75 -7.58 -7.67 -7.57 -7.90 -7.95 -7.74

X4v -2.88 -2.80 -2.80 -2.83 -2.96 -2.93 -2.90 -2.90, -3.3±0.2

X1c 1.36 1.41 1.34 1.35 1.31 1.43 1.01 1.25

L′
2v -9.38 -9.39 -9.35 -9.65 -9.70 -9.57 -9.3±0.4

L1v -6.93 -6.86 -6.78 -7.13 -7.14 -6.97 -6.7±0.2

L′
3v -1.23 -1.17 -1.20 -1.25 -1.25 -1.16 -1.2±0.2

L1c 2.21 2.14 2.18 2.13 2.19 2.05 2.1, 2.4±0.1

L3c 4.00 4.05 4.06 4.13 4.08 3.83 4.15±0.1

Comment PPM GO/PPM PAW

B. Band gaps of amorphous Si3N4

As a final example, we present calculations of the
quasiparticle band gap of amorphous Si3N4. We consid-
ered a model containing 56 atoms (256 valence electrons),
taken from Ref. 55, whose structural and dielectric
properties are in good agreement with experiments.55,56

For G◦W ◦ calculations, we used the PBE exchange-
correlation functional with a kinetic energy cutoff of 60
Ry. The Brillouin zone was sampled with the Γ point
only. We used 600 dielectric eigenpotentials to compute
the quasiparticle band gap.
The band gap of amorphous Si3N4 measured in ex-

periment is sensitive to the preparation procedure, with
values ranging from 4.5 to 5.3 eV.57 Within the G◦W ◦

approximation, we obtained 4.87 eV for the band gap of
amorphous Si3N4, that falls within the range of the ex-
perimental results. As expected, the band gap computed
at the PBE level of theory is a strong underestimation of
experiments (3.17 eV).
We also computed the band gap of our model with the

HSE06 and PBE0 hybrid functionals and obtained values
of 4.55 and 5.32 eV, respectively. It turns out that due to
the large variation in the measured values, both G◦W ◦

and hybrid functional approaches give results in reson-
able agreement with experiments. However, we note that
in general, even if HSE06 and PBE0 hybrid functionals
may provide good results for band gap calculations, they
can fail for the interface or nanostructures calculations
of the same materials.7 In such cases, the GW approxi-
mation is required to provide reliable quantities such as
band offsets or band alignments.

VI. CONCLUSIONS

In summary, we have presented an approach to per-
form G◦W ◦ quasiparticle energy calculations using the
spectral decomposition of the static dielectric matrix and
we have systematically investigated its performance for a
series of molecules and extended systems. The approach
presented here offers several advantages: i) it does not
require explicit summations over unoccupied states; ii)
the dielectric matrix is represented by a small number
of dielectric eigenvectors, and the storage and inversion
of large dielectric matrices are avoided; iii) the use of
plasmon-pole models is not necessary; iv) numerical accu-
racy is controlled by a single parameter, i.e., the number
of dielectric eigenvalues and eigenvectors in the spectral
decomposition of the dielectric matrix. These advantages
allowed us to carry out GW calculations for systems with
several hundreds of valence electrons, and to converge
quasiparticle energies in a systematic way.

For all molecules and semiconductors (amorphous and
crystalline) considered in this work, the computed quasi-
particle energies show good agreement with experiments.
We note that although all results presented here are for
systems with less than 300 valence electrons, applica-
tions of our G◦W ◦ approach to large systems with sev-
eral hundred atoms and thousand of valence electrons are
straightforward14 and underway.33
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TABLE IX. Calculated quasiparticle energies at points of
high-symmetry for AlAs (in eV), together with available the-
oretical and experimental results (as quoted in Ref. 51). En-
ergies are measured relative to the valence band maximum.
Notations are the same as in Table VIII.

Present Ref. 51 Ref. 54 Expt.

Γ1v -11.66 -11.51

Γ′
15v 0.0 0.0 0.0

Γ1c 2.96 2.74 2.72 3.13

Γ15c 5.07 5.06

X1v -9.77 -9.67

X2v -5.37 -5.55

X5v -2.20 -2.27 -2.41

X1c 2.13 2.16 1.57 2.23

X3c 3.08 3.04

L1v -10.27 -10.19

L1v -5.82 -5.69

L3v -0.90 -0.87

L1c 3.02 2.84 2.99 2.36

L1c 5.63 5.52

Comment PPM PAW

TABLE X. Calculated quasiparticle energies at points of high-
symmetry for SiC (in eV), together with available theoretical
and experimental results (as quoted in Ref. 51). Energies are
measured relative to the valence band maximum. Notations
are the same as in Table VIII.

Present Ref. 51 Ref. 54 Expt.

Γ1v -15.54 -16.08

Γ′
15v 0.0 0.0 0.0

Γ1c 7.26 7.19 7.23 7.4

Γ15c 8.10 8.18 7.75

X1v -10.46 -10.96

X3v -8.17 -8.44

X5v -3.47 -3.53

X1c 2.31 2.19 1.80 2.39, 2.42

X3c 5.41 5.23 5.2

L1v -12.06 -12.46

L1v -8.92 -9.19

L3v -1.10 -1.21 -1.15

L1c 6.43 6.30 6.45 6.35

L3c 8.32 8.25 8.55
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Appendix A: Iterative calculation of dielectric
eigenpotentials

In this Appendix, we present the details of our ap-
proach for the calculation of dielectric eigenvalues and
eigenpotentials without computing any empty states.
This is done by combining iterative diagonalization algo-
rithms with the well-established density-functional per-
turbation theory technique for the calculation of charge
density response to a given external perturbation.23,24

We first note that standard iterative diagonalization
algorithms, such as conjugate-gradient, Davidson, or or-
thogonal iteration (with Ritz acceleration), do not re-
quire an explicit representation of the matrix to be di-
agonalized; instead only the result of the action of the
matrix on a generic set of trial vectors is required. In the
linear regime, the action of the RPA dielectric matrix ǫ
on a trial potential ∆V can be written as:

ǫ∆V = (1− vc · χ
◦)∆V, (A1)

and therefore, the practical problem of computing the
action of ǫ on a trial potential ∆V is basically equivalent
to the problem of applying χ◦ on ∆V . By definition the
product of χ◦ and ∆V gives the charge density response
∆n of the system to the application of the trial potential
∆V . The charge density response is obtained within first-
order perturbation theory:

∆n(r) = 4 Re
∑

v

ψ∗
v(r)∆ψv(r), (A2)

where ∆ψv(r) is the first-order variation of the KS orbital
ψv(r). To avoid the computation of empty states in the
calculation of the charge density response, we employ the
DFPT technique to determine ∆ψv(r) from the solution
of a linear equation:58

[Ĥ◦+αP̂v− (εv+ iω)]|∆ψv〉 = −(1− P̂v)∆V |ψv〉, (A3)

where Ĥ◦ is the unperturbed KS Hamiltonian and P̂v =∑
v |ψv〉〈ψv| is the projector onto the occupied (valence)

manifold. The value of the positive constant α is chosen
to be larger than the valence bandwidth so that the linear
equation is not singular when iω → 0. Details of the
solution of Eq. (A3) within a plane-wave pseudopotential
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approach for extended systems are discussed throughly in
Ref. 58.
Since the full dielectric matrix is non-Hermitian, for

practical purposes it is useful to define the symmetric

form ǫ̃ = v
− 1

2

c · ǫ · v
1

2

c . This form can be diagonalized
by standard iterative algorithms for Hermitian problems
and, if necessary, the final non-Hermitian form can be
obtained by a simple similarity transformation.

Appendix B: Lanczos algorithm for computing
quasiparticle corrections

As shown in Eq. 10, the evaluation of GW quasi-
particle corrections require the evaluation of several di-
agonal and off-diagonal elements of the resolvent of the

Hamiltonian Ĥ◦ for imaginary frequencies iω. The gen-
eral mathematical problem that needs to be solved can
be written as:

g(iω) = 〈u|(Ĥ◦ − iω)−1|v〉, (B1)

where Ĥ◦ is a generic Hermitian operator and u and v are
generic vectors. The calculation of g(iω) can be obtained
by using standard iterative techniques to solve Hermitian
linear systems (e.g. the conjugate gradient algorithm).59

In this case the linear systems (H− iω)|z〉 = |v〉 is solved
and g(iω) is computed as 〈u|z〉. The disadvantage of this
approach is that a different linear system has to be solved
for each different value of iω.
The Lanczos algorithm is known to be an efficient

method to compute the resolvent of Hermitian operators
by performing a single iterative recursion independent
of ω.60 The standard Lanczos algorithm is limited to the
case u = v, however for the purpose of this work it is nec-
essary to compute also the off-diagonal elements of g(iω).
For this task we use the Lanczos algorithm proposed in
Ref. 26 and applied for the first time to GW calculations
in Ref. 15. This algorithm generates iteratively a series
of vectors {q1, q2, ...} by using the following procedure:59

q0 = 0

q1 = v/
√
〈v|v〉

βn+1|qn+1〉 = Ĥ◦|qn〉 − αn|qn〉 − βn|qn−1〉, (B2)

where βn+1 is determined in order to impose the normal-

isation condition 〈qn+1|qn+1〉 = 1 and αn = 〈qn|Ĥ
◦|qn〉.

In the orthonormal basis set of the vectors {q1, q2, ...} the

matrix Ĥ◦ has tridiagonal form:

T j =




α1 β2 0 · · · 0

β2 α2 β3 0
...

0 β3 α3

. . . 0
... 0

. . .
. . . βj

0 · · · 0 βj αj




, (B3)

where α and β are the coefficients of the Lanczos re-
cursion (Eq. B2) and j is the maximum number of per-
formed Lanczos iterations performed. Similar to Ref. 26
the value of g(ω) can be approximated as:

g(iω) ≈ 〈ζj |(T j − iω)−1|ej1〉, (B4)

where ζjT is a j-dimensional vector defined as

(〈u|q1〉, 〈u|q2〉), . . . , 〈u|qj〉) and ejT1 is the j-dimensional
unit vector (1, 0, . . . , 0). In general the dimension j (the
number of Lanczos iterations) of the matrix T j necessary
to obtain an accurate approximation of g(iω) is much

smaller than the dimension of the full matrix Ĥ◦. There
are two important advantages in using Eq. B4. First, the
matrix T j and the corresponding Lanczos iterative re-
cursion do not depend on iω. Once T j is generated, the
value of g(iω) can be computed for many values of iω by
simple linear algebra operations in a small j-dimensional
space (Eq. B4). Second, the Lanczos recursion (Eq. B2)
depends only on the right vector |v〉 and different ζj vec-
tors can be generated “on the fly” during the Lanczos
chain in order to compute matrix elements of g(iω) for
different left vectors 〈u|. This feature is particularly con-
venient to evaluate Eq. 10, where the calculation of sev-
eral off-diagonal elements (u 6= v) is required.
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