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Abstract: The Weighted Histogram Analysis Method (WHAM) is a standard technique used to

compute potentials of mean force (PMFs) from a set of umbrella sampling simulations. Here,

we present a new WHAM implementation, termed g_wham, which is distributed freely with the

GROMACS molecular simulation suite. g_wham estimates statistical errors using the technique

of bootstrap analysis. Three bootstrap methods are supported: (i) bootstrapping new trajectories

based on the umbrella histograms, (ii) bootstrapping of complete histograms, and (iii) Bayesian

bootstrapping of complete histograms, that is, bootstrapping via the assignment of random

weights to the histograms. Because methods ii and iii consider only complete histograms as

independent data points, these methods do not require the accurate calculation of autocorrelation

times. We demonstrate that, given sufficient sampling, bootstrapping new trajectories allows

for an accurate error estimate. In the presence of long autocorrelations, however, (Bayesian)

bootstrapping of complete histograms yields a more reliable error estimate, whereas bootstrap-

ping of new trajectories may underestimate the error. In addition, we emphasize that the

incorporation of autocorrelations into WHAM reduces the bias from limited sampling, in particular,

when computing periodic PMFs in inhomogeneous systems such as solvated lipid membranes

or protein channels.

Introduction

The concept of potentials of mean force (PMFs), originally

introduced by Kirkwood,1 is frequently used to characterize

the energetics of transitions in solid, fluid, and biomolecular

systems. A routinely used technique to compute the PMF

along a given reaction coordinate � is umbrella sampling.

That technique aims to overcome limited sampling at

energetically unfavorable configurations by restraining the

simulation system with an additional (typically harmonic)

potential.2 Accordingly, a set of Nw separate umbrella

simulations are carried out, with an umbrella potential

which restrains the system at the position �i
c (i ) 1, ..., Nw)

with a force constant Ki. From each of the Nw umbrella

simulations (sometimes referred to as “umbrella windows”),

an umbrella histogram hi(�) is recorded, representing the

probability distribution Pi
b(�) along the reaction coordinate

biased by the umbrella potential wi(�). The probably most

widely used technique to compute the PMF from histograms,

that is, to unbias the distributions Pi
b(�), is the weighted

histogram analysis method (WHAM).3

On the basis of the histogram method of Ferrenberg and

Swendsen,4 the idea of WHAM is to estimate the statistical
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uncertainty of the unbiased probability distribution given the

umbrella histograms, and subsequently to compute the PMF

that corresponds to the smallest uncertainty. For a derivation

of the equations, we refer to the original publication by

Kumar et al.3 An excellent (and less technical) review on

umbrella simulations and the WHAM procedure has been

presented by Roux.5 The WHAM equations read3

and

Here, � denotes the inverse temperature 1/kBT, with the

Boltzmann constant kB and the temperature T, and nj is the

total number of data points in histogram hj. The statistical

inefficiency gi is given by gi ) 1 + 2τi, with the integrated

autocorrelation time τi of umbrella window i (in units of the

simulation frame time step.) Note that the gi’s cancel from

the WHAM equations if (and only if) the autocorrelation

times in all umbrella windows equal. In contrast, if the gi’s

differ between different histograms, the factors gi
-1 assign

lower weights to histograms with longer autocorrelations.

P(�) denotes the unbiased probability distribution that is

related to the PMF via W (�) ) -�-1 ln[P(�)/P(�0)]. Here,

�0 is an arbitrary reference point where the PMF W (�0) is

defined to zero. The WHAM equations contain two unknown

quantities, that is, the free energy constants fj and the

unbiased distribution P(�), and must therefore be solved

iteratively. Depending on the number of histograms and the

height of the barriers in the PMF, the WHAM equations

typically converge within tens of iterations and up to tens

of thousands of iterations.

Alternative approaches to derive the PMF and the uncer-

tainty from a set of umbrella simulations have been

proposed,6-8 as well as several extensions to the umbrella

sampling technique.9,10

Despite the fact that WHAM has been widely used to

derive PMFs from biomolecular simulations, a standard

protocol to compute the statistical errors for the derived PMF

has not yet evolved. Therefore, we here present a new

WHAM implementation, termed g_wham, that allows one

to compute robust error estimates using different bootstrap

techniques. We apply the techniques on two test systems to

demonstrate the potential and the limitations of the bootstrap

methods. Besides the ability to estimate the statistical error,

g_wham supports a number of features that are expected to

be useful to the community. To compute PMFs along

periodic reaction coordinates such as dihedral angles or

coordinates in a simulation box with periodic boundary

conditions, a periodic WHAM is implemented. Nonharmonic

umbrella potentials can be provided as tabulated potentials.

g_wham allows for the estimatation of autocorrelation times

and the incorporation of these into WHAM. As shown in

the Results, this procedure may yield more realistic PMF

estimates in the presence of long autocorrelations.

The software is freely distributed with the GROMACS

simulation suite.11 If the umbrella simulations were carried

out using the GROMACS pull options, g_wham conveniently

reads the GROMACS output files. In the case of more

complex reaction coordinates, or if the simulations were not

carried out using GROMACS, the user may provide g_wham

input files in text format. A detailed description of g_wham,

including all options, is provided in the Appendix and is

available with the command line g_wham -h.

Methods

Error Estimates from Bootstrap Analysis. g_wham

estimates the statistical uncertainty of the PMF using

bootstrap analysis.12 Bootstrapping is a resampling technique

that can be applied to estimate the uncertainty of a quantity

A(a1, ..., an) which is computed from a large set of n

observations al (l ) 1, ..., n). To calculate the uncertainty in

A, one could redo the n observations multiple times, yielding

several independent estimates for A and hence the uncertainty

in A. That procedure would require many more observations

and is therefore often not tractable.

The observations al are typically drawn from an unknown

underlying probability distribution P(a). The idea of boot-

strapping is to estimate P(a) using the n observations and

subsequently generate new random sets of n hypothetical

observations, based on the estimated distribution. Each of

the sets of n hypothetical observations is used to calculate a

hypothetical value for A. The uncertainty in A is then given

by the standard deviation of the hypothetical values for A.

For a detailed introduction into the bootstrap technique, we

refer to the monograph by Chernick.13

Bootstrapping Trajectories Based on Umbrella His-

tograms. The WHAM procedure computes the PMF based

on the Nw trajectories �i(t) along the reaction coordinate, each

taken from one of the umbrella windows (i ) 1, ..., Nw). All

positions �i during the Nw simulations may thus be considered

as the large set of observations, which we referred to as al

in the previous paragraph.14 Alternatively, complete umbrella

histograms may be considered as the individual observations

(see next section).15 Note that the probability distributions

of �i are already available as the umbrella histograms. Thus,

we can generate new hypothetical observations, that is, a

“bootstrapped” trajectory �b,i(t) for each umbrella histogram

hi(�), such that �b,i(t) is distributed according to the respective

histogram. Each bootstrapped trajectory �b,i(t) yields a new

histogram hb,i(�). The new set of Nw histograms hb,i is

subsequently applied in WHAM to compute a bootstrapped

PMF Wb(�). The whole procedure is repeated Nb times (e.g.,

Nb ) 200), yielding a large set of Nb bootstrapped PMFs

W b,k(�) (k ) 1, ..., Nb). The uncertainty of the PMF is then

given by the standard deviation as calculated by the Nb

bootstrapped PMFs, that is via

P(�) )

∑
i)1

Nw

gi
-1

hi(�)

∑
j)1

Nw

njgj
-1

exp[-�(wj(�) - fj)]

(2)

exp(-�fj) ) ∫ d� exp[-�wj(�)] P(�) (3)

σPMF(�) ) [(Nb - 1)
-1 ∑

k)1

Nb

(Wb,k(�) - 〈Wb(�)〉)2
]
1/2

(4)
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Here, 〈W b(�)〉 ) Nb
-1∑i)k

Nb W b,k(�) denotes the average of

the bootstrapped PMFs at position �. One could also calculate

the uncertainty via the standard deviation of the respective

probabilities ∝ exp (-�W b,k(�)), which could subsequently

be translated into the uncertainty of the PMF. We found that

that this procedure yields similar error estimates compared

to the definition in eq 4 applied here.

Any property generated from MD simulations has a natural

time correlation. In order for the bootstrapping procedure to

generate correct error estimates, that autocorrelation must

be taken into account explicitly. Here, we chose the following

procedure to generate autocorrelated bootstrapped trajectories

�b(t) with a given integrated autocorrelation time (IACT) τ,

and distributed according to a histogram h(�). (Here, h(�)

may denote any of the given histograms, and the procedure

is repeated for each histogram.) First, given a normally

distributed random variable of zero mean and unit variance

Rt ∼ N (0,1), we generate a time series x(t) via

where a ) exp(-1/τ). Then, x(t) ∼ N (0,1) and the IACT of

x(t) equals τ. The normally distributed x(t) is translated into

an evenly distributed series on [0,1) using the error function

via x′(t) ) (1 + erf[x(t)�2])/2. Eventually, we solve the

equation

for �b(t), where Ch(�b(t)) denotes the cumulative distribution

function of the (normalized) histogram. Then, �b(t) will be

distributed according to h(�), with an approximate IACT

of τ.

Bootstrapping Complete Histograms. The conforma-

tional sampling of macromolecules during MD simulations

is frequently affected by long autocorrelations, with auto-

correlation times ranging from pico- to microseconds or even

longer. A complete sampling of all coordinates perpendicular

to the reaction coordinate is therefore often intractable, in

particular during a typically short umbrella simulation. In

such situations, the individual umbrella histograms do not

represent all accessible areas of phase space. Bootstrapped

trajectories based on such nonconverged histograms, fol-

lowing the procedure in the previous paragraph, would also

not represent all accessible areas of phase space. In addition,

note that bootstrapping trajectories from given histograms

require at least approximate knowledge of the IACT. Given

only incomplete sampling, however, the IACT may be

severely underestimated because slow transitions may not

occur during the short umbrella simulations. Bootstrapping

trajectories based on incomplete histograms in combination

with underestimated IACTs would severely underestimate

the uncertainty.

If the simulations are affected by such long autocorrela-

tions, we suggest carrying out the simulation of each

umbrella window multiple times from independent initial

frames. Then, we consider complete histograms as individual

observations and randomly select a new set of Nw histograms

from the given set of Nw histograms, allowing one to multiply

select a specific histogram (sampling with replacement).15

Hence, in contrast to the bootstrapping of trajectories based

on umbrella histograms (see previous paragraph), we do not

generate new trajectories and histograms. To ensure that the

bootstrapped histograms span the whole reaction coordinate,

that is, that no gaps between the bootstrapped histograms

are generated, the histograms can be grouped along the

reaction coordinate, and histograms can be bootstrapped

within each group separately. We show that, given limited

sampling, bootstrapping of complete histograms allows for

a more accurate estimation of the uncertainty (see Results).

Bayesian Bootstrapping of Complete Histograms. As

pointed out in the previous paragraph, introducing groups

of histograms (and subsequent bootstrapping only within each

group) avoids gaps along the reaction coordinate between

bootstrapped histograms, but an appropriate choice for the

number of histograms per group may be unclear. Therefore,

we propose a method related to the so-called Bayesian

bootstrap that avoids the introduction of groups of histograms

by instead assigning random weights to all histograms within

each bootstrap.

When applying the usual bootstrap on individual observa-

tions, n observations are selected with replacement from the

given n observations ai (i ) 1, ..., n), where the probability

of selecting any of the specific observations equals 1/n.

Hence, all observations ai are selected with equal probability.

Rubin proposed an alternative procedure, known as the

Bayesian bootstrap, that instead assigns random weights ωi

to each observation.16 Then, each observation ai is selected

with probability ωi (instead of 1/n), or alternatively, the

weights ωi are assigned to the observations when computing

the observable A(a1, ..., an) from the observations. According

to the Bayesian bootstrap, the weights ωi are generated as

follows: draw n - 1 uniform random variables between 0

and 1, and let u(1), u(2), ..., u(n-1) denote their values in

increasing order. In addition, let u(0) ) 0 and u(n) ) 1. The

random weights are then given by the gaps between two

consecutive random numbers, i.e., ωi ) u(i) - u(i-1), where

i ) 1, ..., n. For each bootstrap turn, new random weights

are generated.

Note that the bootstrapping of complete histograms

(compare previous section) is equivalent to the assignment

of random weights to the histograms, if these random

weights are an integer multiple of 1/Nw. Here, we suggest

the assignment of continuous random weights to the

histograms, and selection of the weights according to the

Bayesian bootstrap. That procedure resembles the boot-

strapping of compete histograms in the sense that it

considers only complete histograms as independent data

points and thus is expected to yield realistic error estimates

in the presence of long autocorrelations. However, because

the continuous weights ωi are (almost) never exactly zero,

it excludes the possibility of generating gaps along the

reaction coordinate in the bootstrapped histogram set. The

WHAM procedure with weighted histograms was imple-

mented by multiplying the inverse statistical inefficiencies

gi
-1 in eq 2 by ωi.

x(0) ) R0 (5)

x(t + 1) ) ax(t) + √1 - a
2
Rt+1 (6)

x'(t) ) Ch(�b(t)) ≡ ∫
-∞

�b(t)
h(�′) d�′ (7)
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Autocorrelations. The normalized autocorrelation function

of umbrella window i is given by

where �i(t) denotes the reaction coordinate during simulation

i, σ�,i
2
) 〈(�i(t) - 〈�i〉)2〉 is the respective variance, and 〈...〉

represents the average over the simulation frames. Following

the nomenclature in Kumar et al.,3 the integrated autocor-

relation time (IACT) of window i is defined by

The autocorrelation function derived from a short umbrella

simulation is typically very noisy. Sophisticated methods to

compute the IACT such as fitting of a single or double

exponential to Ri(∆t) or any kind of binning analysis turned

out to be too unstable for the present purpose. Note that the

IACT should be computed automatically for hundreds (or

thousands) of possibly poorly converged Ri(∆t)’s. Therefore,

we chose to compute τi,int directly via eq 9 but carried out

the summation only until Ri(∆t) dropped under a predefined

threshold of 0.05.

Simulation Details. Test simulations were carried out

using the GROMACS simulation suite.11 As a test system,

we have computed the PMF along the distance between two

methanol molecules in a vacuum. These simulations were

set up by placing one methanol molecule in the origin and

placing the second molecule at the distance �i
c of the

corresponding umbrella window. The molecules were ran-

domly rotationally oriented. In addition, the initial distance

between the two molecules was varied randomly by (σu,

where σu ) �(kBT/K) denotes the width of the umbrella

histogram (assuming a flat underlying PMF). Here, K ) 800

kJ/mol/nm2 is the umbrella force constant, kB is the Boltz-

mann factor, and T is the temperature. The sampling was

carried out using a stochastic dynamics integrator (τ ) 0.07

ps, T ) 300 K), with an independent random seed for each

simulation. Lennard-Jones and electrostatic interactions were

computed in direct space without a cutoff. Bonds were

constrained using LINCS,17 allowing a time step of 2 fs.

The umbrella positions were recorded every 10th step during

simulations with a total simulation time of 50 ps and were

recorded at every step during simulations with a simulation

time of 4 ps. Methanol parameters were taken from the

GROMOS96 force field.18 The methods applied to compute

the PMF for the Rhesus channel Rh50 and for the lipid

membrane have been published elsewhere.19

Results and Discussion

Error Analysis for a Model System and a Lipid

Membrane PMF. As a test system, we compute the PMF

of the center-of-mass distance between two methanol mol-

ecules in a vacuum. Such a simple system allows us to carry

out the complete set of umbrella simulations many times and

hence to accurately compute the “true” statistical uncertainty

of the PMF. Subsequently, we test whether the bootstrapping

procedures are able to estimate the “true” uncertainty using

only the data from one set of umbrella simulations.

As a reference for the following discussion, Figure 1A

presents the converged PMF and Figure 1B, the respective

umbrella histograms. Here, each of the 14 umbrella windows

was simulated for 3 ns, yielding well-converged statistics

as visible from the Gaussian histograms at a great distance

�. The PMF at � ) 1.5 nm was chosen as a reference point

and defined to zero. To arrive at a flat PMF at a great

distance, the PMF was corrected by kBT ln(4π�2), which

removes the entropic decrease in the PMF because of the

increase in the number of configurations on a sphere of ra-

dius �.20

To assess whether the bootstrapping procedure provides

a reliable error estimate, we have repeatedly computed the

same PMF using limited statistics, with each umbrella

window simulated for 50 ps. The nonconverged histograms

of one set of these umbrella simulations is shown in Figure

2A. The complete set of umbrella simulations was carried

out 50 times with different initial random seeds for the

stochastic forces and different initial orientations and veloci-

ties of the methanol molecules, yielding 50 independent

estimates for the PMF (Figure 2B). The uncertainty (67%

confidence interval) for a single set of umbrella simulations

as derived from these 50 PMFs is plotted as a green curve

in Figure 2D. Note that the error at z ) 1.5 nm equals zero

since all PMFs were defined to zero at that point. Next, an

autocorrelated bootstrapped trajectory was generated for each

of the histograms plotted in Figure 2A using eqs 5, 6, and

7, allowing one to compute a new “hypothetical” estimate

for the PMF based on the umbrella histograms. That

bootstrapping procedure was repeated 200 times, yielding

200 bootstrapped PMFs (Figure 2C, colored curves). As

expected, the bootstrapped PMFs substantially differ, in line

with the 50 PMFs calculated from independent simulations

(Figure 2B). The standard deviation computed from the

bootstrapped PMFs (Figure 2D, black) is in good agreement

with the uncertainty calculated from the 50 independent

Ri(∆t) )
〈(�i(t) - 〈�i〉)(�i(t + ∆t) - 〈�i〉)〉

σ�,i
2

(8)

τi,int ) ∑
∆t)1

∞

Ri(∆t) (9)

Figure 1. (A) Converged PMF (black curve) of the center of

mass distance between two methanol molecules in vacuum.

(B) Converged umbrella histograms, each derived from a 3-ns

simulation.

3716 J. Chem. Theory Comput., Vol. 6, No. 12, 2010 Hub et al.



simulations (Figure 2D, green), demonstrating that the

bootstrapping procedure provides a reliable error estimate

without the requirement to carry out new independent

simulations. Alternatively, the uncertainty was estimated

from trajectories that were bootstrapped from Gaussian

distributions with the average and width taken from the

respective umbrella histogram (Figure 2D, red), yielding

almost identical and hence equally accurate error estimates.

Biomolecular simulations naturally contain long autocor-

relations. The histograms based on short umbrella simulations

may therefore not represent all parts of phase space. In

addition, the IACTs may be severely underestimated since

slow transitions do not occur during the short simulations.

Consequently, bootstrapping trajectories based on these

histograms (in combination with underestimated IACTs) will

underestimate the uncertainty. This fact is demonstrated in

Figure 3A. To emulate umbrella sampling of a biomolecular

system with long autocorrelations, we computed the PMF

of the methanol distance based on 4 ps simulations (using

the first 0.5 ps for equilibration), resulting in highly non-

converged histograms. Ten independent umbrella simulations

were carried out for each of the 14 umbrella window

positions, yielding 140 histograms. The whole set of umbrella

simulations was carried out 100 times, allowing one to

compute the true uncertainty (as one standard deviation) in

the PMF (Figure 3A, green curve). Figure 3A compares the

Figure 2. (A) Nonconverged histograms, each derived from

50 ps simulations. (B) 50 PMFs derived from 50 fully

independent sets of umbrella simulations. (C) PMF (black

curve) derived from the set of nonconverged histograms (A).

Autocorrelated trajectories were bootstrapped from the his-

tograms shown in A 200 times, yielding 200 bootstrapped

PMFs (colored curves in C). (D) Statistical uncertainty calcu-

lated from the 50 independent simulations (green) shown in

B and from the 200 bootstrapped PMFs (black) shown in C.

Alternatively, the uncertainty was estimated from trajectories

that were bootstrapped from Gaussian distributions of the

average and σ taken from the umbrella histograms (red).

Figure 3. Estimating uncertainties in the presence long

autocorrelations. (A) The PMF along the methanol-methanol

distance (not shown) was computed from 140 umbrella

histograms, each derived from a 4 ps simulation. As a

reference, the uncertainty σPMF was computed from 100

independent sets of umbrella simulations (green curve).

Generating bootstrapped trajectories for each umbrella his-

togram leads to an underestimated uncertainty (black curve).

Estimating the uncertainty by bootstrapping complete histo-

grams (red curve) or using the Bayesian bootstrap on

complete histograms (blue curve) yields more accurate error

estimates. (B) PMF for ammonia permeation across a lipid

membrane containing 40 mol % cholesterol. (C) Statistical

uncertainty of the ammonia PMF computed by bootstrapping

trajectories for each umbrella histogram (black curve) and by

(Bayesian) bootstrapping of complete histograms (red and

blue curves).
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true uncertainty to the estimated uncertainty derived from

three different bootstrapping methods. Because the estimated

uncertainties vary slightly between the different sets of

independent umbrella simulations, Figure 3A plots estimated

uncertainties averaged from 15 (of the 100) sets of umbrella

simulations. The uncertainty computed by bootstrapping

trajectories is shown as a black curve, demonstrating that

this procedure greatly underestimates the uncertainty in that

case. The red curve in Figure 3A presents the uncertainty

estimated by bootstrapping complete histograms. Here, the

histograms were grouped into 14 sets of 10 histograms, with

each group containing the 10 histograms at the same umbrella

position. Consequently, 10 histograms were bootstrapped

from each of the 14 sets, and the PMF was computed from

the 140 bootstrapped histograms using WHAM. The whole

procedure was repeated 200 times, providing 200 hypotheti-

cal estimates for the PMF (not shown) and allowing one to

compute the uncertainty using eq 4. As visible from Figure

3A, bootstrapping complete histograms yields a more ac-

curate estimate of the uncertainty, despite the poor sampling

within each umbrella window. The blue curve in Figure 3A

presents the uncertainty estimated using Bayesian bootstrap-

ping of complete histograms, that is, by assigning random

weights to the individual histograms (see Methods). The

Bayesian bootstrap also yields a reasonable error estimate

because the method considers only complete histograms as

independent data points, similar to the bootstrapping of

complete histograms.

For a second comparison between the different bootstrap-

ping methods, Figure 3B presents the PMF for ammonia

permeation across a biological membrane composed of the

lipids POPE and POPC plus 40 mol % cholesterol. The flat

regions at small and large z correspond to the ammonia

molecule in the two bulk water regions above and below

the membrane, whereas the two maxima in the PMF

correspond to the hydrophobic regions of the two membrane

leaflets. The PMF has been computed from 656 histograms

(not shown), each taken from 1 ns of simulation, where the

first 50 ps were removed for equilibration. The initial frames

for the umbrella simulations at a specific z coordinate were

generated by inserting ammonia at various randomly chosen

positions in the membrane plane, justifying the assumption

that the histograms are independent. Figure 3C shows the

estimated uncertainty computed via (i) bootstrapped trajec-

tories (black), (ii) bootstrapping of complete histograms with

12 histograms within each group (red), and (iii) Bayesian

bootstrapping of complete histograms (blue). Method i yields

a very small uncertainty of only 0.5 kJ/mol, whereas methods

ii and iii yield an uncertainty of ∼2 kJ/mol at the main

barriers in the PMF. Because considerable computational

effort is required to compute the PMF in Figure 3B, we

cannot compute the uncertainty from independent sets of

umbrella simulations for this example. However, Figure 3C

suggests that the individual histograms do not represent all

accessible areas of phase space, leading to an underestimated

uncertainty as computed from method i. Presumably, slow

transitions on a multi-nanosecond time scale may affect the

sampling in this case, whereas the autocorrelation analysis

based on the shorter simulations yields spuriously short

IACTs. In contrast to method i, methods ii and iii do not

depend on the accurate computation of the IACTs but only

require the histograms to be independent. Therefore, methods

ii and iii are expected to yield a reliable error estimate in

this case.

To estimate uncertainties in the presence of long (possibly

unknown) autocorrelations, we therefore suggest carrying out

many short umbrella simulations instead of a few long umbrella

simulations, such that each position along the reaction coordinate

is covered by at least several independent histograms. Given

sufficiently many independent histograms, the error can be

estimated using bootstrapping of complete histograms or using

the Bayesian bootstrap of complete histograms.

Effect of Autocorrelations. As visible from the WHAM

equations, eqs 2 and 3, the IACTs cancel if (and only if) the

IACTs are equal in all umbrella windows. In nonhomogeneous

systems, however, that assumption may not hold. An example

would be umbrella simulations for solute permeation across a

lipid membrane or across a protein channel surrounded by bulk

water. Here, the IACTs of windows in the bulk are typically

lower than the IACTs of windows inside the lipid membrane

or inside the protein channel. We found that neglecting the

IACTs may lead to artifacts in particular when computing the

PMF along a periodic reaction coordinate. As an example,

Figure 4A presents a nonconverged PMF for ammonia perme-

ation across the Rhesus protein channel Rh50 from N. europaea

(Figure 4C). The PMF was derived from 365 400-ps histograms,

taken from 500 ps simulations, using the first 100 ps for

equilibration. The simulations were carried out with periodic

boundary conditions, implying that a PMF for solute permeation

should yield the same free energy in the two bulk-water regions

below and above the channel. The black curve in Figure 4A

was computed by a nonperiodic WHAM. The PMF is not

converged, as apparent from the substantial offset of ∼15 kJ/

mol between the two bulk-water regions. To account for the

periodicity of the system, a periodic WHAM assuming equal

IACTs of all umbrella windows could be carried out (red curve).

However, with equal IACTs, the WHAM procedure assigns

equal weights to all histograms and, hence, equally distributes

the offset of 15 kJ/mol along the reaction coordinate to enforce

a periodic PMF. As a consequence, an unphysical slope is

induced in the bulk-water regions of the PMF (|z| > 2 nm). A

more realistic procedure is therefore to compute the IACTs for

each umbrella window and to apply them within WHAM. The

IACT derived by direct integration of the autocorrelation

function for the displacement for each umbrella window is

plotted in Figure 4B as black dots. Because the IACTs cannot

be accurately computed from the limited sampling in the

umbrella windows, we suggest smoothing the IACT along the

reaction coordinate yielding a semiquantitative autocorrelation

measure (Figure 4B, red curve). Whereas the IACTs are small

in bulk water, substantial autocorrelations limit the sampling

within the channel, suggesting that the 15 kJ/mol is a conse-

quence of slow sampling within the channel. The PMF

computed by a periodic WHAM that takes IACTs into account

is shown in Figure 4A as a blue curve. As expected, the PMF

is flat in the bulk-water regions (in agreement with the

nonperiodic WHAM result, black curve), whereas corrections

3718 J. Chem. Theory Comput., Vol. 6, No. 12, 2010 Hub et al.



were introduced in the less sampled channel region to yield a

periodic PMF.

Converged PMFs for ammonia permeation across the Rh50

channel as well as the biological implications have been

published elsewhere.19

Conclusions

We have presented a new WHAM implementation, termed

g_wham, that is freely distributed with the GROMACS

simulation suite. The g_wham software is easy to use,

flexible, and efficiently implemented. Statistical uncertainties

are quantified using different bootstrap analysis methods: (i)

bootstrapping of hypothetical trajectories based on the

umbrella histograms together with the respective autocor-

relation time, (ii) by bootstrapping complete histograms, or

(iii) by using the Bayesian bootstrap of complete histograms,

that is, by assigning random weights to the histograms. We

have shown that method i provides an accurate error estimate

if (and only if) the histograms are sufficiently converged. If

the histograms are affected by long autocorrelations, as

frequently occurrs in simulations of large biomolecules,

methods ii and iii provide a more accurate error estimate. In

nonhomogeneous systems such as a protein channel or a lipid

membrane surrounded by bulk water, the autocorrelation

times may substantially vary along the reaction coordinate

and thus not cancel from the WHAM equations. Consistent

application of the autocorrelations has here been shown to

yield a more accurate estimate for the PMF in such systems,

in particular when computing a periodic PMF.
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Appendix

g_wham Input Modes. A help file, including all command

line options, is provided by the g_wham tool via the

command g_wham -h. g_wham supports three input modes.

In modes 1 and 2, g_wham reads specific GROMACS files,

These modes are thus convenient for GROMACS users. In

mode 3, g_wham reads only text files and is therefore suitable

for non-GROMACS users as well.

1. With option -it, the user provides a file which contains

the file names of the umbrella simulation run-input files

(GROMACS tpr-files). In addition, with option -ix, the

user provides a file which contains the file names of

the pull position output files (pullx.xvg etc.) written

by the GROMACS mdrun program.

Figure 4. Effect of autocorrelations in a periodic WHAM. (A) Nonconverged PMF of ammonia permeation across the Rhesus

protein channel Rh50 (black). The limited sampling accounts for a substantial offset of ∼15 kJ/mol between the two end points

of the PMF corresponding to the two bulk water regions. A periodic WHAM assuming equal integrated autocorrelation times

(IACTs) accounts for the periodicity of the system (red curve) but induces approximately a linear slope in the complete PMF,

including the well-sampled bulk water regions. Blue curve: PMF derived from periodic WHAM incorporating the calculated IACTs.

The PMFs in the bulk-water regions are almost flat, in accordance with the bulk-water regions in the nonperiodic PMF (black).

(B) IACTs calculated by direct integration of the autocorrelation functions (black dots), and by subsequent smoothing with a

Gaussian filter (red curve). (C) Simulation box of an Rh50 trimer embedded in a lipid membrane and solvated in water and 150

mM electrolyte.
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2. This mode is the same as mode 1, except that the user

provides with option -if a file which contains the file

names of the pull force output files (pullf.xvg etc.)

written by the GROMACS mdrun program.

3. With option -ip, the user provides a file which contains

the file names of the pull output files written by

GROMACS 3 (pdo files). pdo files are text files and

can be generated by non-GROMACS users. Each pdo

file contains a header with the umbrella positions and

force constants, and the body contains the simulation

time versus the displacement of the system with respect

to the umbrella center. The pdo file format (with a

typical header) is explained with the g_wham help file

provided with g_wham -h.

WHAM Options. Default values for the following options

are listed in square brackets:

-min, -max: boundaries of the profile [0,0]

-auto: determine boundaries automatically [yes]

-bins: number of bins used [200]

-temp: temperature in Kelvin [298.15]

-tol: tolerance. The WHAM iterations stop when the

probabilities change less than the tolerance. [10-6]

-b, -e, -dt: specify simulation times in picoseconds (begin,

end, time step) that are used in WHAM [50, infinity, 0]

-cycl: periodic (or cyclic) WHAM [no]

-tab: file name with tabulated potential in the case of

nonharmonic umbrella potentials

Output Control

-o: file name of PMF output file

-hist: file name of histogram output file

-histonly: write histograms and exit [no]

-boundsonly: determine boundaries automatically and exit

[no]

-log: write negative logarithm of the probabilities; that is,

enable output in energy units; otherwise, write probabilities

[yes]

-unit: define energy unit (kJ/mol, kcal/mol, kBT) [kJ/mol]

-zprof0: set profile to zero at this position [0]

-sym: symmetrize profile around � ) 0 (useful for

membranes, for instance) [no]

-v: verbose mode [no]

Autocorrelation Handling

-ac: calculate integrated autocorrelation times (IACTs)

using eqs 8 and 9 and use in WHAM [no]

-acsig: smooth IACTs along reaction coordinate using a

Gaussian filter of width defined here [0]

-ac-trestart: when computing the autocorrelation functions

for �i(t), restart the calculation after the time delay defined

here [1 ps]

-oiact: (smoothed) IACT output file name

-iiact: IACT input file name. If the user prefers to calculate

the IACTs not using g_wham, the IACTs can be provided

to g_wham using this option.

Bootstrapping Control

-bsprof: output file name of all bootstrapped profiles

-bsres: output file name with average and standard deviation

of bootstrapped profiles (that is, the uncertainty of the PMF)

-nBootstrap: number of bootstraps carried out to estimate

the uncertainty (use, e.g., 100) [0]

-bs-method: bootstrap method applied (‘b-hist’, ‘hist’,

‘traj’, or ‘traj-gauss’); Bayesian bootstrapping of complete

histograms, bootstrap complete histograms, bootstrap new

trajectories from the umbrella histograms, or bootstrap new

trajectories from Gaussian distributions with average and

width taken from the respective histogram [b-hist]

-bs-tau: specify integrated autocorrelation time used for

all histograms with bootstrap methods ‘traj’ or ‘traj-gauss’;

if not provided (default), use calculated IACTs (options -ac

and -acsig)

-histbs-block: number of histograms in one group with

bootstrap method ‘hist’; histograms will be bootstrapped only

within each group separately; that procedure avoids gaps

without any histogram data along the reaction coordinate.

-bs-seed: random seed for bootstrapping (-1 generates a

seed) [-1]

-vbs: verbose bootstrapping (output cumulative distribution

functions for each histogram and a histogram file for each

bootstrapped PMF) [no].
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