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A bstract

That is,

G1-STRUCTURES OF SECOND ORDER

DEMETRA DEMETROPOULOU-PSOMOPOULOU

We introduce a generalization to the second order ofthe notion of
the G1-structure, the so called generalized almost tangent struc-
ture. For this purpose, the concepts of the second order frame
bundle H2 (V_), its structual group L,2n and its associated tan-
gent bundle of second order T2(V~ ) of a differentiable manifold
V�, are described from the point of view that is used . Then, a
C1 -structure of second order -called Gi-structure- is constructed
on V�, by an endomorphism J acting on T2 (V�,), satisfying the
relation J2 = 0 and some hypotheses on its rank . Its connection
and characteristic cohomology class are defined .

Some of the G-structures of the first order are those defined by nilpo-
tent operators of degree r + 1 (r >_ 1) that is, the G,-structures, defined
by J . Lehman-Lejeune ([15]) and studied by H.A . Eliopoulos ([11]) .
The G1-structure of the first order, briefly G1-structure, is defined

([15]) on an m-dimensional differentiable manifold V�.,, of class C°° by
means of an 1-form J, of constant rank p, with values in the tangent
bundle, such that at each point x E V�,,,

Jx = 0 .

dim Im Jx = p > 1, dime ker Jy = q, m = p + q and q independent
of the point x of V, �, .

The G1-structure is also studied by [1] ; it is called generalized almost
tangent structure .
Our objective in the present paper is to find a prolongation of this

structure, that is, there is defined a G-structure of second order on V�.,,
called the G1-structure of order 2, briefly a G2-structure, by means of
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an 1-form of second order J, of constant rank p + (~ál) , with values in
the tangent bundle of second order, satisfying at each point x E V�,, the
relation (1) .

At first, a brief discussion of the notions of the frame bundle of sec-
ond order H2 (V,,)(Vm,L2n) and its associated ([13]) tangent bundle
T 2 (V�,,) (V�,,, Lñ, F2 ) of order two, will be given from the standpoint
used in the generalization of the real almost product structure to the
second order ([61) .

Then, the G2 -structure, its adapted basis, connection and character-
istic cohomology class will be defined .

If

1 . The fibre bundles H 2 (V,,) and T2 (V

We recall from [6] the following :
Let V�,, be an m-dimensional differentiable manifold of class C°° and

H 2(V�,,) =

	

U Hx(Vm) the fibre bundle of all 2-frames of the manifold
xEm

V�,, where Hx is ([7]) the set of all invertible 2-,jets of Rm into V�,, with
source 0 E R' and target x E V�, . This bundle is ([8]) a principal fibre
bundle with basis V�,, and structural group L2,, ; it is called the principal
prolongation of order 2 of the manifold V�,, .

The structural group L,2a is ([10]) the set j 2 o f of all invertible 2-jets
with source and target 0 E R' of a 2-mapping f at the point 0 E R' .

Hence, each a E L,2n can be written in the form,

(1.1)

	

a = (a.91' a,1,2)'

	

i,

	

,%1,

	

.%2 = 1, 2, . . ., m,

	

det(a.~ 1 ) :7L 0

Also,

and aj1j2 is symmetric with respect to jl, j2 .

dimL22M=MCm2
21
-m=m2+mCm2

1~
=m2+m2 (m2

1
/

.

J1 7~

	

2_ (flk i 1Ok,k2 ) E L nn5

then, from the composition of 2-jets ([8]), it follows that the product of
the two elements a and ,0 of Lm,

a0 = c = (ckl ' ck,k 2 ),



can be defined by the relations
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il

	

il qjl
Ck1 = CLj1Nk1
Z1

	

i1 q71

	

il

	

.91 j2
Ck1kz = ajl Nk lk2 + ajlj2~kl~k2'

Remark 1.1 . We assume, now, that to the element a E L22n, corre-
sponds the matrix A of the form,

(1.2)

	

A= aje 0
.i1

ajljz ajl ajz

If B is a matrix of the same form, corresponding to the element )3 of L2,
then to al E L2 L corresponds the product of matrices AB,

Cil 0 _

.712

0 ail 0AB = C =

	

kl

	

kl

	

)1

	

__

C

	

C

	

C

	

ak k

	

ak 1

	

2ak

	

a
71j2k2

	

a akl	k 1 k2

	

71 )2

aj
1
1 k

aj /~~1
l

	

0
al' /~jl

k2 +

	

i
ajllj2

Yqj1l/.172
k2

	

i
aj

1
1

	

i2
1Nk
Rj1 Rj2l ajl k2al' k

with the notation that first is written the matrix B and then A, but
after the multiplication (each line of B with every column of A) first is
written the elements of A and then of B.

It can be verified that to each element a E L,2n corresponds a matrix
A of the form (1 .2) and conversely.

Hence, the group of matrices of the form A, subgroup of the group of
matrices G1 (N, R), N = m + ' 2+1 , can be identified with the group
LM .
The Lie algebra L

2
,, of the Lie group L. is ([17]) defined by,

LTn, - P\/\ - (~jl ~j1Jz)~ 2 ~ ,%1 .%2 = 1 1 2, . . . . m,

Aj1 E Rm ®
Rrn., A?lj2 E

Rm ® S2(Rm~)},
where S2 (Rm*) is the set of the 2-linear symmetric forms on Rtt` .
We consider, also, Ti,.,: * (V�n) the set of all 2-jets of the functions on

V�1, with source x E V�,, and target 0 . The set T1* (V�,,) =

	

U Tix(V�L)
xEV,

has ([8], [10]) the structure of a vector bundle with basis V�, structural
group L,2 and fibre L2 �~ ; it is ássociated with H2 (V~) .
L1 �~ is ([7], [10]) the set j2 o g of all 2-jets with source 0 E Rm and

target 0 E R of a 2-mapping g at 0 E Rm. Therefore, each y E L2,~ can
be written in the form,

(Yil1Yili2)e Zlo i2 = 1 ) 2 1 . . .,m, Yili2
is symmetric with respect to i1, i2 .
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Also,

Let {xi}i=1,2, � .,�,, be a system of local coordinates at x E V,, for a
given chart . Then ([8]), the element w E T1 * (V�,,) can be expressed in
the form,

(1 .4)

	

w = (xi , Yil 5 yi,i2), i, il, 22 = 1, 2, - . . . , m, y?1i2

is symmetric with respect to il, i2 .

If

dim Li ,~ =
(m+2)

2) - 1 = m +
(m

2
1)

= m + m(
2+

1)

x i = (P i (x' , ),

5 Yji 5 yjij2) 5

is the expression of w in a new coordinate system {xj'}j--1,2, . . .,,,, at x E

V�,,, then ([10]) the transformation law for the local coordinates of w is
given by the equations,

(1.5)

	

yji =Y¡,ajie

Jj1j2, =Y¡,ají 2+Ji .ii2Q,ji-j2, 1

2
where ah í = ~, J, , =

	

, so that (d i , o,~,ji ) E Lo
a .

ax ,

	

31-72

	

ax i ax 2

	

1

	

31 .72

The dual vector bundle T2(V~) ofthe vector bundle T1*(V�,,), has ([4])
the basis V�,,, the structural group L22 and the fibre F2 = (L2,m)* . Hence
([2]) T2(V�,)(V� ,,, Lñ, F2) is the vector bundle of all tangent vectors of
order 2 and v E Tx is a tangent vector of order 2 (or 2-tangent vector)
at the point x E V�,, .
Remark 1.2 . However, there are other, different, notions of the tan-

gent bundle of higher order ([16], [19]) using another point of view .
From [6] follows that T2(Vm)(Úm, L2m , F2 ) is also associated with the

principal fibre bundle H2 (Vm) (Vm, L2 ), which can be identified with the
space of bases of the vector spaces Tx at x E V�,, .

Let now,
(1.6)
e = (eil, eili2)> i1, i2 = 1, 2 5 , . . , m, ei,i2 symmetric in the indices i1, i2,

be the natural basis of T.2 defined by the local chart {xi}i=1,2, . . ., �,, at
the point x E V�,, . Then, every v E Tx can be expressed uniquely in the
form,

v
i,=1 i<i 1 <i2<m.



where (VI1 , VI112) are some constante and vi1z2 is symmetric in the indices
i l , i2 .

For another local chart {xj'}j=1,2, . � ,,, at x E V�,, the corresponding
transformation law for the local coordinates of v E T2 will be,

where a = (aii , aii i2) E L2

For convenience in calculatíon, from now on, we will keep using ma-
trices .

Thus, the relation (1.8) for the element v of Tx in the overlap of two
local charts (U, x) and (V xi'), can be written in the form,

71

(1 .9)

	

vi'

	

v71i2 _ [vil

	

112122

	

a8;

	

ó

	

,
aii a,

or briefly,

where

Briefly,
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vi, = a.71 v21 + a?1 v%122
i1

	

x1i2

vüiz = a?ía?ávi1i2
21 22

Vx = Av(x)Vxu,

- ají

	

0
VAu(x)

	

71

	

)í J2

	

x
aili2

	

a? 1 ai2

Vv - ~vi"

	

viii2 .x

wv -wuAv(x),

	

AVU(x) = [AU(x)]-' .

The element a = (aii , a?iiz ) ofL

	

is identified with the matrix A defined
by (1.10) .

Similarly, according to the relation (1 .5), the transformation law for
each element w of T,2* (that is of Ti,x * (V�,,)) by means of matrices, can
be written in the form,

%1

	

r
wü

	

= ~ aj í

	

0

	

II wi1(1 .11)IWjÍ

	

LL

	

,
i2

	

aziiz

	

a., 1,

	

L
wi1i2

i1 i1

	

2where (aií, aiíi2)
E Lm 1S the inverse element Of a = (ai1i1, ai1

áli2)

	

E L
2
�1 .
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Definition 2.1 . A Gr-structure of second order, briefly G1-structure,
can be defined on an m-dimensional differentiable manifold V�, of class
C°°, by means of an 1-form of second order J, with values in the second
order tangent bundle T2(Vsúch that at each point x E V�,,

(2.1)

	

J,,: is of rank p+ (P+2 1 ) everywhere in V�,,

and

(2.2)

2 . G2-structures

Jx = 0 .

From the condition (2 .2) follows that ,J,; (T.?) is composed of the eigen-
vectors of ,J . On tlu; othc;r hand .1, (T ) C ker J, .

If S, is the complernentary space of ker J,; with respect to T.2(Vra)
then,

and J induces an isomorphism between S., and J(S,,:) .
Thus,

dirriTx(V�j =m+
(
m2 1 ~ > 2 [p+

(
p 2

	

and m > 2p.

We have,

and

Tx(V~) = ker Jx ® S.

dimSx=p+
2(P
+1~

(dimker Jx = q +

	

q
2
+ 1)

+ pq, p :5 q,

dirn Tx = p +
(P
2

1)
+ q +

Cq
2

1/
+ pq .

m=p+q

and the dimension of ker J~ is independent of the point x E V,�, .

Obviously,

Also,

(2.3)

	

dimker J,; _

=p+(q-p)+(p 2 1/+p(q-p)+p(m-q)+ C
q

	

2+
1
/ +(q-p) (m- q) .



(2.4)

and

(2.6)

	

{(en,(,), e.,(2)) ,

(2.7)

(2.8)

Then, J is given by

(2.9)
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Let {eil, ei,i2 }, ir, i2 = 1, 2, . . . , m be a basis of the second order tan-
gent space T~ . Using the indices,

a(1) = 1,2, . . .,p, a(2 ) = p+ 1, . . .,q,
A(1) = 1, 2, . . . , q (that is, A(1) = (ce(1), ce(2))) and
A(2) = q + 1, . . . . q + p = m (that is, A(2) = q + a(1)),

it follows, that the second order tangent vectors

{6A,(1), 6A,(1)A2(1), en,(1)A2(1)}

(2.5)

	

{eA,(2), CA,(2)A2(2)}

define a basis on ker I~ and S, respectively .
Also, by (2.3) the basis (2.4) can be written in the forro,

(en1( 1 )n2( 1 ) , en,(1)n2(2), en,(1)A2(2), en,(2)n2(2)+ en,(2)A2(2))}-

Definition 2.2 . The basis {eil,ei,i2} of T,, will be called adapted to
the G1-structure with respect to x or simply Gi-adapted basis if

F = (Fi?,
iI , z I i2' zli2 ) I, 2, I e 2 , e " . . , ,

Fíl'72 symnietric with respect to jl, j2, Fi' i2 syrrimetric
with respect tO il, i2 and Fil,i22 syrnnuaric in indices il,
i2 and ,j] ., .j2 .

J-eA,(2) = en,(1),

JxeA,( 2)A2( 2 ) = en,(1)n2(1)-

To the operator J. corresponds the element F of the tensor product
Tx ® (Ti)*,

.),

	

7,

	

iI

	

7,

	

i, i2

(J v)9,72 =Fz7,,72vi, +Fi7l,72v¡Ii2
,i2

where v = (v il , v il i2 ) is a 2-tangent vector at x E U�,, .
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The tensor F of the relation (2.8) can be represented by the following
matrix,

(2.10)

	

F =

	

21
~l1

23 i2

F2
j
1
lja

F2'1
3~
22

Rorn (2.2) and (2 .9) one verifie's easily the following equations,

F 1 Fk' +F1i jzF~~
a =0

F231']
jl 21 J1 .72

F '22 Fk 1 + F1'zz F~~L = 0,
F?1 Fk,k2 +Fj1jzFk,kz ._ U .212 )1

	

212 71j2 -

Using, now, an Gi-adapted basis on Tx and the relations :

.Ixe« 3 (].) = 0,

	

Jxe«1(2) = 0,

	

J2eA1(2) = e«3(i),

J=e«, (1)«z(1) = 0 7

	

"=e«3 (1)«z(2) = 0)

	

J=e«1(1)Az(2) = 05

J=c«1 (2)«2(2) = 01

	

J=e«1(2)A,,(z) = 0,

	

J=eA1(2)A2(2) = e«1(1)«2(1)'

it follows that tYx: tensor F associated to the operator J 'can be repre-
sentad by the matrix :

Thus we have,

Proposition 2.1 .

	

There is alwags a, G2 -adapted basis of T2 (U�L ) at
each poiret, x E V�, in which F has the constant components given by the
mo,trix (2.12) .

Let {e.7,,, ejijz} be another G2-adapted basis, then the transformation
law between the Gi-adapted bases may be written,

ei, = ejíli ;,

eiliz = ejihii2 + ejijzlül?2,

0 0 0 0 0 0 0 0 o -
0 0 0 0 0 0 0 0 0
«1(n)

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

(2.12) F = 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ; 0
0 0 0 0 0 0 0 0 0
0 0 0 S ,1 ' (1) 0z0) 0 0 0 0 0
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where the element l = (lii ) lii i2 ) E L22

	

Explicitly,

(2.13)

lil = ~1a;(1)'la~(2)'lA~(2)'la~(2)'lA~(2)) E G 1

1%1i2 - (lal(1)az(1)'lal(1)a2(2)'lal(1)A2(2)'

l «1 (2)a2( 2 )' l al (2)A2(2)' lA tl (2)A2(2)'
,O Í (2)

	

lOi(2)

	

lPí(2)
al(1)a2( 2 ) 1 al( 1)A2( 2)' al(2)a2(2)'

la
O í (2)
1(2)A2(2)'lA1(2)Az(2)) 1

where G1 is ([15]) the structural group of the G1-structure of the first
order . It is consisting of the matrices of the form

(2.14)

where

A 0 0
B r 0 ,
A E A

with A E Lp , B E End(RP, M- P), I' E L9_p , A E End(RP, R1~`_a) and
E E End(R9-P, Rm-Q) .

Using matrices, l can be written by the matrix

L l''

	

lüliz
Z112

	

x1 Z2

Il01(1)

	

OÍ (2)

	

l01(1)
~- A1(2)A2(2)

	

Al(2)A2(2)

	

a1(1)a2(2 )

Let Gi be the subgroup of L 22a , consisting of all elements of the form
(2 .13) with corresponding matrix of the form (2.14) with (2 .15) and
(2 .16) . It can be verified that,

(2.15)

~ 1 Ck,(~)

tl
1Pí(1)
0,1(2)

L
l01(1)
A1 (2)

0 0
I Pí(2)
a1(2)

0

1 Pí(2) OÍ (1)
A1(2) «1(1)-1

E G1 ,

1 io' (1)
-11(1)

.,
(1) 0 0

1 01(1) lPí(2) 0at(1)«z (2) at(1)az(2)
l01(1) 1Pí(2) 0

(2.16) «t(1)Az(2) «t(1)A2(2)

l at(2)az( 2 )
, 1 ai( 2)a2( 2 )

10'(1) l0'(2) 0a1( 2)A2( 2 ) a1( 2)A2( 2)
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Proposition 2.2 . The group G2 can be characterixed as the subgroup
of L,2n defined by all elements of L,2 which commute with F .

Let E~ (V�,) be the set of all the adapted bases at the different points
of V, a,nd p the carlonical mapping,

which associates with an adapted basis at x the point x itself. E2 (V�,,)
is equipped with a structure of principal fibre bundle of basis V�,, and
structural group G2l .

Conversely, we assume that the differentiable manifold V�,, admits a
G1-structure, where Gi is the group of matrices of the form (2.14) with
(2.15) arad (2.16) . Then, it can be defined on V�,,, a tensor field F of type
(1, 1) and of rank p+ (r'21) . F has (2 .12) as components with respect to
the adapted basis and satisfies the condition (2.2) .

Thus, we have,

Theorem 2.1 . A necessary and sufficient condition for a differen-
tiable manifold Vm, to admita G1-structure is that the structural group
of the second orden frame bundle H2 (V,,) be reduced to the group Gi .

Definition 3 .1 . Any infinitesimal connection ([18], [5]) defined on
the principal bundle E1 (Vm, G2rt ) is calk;d a Gi-connection .
We consider a covering of V,,, by open neighborhoods endowed with

local cross sec;tions of E1(V�~) . AnyG21 -connection may be defined in
each neigtlborhood U by a local form rr with values in the Lie algebra
G1 of the group G2i .

Hc;nce, a G1-connection is represented by the element of the Lie algebra
G1,

(3.1)

	

7ru =

where: the linear differential forms on U, (7r~) e R'0R` and (7r"~l ) E
Rm ®S 2 (R'"` # ) satisfy the relations,

(3.2)

f3 , ( 2 )

	

Bi(2) _ Bi(2) _

	

01(1) = 8i(2)
7Fal (1) = 7r al (1) - iral(2) - 6 ' 7F a1 (1)

	

~A,(2)'
Pi(2)

	

Bi(2)

	

Bl(2)

	

Bl (2)
~a,(1)a2(1) = ~al(1)Q2(1) - 7ral( 1 )a2( 2 ) _ ~ai(1)A2(2)

B, (2)

	

B, (2)

	

01(1)

	

B, (2)
7rat( 2)a2( 2 ) ='at(2)n2(2) - 0,

	

1 (1)"2 (1) = IAI(2)A2(2)'

It can be verified that,

p : Ei (V~)
__+

Vm,

3. Gi-Connections

¡1,71,72 = 1,2, . . .,rn,
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Proposition 3.1 . With respect to a G2 -connection, the absolute dif-
ferential of the tensor F is zero .

El(Vmay be considerad as a sub-bundle of the fibre bundle Hl (Vm)
of 2-frames that is of bases of vector spaces {Tx }xEV ([6]) .
A G1-connection defines canonically a connection of order 2 ([9j, [14])

on V�,, with which it may be identified .
Conversely, let us consider a connection of order 2 and a covering of

V,,, by open neigliborhoods equipped with local cross sections of E1(V
This connection may be defined on each neighborhood by a local form W
with values in the Lie algebra of L27n ,

W

	

`W71'W717z)'

	

¡lJlJ2 = 1~2) . . .,71L,

	

E Rm ®Rm* ,

(3 .3)

	

Wj172 E Rm05 2(Rm*) and (W~i)(Wj17z)
are local linear differential forms .

In order that the given connection may be identified with a G2-connec-
tion it is necessary and sufficient that the form (3.3) belongs in the Lie
algebra of the structural group Gl of El (V�,,) . That is, comparing with
(3 .2),

Proposition 3 .2 . In order that a connection of order 2 may be identi-
fied with a G21 -connection, it is necessary and sufficient that the absolute
differential of the tensor F is zero with respect to this connection .

Given a G2-connection Y, the curvatura foral of this connection is the
tensor 2-form, of adjoint type .

(3.4)

	

9 = V7r = d7r + 7r A 7r,

which is defined on Ei (V�L ) with values to Gi .
If we consider a covering of V�, by neighborhoods equipped with local

cross sections of El (V,.,,), then, Sl may be defined in each neighborhood
U by a local form with values in the Lie algebra Gi

(3 .5)

	

SZ � _ (SZii, .
~j1j2)'

	

2,il, j2 = 1, 2, . . . , m,

21 m, m* i1 m 2 m*

	

i1 i,where S2j

	

E R

	

®R

	

, 52j1jz E R

	

®S (R

	

) and (S2(S27 j2) are
linear differential forms on U.

It may be seen from (3.4) .

52~i = d7r,~i -}- 7rk, A 7r~1
(3.6)

5221

	

= d7rZ1	+ 7rx1 A 7rk1

	

+ 7r21	/~ 7rk1
7,k,

7172

	

7172

	

k1

	

71j2

	

kik2

	

)~ 72 '



62 D . DEMETROPOULOU-PSOMOPOULOU

In particular, it can be verified that,

na( 1) = dírá (1) , pa(2) = d7r-(2), qA(2) _ d7rA(2)
()

	

() () () ()- ()

d7ra(1)

	

ga(1)

	

_ d,ra(1)

	

ga(1)

	

_ d,ra(1)
«(1)A(1) -

	

a(1)R(1)'

	

a(1)A(2) -

	

a(1)Q(2)'

	

a(1)B(2) - .

	

a(1)B(2)'
p
a(2)A(2) =

d(2)(2)'
«(2)B(2) = d,r`(2;B(2), 9A(2)B(2)

= d,r~(2)7 ; B(2) .

Then,

`p _ (
q
«(1) - S2A(

2
)

,
9
a(2),

q
a(1 A(1) = 9A(2)B(2)'

g
a(1)0(2)'

ga(1) ga(2) pa(2)
«(1)B(2)' a(2)0(2)' a(2)B(2))

is a closed 2-form on E2 (Vnj .
Definition 3.2 . We call T thc: characteristic form of thc; G2-COr1r1eC-

tion Y .

Proposition 3.3 . The characteristic 2-forms of a,ll the G2 -connec-
tions have the same cohomology class of degree 2 '(character ,istic coho-
mology class of the Gi-structure) .

4 . G-structures of second order defined by
linear operators satisfying algebraic relations

Using the way discussed previously (sections 1, 2) a generalization to
the second order of the real almost product structure is given already in
[61 .

On the other hand, the definition (2.1) for a dif ererltiable manifold
V2�L , with rank J = m + (rn4 1 ) gives a generalization of the almost
tangent structure to the second order .

In this case, matrix (2.12) reduces to the form,

and the matrix (2.14) to the form,

L

la t'

	

(]

[lA'

	

lAÍ
Al al

10l
a2 0

lA' 01a1Az

l
OÍ 1A1
A,AZ a,a2

l~;1~2 0 0

11.111 1A2

	

l«;l
az

	

0

1R1
lAz

	

1,311,92

	

11,1 102 JA, A2

	

A, a2

	

1 z

[

b

o] . [o

0 0]
(4.1) F = 0 0 0 0 0

0 0 0 0 0
0 0 bal a2 0 0
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with the indices a = ca(1) = 1, 2, . . . . m,, A = A(2) = rn + 1, . . . , 2m
m + a, and

l« ;
01

O
OÍ E Gira,

where G-, is ([3], [12]) the structural group of the almost tangent
structure with l« ; E L�,, lpi E End(Rm, Rm).

Thus, G-structures on V�, of the first order defined by linear operators
and satisfying some algebraic relations can be generalized to G-structure
of the second order, defined by endomorphism,

J : T2 (V,a) ---~ T2(Un,.)

and satisfying thc; same algebraic; relations .
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