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ABSTRACT. We provide a significant extension of the twisted connected sum construction

of Go—manifolds, ie Riemannian 7-manifolds with holonomy group Gg, first developed by

Kovalev; along the way we address some foundational questions at the heart of the twisted

connected sum construction. Our extension allows us to prove many new results about compact

Go—manifolds and leads to new perspectives for future research in the area. Some of the main

contributions of the paper are:

(i) We correct, clarify and extend several aspects of the K3 “matching problem” that occurs
as a key step in the twisted connected sum construction.

(ii) We show that the large class of asymptotically cylindrical Calabi-Yau 3-folds built from
semi-Fano 3-folds (a subclass of weak Fano 3-folds) can be used as components in the
twisted connected sum construction.

(iii) We construct many new topological types of compact Gz-manifolds by applying the
twisted connected sum to asymptotically Calabi-Yau 3-folds of semi-Fano type studied
in .

(iv) We obtain much more precise topological information about twisted connected sum
Gz-manifolds; one application is the determination for the first time of the diffeo-
morphism type of many compact Go-manifolds.

(v) We describe “geometric transitions” between Ga-metrics on different 7-manifolds mim-
icking “flopping” behaviour among semi-Fano 3-folds and “conifold transitions” between
Fano and semi-Fano 3-folds.

(vi) We construct many Go-manifolds that contain rigid compact associative 3-folds.

(vii) We prove that many smooth 2-connected 7-manifolds can be realised as twisted con-
nected sums in numerous ways; by varying the building blocks matched we can vary
the number of rigid associative 3-folds constructed therein.

The latter result leads to speculation that the moduli space of Ga-metrics on a given 7-

manifold may consist of many different connected components, and opens up many further

questions for future study. For instance, the higher-dimensional gauge theory invariants pro-
posed by Donaldson may provide ways to detect Gz-metrics on a given 7-manifold that are
not deformation equivalent.
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1. INTRODUCTION

In this paper we construct a large number of new compact Go-manifolds, that is Riemannian
7-manifolds (M, g) whose holonomy group is the compact exceptional Lie group Gg, using the
so-called twisted connected sum construction; since any Go-manifold is Ricci-flat this yields
many Ricci-flat metrics on compact 7-manifolds. As an alternative to Joyce’s original pioneer-
ing construction of compact Go-manifolds via “orbifold resolutions” , Kovalev (based on
a suggestion of Donaldson) developed the twisted connected sum construction [44] as a way to
obtain a compact Gg-manifold by combining a pair of (exponentially) asymptotically cylindri-
cal (ACyl) Calabi-Yau 3-folds. Loosely speaking, this method seeks to construct Ge-manifolds
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that contain a sufficiently long almost cylindrical neck-like region; in this sense it resembles
familiar “stretching the neck” constructions in a number of other geometric PDE problems.

Kovalev constructed about one hundred ACyl Calabi-Yau 3-folds for use in twisted con-
nected sums by starting from Fano 3-folds. In [18] we exhibited at least several hundred
thousand families of ACyl Calabi-Yau 3-folds built using weak Fano 3-folds. We identify a
subclass of “semi-Fano” 3-folds that have a well-behaved deformation theory, which we use
to prove that ACyl Calabi-Yau 3-folds obtained from semi-Fanos can be “matched” to form
twisted connected sum Gg-manifolds. In doing so we address some errors in [44] detailed
below. Starting from semi-Fanos instead of Fanos lets us construct many more examples of
compact Go—manifolds, and in many cases also makes it possible to exhibit compact associative
submanifolds.

Associative submanifolds. Geo-manifolds have two natural classes of interesting calibrated sub-
manifolds: 3-dimensional associative submanifolds and 4-dimensional coassociative submani-
folds. Constructing associative 3-folds in compact Go-manifolds is difficult and relatively few
examples are known; part of the difficulty is that—unlike that of its calibrated cousins: spe-
cial Lagrangians or coassociatives—the deformation theory of compact associative 3-folds can
be obstructed. In many of the Gs-manifolds we construct we can exhibit a finite number
of rigid—and therefore unobstructed—associative 3-folds diffeomorphic to S!' x S?; the use
of ACyl Calabi-Yau 3-folds constructed from semi-Fano (rather than Fano) 3-folds is cru-
cial here. The associative 3-folds we construct are the first compact associative 3-folds in
compact Go-manifolds that are proven to be rigid. Thus our work yields a large number of
compact Go-manifolds in which we can attempt to “count” associative 3-folds—in the spirit
of the higher-dimensional invariants envisioned in the papers of Donaldson-Thomas [27] and
Donaldson-Segal [28]. In a related aspect of this programme, Walpuski [72] has recently shown
how one can construct Go-instantons that “bubble” at suitable rigid associative submanifolds,
reversing the fundamental bubbling analysis of Tian [69].

The topology of twisted connected sums. We obtain detailed topological information about
Go-manifolds of twisted connected sum type under certain mild extra assumptions on the
building blocks used (which we show are satisfied in many cases). Joyce and Kovalev had been
able to compute the fundamental group and the Betti numbers of the 7-manifolds appearing
in their constructions, but not further topological information; in particular not even the
integral cohomology was known for their examples. We compute the full integral cohomology
of many of our Go-manifolds including determining the torsion in H? and H* and also the
characteristic class p1, using topological information about the ACyl Calabi-Yau 3-folds from
[18]. Calculating characteristic classes of a manifold constructed by gluing can be quite difficult,
but the twisting in the twisted connected sum construction is sufficiently mild that we can get
a handle on p;. By distinguishing between examples with the same Betti numbers but different
torsion or different p; we are able to prove the existence of many new compact Go-manifolds.

The twisted connected sum construction often yields 2-connected 7-manifolds, whereas
Joyce’s “orbifold resolution” constructions typically yield 7-manifolds with relatively large
second Betti number (only a single example in Joyce’s book [42] has b? = 0, see Remark .
Using the classification theory for 2-connected 7-manifolds developed by Wall and Wilkens
[74], the topological data we have computed determines completely the diffeomorphism (or
almost-diffeomorphism) type of many of the smooth 7-manifolds on which we construct our
Go-holonomy metrics; these are the first compact Go-manifolds for which the diffeomorphism
type is known. These smooth 7-manifolds have simple topological realisations as connected
sums of a nontrivial S®-bundle over S* with an appropriate number of copies of S x S*. This
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is one of very few instances of geometrically interesting 2-connected 7-manifolds for which the
computations needed to determine the (almost) diffeomorphism classification have actually
been carried out.

Even in the simplest case where we use a pair of ACyl Calabi-Yau 3-folds constructed from
rank one Fano 3-folds—as considered in Kovalev’s original twisted connected sum construction—
our refined topological results allow us to prove a variety of new results. For instance in Section
we will show the following

e The simplest matching between such ACyl Calabi-Yau 3-folds leads to 2-connected Gao-
manifolds with torsion-free cohomology, in which case b® is the only Betti number we need
to consider; 46 different possible values of b? are realised this way.

e By distinguishing between examples with the same Betti numbers but different p; we show
that at least 82 different smooth 7-manifolds are realised this way.

e Using the classification theory for 2-connected 7-manifolds we determine the homeomor-
phism type of all these 7-manifolds and in the majority of cases the diffeomorphism type.

o We exhibit a pair of Go-manifolds whose underlying 7-manifolds we prove to be homeomor-
phic but not necessarily diffeomorphic; this raises the question whether there exist different
smooth structures on the same topological 7-manifold which each admit Ga-holonomy met-
rics. To determine the diffeomorphism types of this pair of 7-manifolds requires the calcula-
tion of an extension of the classical Eells-Kuiper invariant, as will be discussed in [21]. We
suspect that these 7-manifolds are in fact diffeomorphic.

e Other possible ways to match such ACyl Calabi-Yau 3-folds exist and lead to simply-
connected 7-manifolds with H? = 0 but with non-trivial torsion in H?; at least 41 other
topological types of Go-manifold arise in this way.

The last point illustrates a general phenomenon: it is often possible to arrange matching
between the same pair of building blocks in various ways and thereby to obtain topologically
distinct 7-manifolds from the same pair of blocks.

The same techniques applied to more general ACyl Calabi-Yau 3-folds constructed from
other Fano 3-folds or more generally semi-Fano 3-folds (or the Kovalev-Lee examples arising
from non-symplectic involutions on K3s [45]) allow us to construct a variety of new topo-
logical types of compact Go-manifolds. Many of the examples built using semi-Fano 3-folds
also contain compact rigid associative 3-folds.

Different Go-metrics on the same manifold? In the opposite direction using the diffeomorphism
classification of 2-connected smooth 7-manifolds we show the following: there exist many 2-
connected smooth 7-manifolds that arise as the underlying smooth manifold for Ga-manifolds
of twisted connected sum-type but in several (sometimes many) different ways. In other words,
the twisted connected sum of different pairs of ACyl Calabi-Yau 3-folds can often yield the same
underlying smooth 7-manifold. This phenomenon already occurs when matching pairs of ACyl
Calabi-Yau 3-folds constructed from rank one Fano 3-folds as above. More generally, using
ACyl Calabi-Yau 3-folds constructed from semi-Fano 3-folds we can construct diffeomorphic
Go-manifolds containing different numbers of obvious rigid associative 3-folds. These facts
naturally suggest the following:

Question. When do these Ga-metrics on the same 7-manifold belong to different connected
components of the moduli space of Ga-metrics?

While answering this question currently goes beyond the techniques we have available to us,
it provides a further strong impetus for developing the higher-dimensional enumerative invari-
ants proposed by Donaldson. A more elementary tool for distinguishing between components
of the moduli space is to study the homotopy classes of Go—structures; however, it appears that
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in our examples of diffeomorphic Go—manifolds one can always choose the diffeomorphism so
that their Go—structures are homotopic (ie connected by a continuous path of Go—structures
without any constraint on the torsion) [22].

Twisted connected sums and hyper-Kahler rotations. To describe some other features of the
paper we need to recall the basic ingredients involved in the twisted connected sum construc-
tion.

In order to construct a metric g with Riemannian holonomy the full group Gs and not a
smaller subgroup the underlying compact 7-manifold M must have finite fundamental group.
Given a pair of ACyl Calabi-Yau 3-folds V4 and V_ we need a way to glue the two non-
compact 7-manifolds M, = S! x V. and M_ = S' x V_ to get such a compact 7-manifold. By
construction the ends of our ACyl Calabi-Yau 3-folds have the form Rt x S! x S4 where Sy
are smooth K3 surfaces. The obvious connected sum construction would yield a manifold with
infinite fundamental group which could not admit a metric of full holonomy Gs. Instead we
choose to identify the cross-section of our ends T? x S+ using a diffeomorphism which exchanges
the two circle factors of T?. However, in order to get a well-defined Go-structure on M we also
need to identify the two K3 surfaces Sy using a special diffeomorphism r: .5y — S_. The K3
surfaces St inherit hyper-Kahler structures from the geometry at infinity of Vi, which can be
defined in terms of a Ricci-flat metric and a triple of parallel complex structures I, Ji, K.
We need to construct a diffeomorphism r which is an isometry and satisfies

vI_=Jy, vJ_=1;, andhence "K_=-K,.

We call such a map a hyper-Kdhler rotation. Even given a plentiful supply of ACyl Calabi-Yau
3-folds it is highly non-trivial to construct pairs of Vi for which there is such a hyper-Kéhler
rotation r. However, as soon as we can construct a hyper-Kéhler rotation r for a pair of
ACyl Calabi-Yau 3-folds V4 we can use 1 to form a twisted connected sum 7-manifold M,
and build on it a closed Ga-structure which has small torsion. The perturbation theory for
closed Go-structures developed by Joyce (or the specific ACyl version proved by Kovalev)
therefore shows that we can then choose an appropriate small perturbation to yield a metric
with holonomy Go on M;.
Thus two main steps are needed to implement the twisted connected sum construction:

(i) Construct (families of) exponentially ACyl Calabi-Yau structures on suitable smooth
quasiprojective 3-folds.

(ii) Understand how to find ACyl Calabi-Yau 3-folds for which there exists a hyper-Kéhler
rotation, within a given pair of families.

We explain below in more detail how together with [18] and [37] this paper addresses problems
with both steps (i) and (ii) in Kovalev’s original paper [44]—and therefore puts the twisted
connected sum construction on a firm foundation—and also extends substantially the settings
in which solutions to (i) and (ii) can be constructed.

Ezxponentially ACyl Calabi- Yau 3-folds. There are two ingredients, one analytic and one com-
plex algebraic, for producing exponentially ACyl Calabi-Yau 3-folds. The analytic ingredient
is to solve the complex Monge-Ampere equation on suitable smooth quasiprojective varieties
and to obtain sufficiently strong estimates for these solutions. The proof of the exponential
asymptotics of solutions to the complex Monge-Ampere equation in [44] is not valid, but a
complete, short self-contained proof of the existence of exponentially asymptotically cylindri-
cal Calabi-Yau metrics was given recently in [37]. With a suitable analytic existence theory in
place the remaining complex algebraic task is to find a (large) supply of suitable quasiprojective
varieties.
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ACyl Calabi-Yau 3-folds from Fano and weak Fano 3-folds. In [44] Kovalev showed how to
construct some suitable quasiprojective 3-folds by blowing up special curves (the smooth base
locus of a sufficiently generic anticanonical pencil) in smooth Fano 3-folds and removing a
smooth anticanonical divisor. Recall a smooth Fano 3-fold F' is a smooth projective variety for
which —KF is ample or positive. There are exactly 105 deformation families of smooth Fano
3-folds: complex projective space P3, smooth quadrics, cubics and quartics in P* being the
simplest examples. We call the ACyl Calabi-Yau 3-folds obtained this way ACyl Calabi-Yau
3-folds of Fano type.

A smooth weak Fano 3-fold is a smooth projective variety for which the anticanonical
bundle is big and nef (but not ample). Differential geometers are encouraged to think of a
big and nef line bundle as the algebraic-geometric formulation of the line bundle admitting a
hermitian metric whose curvature is sufficiently semi-positive. There are at least hundreds of
thousands of deformation families of smooth weak Fano 3-folds and the topology of smooth
weak Fano 3-folds is less restrictive than for Fano 3-folds; unlike the Fano case there is at
present no classification theory for weak Fano 3-folds, except under very special geometric
assumptions, but many examples are known. In our paper [18] we proved that one can construct
suitable quasiprojective 3-folds from any weak Fano 3-fold (satisfying one further very mild
assumption); combining this weak Fano construction with the analytic existence results from
[37] we thereby increased the number of known ACyl Calabi-Yau 3-folds from a few hundred
to several hundred thousand. We call these ACyl Calabi-Yau 3-folds of weak Fano type.

Constructing hyper-Kdhler rotations. With a plentiful supply of exponentially asymptotically
cylindrical Calabi-Yau 3-folds now at hand, to complete the twisted connected sum construc-
tion it remains to solve (ii): find pairs of (families) of ACyl Calabi-Yau 3-folds for which there
exists a hyper-Kéhler rotation. In [44] Kovalev developed an approach to proving the existence
of hyper-Kéhler rotations between pairs of ACyl Calabi-Yau 3-folds of Fano type. Unfortu-
nately in almost all cases his argument relies on Lemma 6.47 in [44] which is false. In the course
of the current paper we revisit carefully the construction of hyper-Kéahler rotations, to correct,
clarify and extend the methods available. In particular our results allow us to construct hyper-
Kéhler rotations for many pairs of (families) of ACyl Calabi-Yau 3-folds of so-called semi-Fano
type—a large subclass of weak Fano 3-folds described below. (After conversations with two
of the present authors the final version of Kovalev-Lee [45] contains a similar construction of
hyper-Kéhler rotations for ACyl Calabi-Yau 3-folds of Fano or “nonsymplectic” type).

We should point out immediately that given a pair of deformation families of ACyl Calabi-
Yau 3-folds V4 there are typically various ways to construct hyper-Kéahler rotations between
the asymptotic ends R* x S! x Si. The topology of the resulting 7-manifold M depends on
the choice of the hyper-Kéahler rotation r: S, — S_. At present we do not understand in a
systematic way all possible different ways to match a given pair of (deformation families of)
ACyl Calabi-Yau 3-folds Vi ; however, we will exhibit various examples where several different
matchings are possible and lead to topologically distinct Go-manifolds. In some simple cases
we do understand essentially all different possible ways to match a given pair.

Deformation theory for weak and semi-Fano 3-folds. In Kovalev’s original approach to the
construction of hyper-Kéhler rotations between pairs of ACyl Calabi-Yau 3-folds of Fano type
the deformation theory for pairs (F,S) where F' € F a deformation type of smooth Fano
3-folds and S € |-Kp| is a smooth anticanonical divisor plays a crucial role. Our approach
to the construction of hyper-Kahler rotations also rests on a sufficiently good deformation
theory: For pairs of ACyl Calabi-Yau 3-folds of weak Fano (or Fano) type the construction of
hyper-Kéhler rotations is possible provided we have a sufficiently good deformation theory for
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pairs (Y,S), where Y € ), a given deformation type of weak Fano 3-folds, and S € |—Ky| is
a smooth section. In [18] we showed that the deformation theory of such pairs is well-behaved
for the subclass of semi-Fano 3-folds. A semi-Fandl 3-fold is a weak Fano 3-fold on which we
impose an extra assumption on the geometry of its anticanonical morphism, namely that it
contracts no divisor to a point. This assumption guarantees that certain cohomology vanishing
theorems that are true for Fano 3-folds (but which are false for general weak Fano 3-folds)
still hold for semi-Fano 3-folds. There are still hundreds of thousands of deformation families
of semi-Fano 3-folds.

We prove that we can construct hyper-Kéahler rotations for pairs of ACyl Calabi-Yau 3-folds
of semi-Fano type under the same sorts of conditions as for pairs arising from (deformation
types of) Fano 3-folds. As we already explained, together with the constructions of [18] this
immediately gives rise to many new twisted connected sum compact Go-manifolds. Using just
ACyl Calabi-Yau 3-folds from Fano or semi-Fano 3-folds of rank at most two or from toric
semi-Fano 3-folds we get at least 50 million matching pairs (and probably many more) that
produce 2-connected Go—manifolds. On the other hand, the smooth classification results show
that the number of different topological types realised is much smaller, so as mentioned earlier
some smooth 7-manifolds must arise as twisted connected sums in many different ways.

Rigid curves and rigid associative 3-folds. There is one further immediate advantage of gen-
eralising from ACyl Calabi-Yau 3-folds of Fano type to those of semi-Fano type. If Y is a
Fano 3-fold then —Ky - C' > 0 for any algebraic curve C and hence C' meets any anticanonical
divisor S € |-Ky|. However, semi-Fano 3-folds can contain special complex curves C' for which
Ky - C = 0; the weakening of —Ky being positive to sufficiently semi-positive is crucial here.
Moreover, in many cases C' is a smooth rational curve with normal bundle O(—1) @ O(—1): in
this case C' is infinitesimally rigid, ie has no infinitesimal (holomorphic) deformations.
Precisely because these special Ky-trivial curves are rigid and do not intersect anticanonical
divisors we can use them to construct compact rigid holomorphic curves in our ACyl Calabi-
Yau 3-folds. These rigid curves allow us to produce rigid associative 3-folds diffeomorphic to
S! x S? in our twisted connected sum Go-manifolds. The key point is that we have related
the deformation problem for a holomorphic curve C' to that of an associative of product form
S! x C. Algebraic geometry provides many tools to understand the deformation theory of C;
for a general associative 3-fold we have no such tools to understand its deformation theory.

Go-transitions. In the geometry of Calabi-Yau 3-folds, especially in some of their applications
to String Theory, an important role is played by so-called geometric transitions. The simplest
and most important such transitions are flops and conifold transitions. These two types of
transitions also appear in the context of weak Fano 3-folds; many smooth weak Fano 3-folds
can be flopped to yield other smooth weak Fano 3-folds (which typically are not deformation
equivalent to the original weak Fano 3-fold). However, unlike the Calabi-Yau setting where the
condition ¢; = 0 is preserved, a conifold transition that begins with a Fano 3-fold F' will yield
only a weak Fano 3-fold Y. We can construct ACyl Calabi-Yau metrics on blocks constructed
from both the Fano F' and the weak Fano Y, and then try to match both types of block
to some other given (deformation family of) ACyl Calabi-Yau structure. This gives rise to
the idea of related Gg-manifolds or Go-transitions. For the moment we present Go-transitions
as a convenient organisational principle that explains certain features of the geography of

IThere seems to be no established terminology for this particular subclass of weak Fano 3-folds, so the
term semi-Fano is our invention: it is intended to suggest that a semi-Fano 3-fold has semi-small anticanonical
morphism. Warning: semi-Fano has also been used to mean something even weaker than weak Fano, ie a complex
manifold for which — Ky is nef (but not necessarily big), but this terminology is not well-established.
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twisted connected sum Go-manifolds. However, there is the future prospect of realising these
Go-transitions at the level of metric geometry; we explain some of the technical difficulties
that would need to be overcome to achieve this.

Connections to M-theory. Gao—manifolds play a similar role in M-theory as Calabi-Yau 3-folds
do in String Theory. Two questions of significance for M-theory concern the existence of
coassociative K3-fibrations and singular Ga—manifolds.

Any twisted connected sum Go-manifold is K3-fibred—essentially because the building
blocks Z from which we construct our ACyl Calabi-Yau 3-folds are K3-fibred. Generically
the only singular fibres of a building block Z, and therefore of our Go-manifolds, are A; singu-
larities. Because of subtleties due to the singular fibres it is still unknown if these topological
“almost” coassociative K3-fibrations can be made into coassociative K3-fibrations as expected
in [1,34].

To obtain realistic particle physics (ie non-abelian gauge groups and chiral fermions) from
M-theory on Ge-manifolds it appears necessary to consider singular Go-spaces with very par-
ticular kinds of singularity as explained in [1,[2,|7,/9]. For some recent physical predictions
from M-theory on Go-spaces see [3-5]; see also [6}10,24} 35|61}, 64] for some other aspects of
M-theory on Ge-spaces. In the present paper we consider only smooth compact Geo-manifolds
(apart from the discussion in the Go-transitions section where we discuss potential ways to
realise singular Go-manifolds as degenerate limits of our constructions). There are potential
extensions of the present constructions that might in some circumstances allow the construc-
tion of blocks fibred by generically singular K3 fibres. However it is not yet clear that these
could give rise to Go-spaces with the sort of singularity structure apparently required.

It would be interesting to know: does the presence of torsion in H® or H* of a compact
Go-manifold have any significance in M-theory? What if any significance do the Ga-transitions
discussed in Section 8| have in M-theory? Does the existence of many potentially different
Go-metrics on the same smooth 7-manifold have any M-theory interpretation?

Structure of paper. We now describe the structure of the rest of the paper.

Section [2] reviews basic facts about the group Go, Ga-structures, Go-holonomy metrics,
the two natural calibrations on Gs-manifolds and the relations to Calabi-Yau 3-folds, hyper-
Kahler K3 surfaces and the groups SU(2) and SU(3). We include this standard material for two
reasons: to make the paper more accessible to readers with backgrounds in algebraic geometry
or topology and also to establish the notation and the conventions we adopt in our paper. The
reader familiar with the basics of G-holonomy metrics can safely skip most of this section.

Section [3|introduces ACyl Calabi-Yau 3-folds and recalls how to construct them from certain
algebro-geometric data that we call a building block. We recall Kovalev’s twisted connected sum
construction: it takes a pair of ACyl Calabi-Yau 3-folds together with the specification of a
so-called hyper-Kéahler rotation and produces a compact 7-manifold M with finite fundamental
group and a l-parameter family of closed Go-structures on M with small torsion. We explain
how the known perturbation theory for closed Go-structures with small torsion allow us to
construct a 1-parameter family of Go-holonomy metrics on M. In summary, this section reduces
the problem of finding twisted connected sum Go-manifolds to finding hyper-Kéhler rotations
between a given pair of (deformation families) of ACyl Calabi-Yau 3-folds.

Section [4] develops various tools to compute topological invariants of compact twisted con-
nected sum Go-manifolds building on results on the cohomology of the 6-dimensional building
blocks proved in [18]. Theorem computes the integral cohomology groups of our twisted



8 A. CORTI, M. HASKINS, J. NORDSTROM, AND T. PACINI

connected sum Gg-manifolds and proves under our assumptions that they are all simply-
connected. In general there can be torsion in H3(M) and H*(M); we establish various re-
strictions on the possible torsion linking form of general twisted connected sums. We review
the almost-diffeomorphism classification of closed 2-connected 7-manifolds including cases in
which almost-diffeomorphism can be replaced with diffeomorphism. We explain a simple suffi-
cient condition for our twisted connected sum Go-manifold M to be 2-connected with torsion-
free H4(M) and then study the diffeomorphism and almost-diffeomorphism types of such
7-manifolds. A key role is played by the divisibility of the first Pontrjagin class p;(M); in turn
the divisibility of p; (M) is closely related to the divisibility of the second Chern class ¢y of our
building blocks, as studied in [18]. We apply all these results later to study the diffeomorphism
type of concrete Go-manifolds constructed in Section [7] but our methods apply to twisted
connected sum manifolds more generally.

Section [§] deals with the construction of associative submanifolds in our twisted connected
sum Go-manifolds. After recalling some basic features of the geometry of associative 3-folds
we prove Theorem this gives a general persistence result for a closed infinitesimally rigid
associative 3-fold A under a small deformation of the Ga-structure. Theorem [5.4] gives a gener-
alisation in which we prove persistence of multi-parameter families of closed associative 3-folds
in a multi-parameter torsion-free deformation of the original Ga-structure under a surjectivity
assumption on the family. These results are extensions of the deformation theory established
by McLean [50, §5]. Next we consider the relation between associative 3-folds in the product
of a circle S! and a Calabi-Yau 3-fold and holomorphic curves in the Calabi-Yau. This relation
is fundamental to the construction of associative 3-folds in many of our twisted connected
sum Gy-manifolds. Particularly important is the simple observation—see Lemma [5.11}—that
S! x C is rigid as an associative 3-fold if and only if C' is rigid as a holomorphic curve. Putting
together the results from the section we prove Proposition each closed rigid holomorphic
curve C in one of our ACyl Calabi-Yau 3-folds can be perturbed to a compact rigid associative
3-fold diffeomorphic to S' x C' in our twisted connected sum Gg-manifold for all sufficiently
long “neck lengths”. With a little more work, we also show how to produce closed associative
3-folds, including some non-rigid ones, in twisted connected sum Gs-manifolds from certain
closed special Lagrangian 3-folds in our ACyl Calabi-Yau 3-folds.

Section [6] deals with the so-called “matching problem”, ie the construction of pairs of ACyl
Calabi-Yau 3-folds with a hyper-Kéhler rotation. Our approach to solving the matching prob-
lem requires some well-known facts about moduli spaces of lattice polarised K3 surfaces, the
global Torelli theorem in this context and some results from deformation theory proved in
[18]; we review these very briefly. We describe in detail one general strategy which we call
“orthogonal gluing” which yields solutions to the matching problem in a large number of
cases.

A special case of “orthogonal gluing” is what we term “primitive perpendicular gluing”.
The benefit of “primitive perpendicular gluing” is that it is guaranteed to give a solution
of the matching problem under the simple condition that the ranks of the Picard lattices
of the deformation types Y+ of semi-Fano 3-folds used to construct the ACyl Calabi-Yau
3-folds add up to at most 11. Primitive perpendicular gluing enables us to mass-produce
2-connected twisted connected sum Go-manifolds and to understand their homeomorphism
and diffeomorphism type in many cases.

The more general “orthogonal gluing” produces manifolds M with second Betti number
b?(M) > 0. It requires some sort of compatibility between the Picard lattices of the pair of
semi-Fanos initially chosen and this does not always hold: see Example When it does hold,



G2-GEOMETRY VIA SEMI-FANO 3-FOLDS 9

some further restrictions on the ranks of the Picard lattices allow the solution of the matching
problem in this case: see Proposition

In Section [7] we make examples of twisted connected sum Go-manifolds—often containing
compact rigid associative 3-folds—and compute the topology of these examples. In this sec-
tion we aim to give examples that illustrate the main points of what is achievable by the
construction rather than to be systematic. Our examples are built mainly using specific ACyl
Calabi-Yau 3-folds of semi-Fano type which we constructed recently in [18]. Most of the ex-
amples we construct use perpendicular or orthogonal gluing. However, to demonstrate that
these are labour-saving devices rather than a necessity we also consider what we have termed
“handcrafted nonorthogonal gluing”. While this method applies in situations where “orthog-
onal gluing” fails it needs much more precise information about K3 moduli spaces and that
information is usually very expensive to obtain. Therefore we give only a single example to
illustrate the method and its potential complexities.

In Section [§|we describe the more general possibilities and limitations of the construction and
make some comments about the “geography” of examples that can be achieved by matching
currently known pairs. The existing smooth classification theory for 7-manifolds allows us
to determine the diffeomorphism type of the majority of the 2-connected twisted connected
sums; to complete the diffeomorphism classification in the remaining 2-connected cases we
would need to be able to compute an extension of the classical Eells-Kuiper invariant.

Moving beyond the 2-connected world, we explain how to realise many simply-connected
twisted connected sum Gy-manifolds with 7o (M) isomorphic to Z or Z/kZ and discuss the
prospects for extending the smooth classification theory to cover these cases. Finally we dis-
cuss a way to organise various different twisted connected sum Go-manifolds constructed by
matching pairs of Fano or semi-Fano 3-folds related via flops or conifold transitions; by analogy
we term these Go-transitions. We close by discussing the prospects for proving more precise
topological and metric statements about Ge-manifolds related by these Go-transitions.

Acknowledgements. The authors would like to thank Bobby Acharya, Kevin Buzzard, Paolo
Cascini, Tom Coates, Diarmuid Crowley, Simon Donaldson, [gor Dolgachev, Bert van Geemen,
Anne-Sophie Kaloghiros, Al Kasprzyk and Viacheslav Nikulin. Computations related to toric
semi-Fanos were performed in collaboration with Tom Coates and Al Kasprzyk and were
carried out on the Imperial College mathematics cluster and the Imperial College High Per-
formance Computing Service; we thank Simon Burbidge, Matt Harvey, and Andy Thomas
for technical assistance. Part of these computations were performed on hardware supported
by AC’s EPSRC grant EP/1008128/1. MH would like to thank the EPSRC for their continu-
ing support of his research under Leadership Fellowship EP/G007241/1, which also provided
postdoctoral support for JN. TP gratefully acknowledges the financial support provided by a
Marie Curie European Reintegration Grant.

2. PRELIMINARIES: G2 AND SU(n) GEOMETRY

In this section we collect some basic facts and definitions concerning the linear algebra and
geometry associated to the Lie groups G2 and SU(n). The material in this section is standard
and the reader may find proofs of various quoted facts in the articles by Bryant [12] and
Harvey-Lawson [36] and the books by Joyce [42] and Salamon [65]. We include this material
to establish our conventions and notation and to make the paper more self-contained and
accessible to topologists and algebraic geometers.

The octonions, a cross product on R” and the group G,. One way to define G is as the
automorphism group of O, the normed algebra of octonions. The automorphisms preserve the
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splitting O = R&1Im O and act trivially on R, so can therefore be identified with a subgroup of
GL(7,R). Since the inner product on Im O is defined in terms of the normed algebra structure
it is preserved by the automorphisms. We will see below that the automorphisms also preserve
orientation, so Ga can be embedded in SO(7).

If we choose an isometry Im @ = R then we can define a vector product on R” by

u X v = Imuv.

The algebra structure on R @ ImQ can be recovered from the vector product x and the
standard inner product gg by

(z,u)(y,v) = (zy — go(u,v), v + yu + u X v).

An equivalent definition of G is therefore that it is the subgroup of GL(7,R) that preserves
both gg and x. From gg and x we can define the trilinear form

(2.1) wo(u,v,w) = go(u X v,w).
In fact this is alternating, so ¢o € A3(R7)*. With a standard choice of isometry Im Q = R

that we fix once and for all (our convention is the same as that used by eg Joyce [42, §10]) we
can write

(2.2) 0o = dz'® + dz'®® + dz'7 4 a6 — 42?7 — 4z — da?50,

For any ¢ € A3(R7)* we can define a form vol, € A7(R7)* in the following way: For v,w € R”
let

Bo(v, w) = %(mgp) A (W) A .

B, is a symmetric bilinear form on R” with values in A7(R7)*. B, induces a linear map
K, :R"— (R")*®A"(R")*, which has a determinant det K, € (A7(R")*)%. If K, # 0 then we
call ¢ non-degenerate, and we can define a volume form vol, and a symmetric bilinear form
gy Oon R” by

(2.3a) (vol,)? = det K,
(2.3b) gy @ vol, = By,

(see Hitchin [40, §7]). For ¢9 we can compute that g,, = go, so the metric can be recovered
from ¢, and hence so can the vector product x. Thus the stabiliser of ¢ in GL(7,R) preserves
go and x, and must equal Gy. This gives yet another possible definition of Ga. Since it is in
terms of an alternating 3-form it is a useful one for the purposes of differential geometry.
The set of 3-forms that are equivalent to g, and whose associated orientation, symmetric
bilinear form and cross product are thus isomorphic to the standard one, is in fact open
in A3(R7)*.
Proposition 2.4.

(i) Gz is a compact 2-connected Lie group of dimension 14.

(i) The stabiliser in Go of a non-zero vector in R is isomorphic to SU(3).
(iii) G acts transitively on the unit sphere S® C R”.
(iv) The GL(7,R)-orbit of ¢q is open in A3(RT)*.

Proof. Since dim A3(R7)* = 35 and dim GL(7,R) = 49, we must have dim Gy > 14 with
equality if and only if the orbit of ¢q is open.

We will prove below that the stabiliser in Go of e; can be identified with SU(3) in a natural
way. Because dim SU(3) = 8, the Gg-orbit of e; must have dimension > 6. Since the orbit
is contained in S equality must hold. Consequently the Go-orbit of e; is exactly S°, all unit



G2-GEOMETRY VIA SEMI-FANO 3-FOLDS 11

vectors have isomorphic stabilisers, dim Go is exactly 14, and the GL(7, R)-orbit of ¢q is open.
The fibration SU(3) — G2 — S° shows that Gy is 2-connected. O

Remark. The set of non-degenerate 3-forms on R” is in fact the union of four connected
components: two GL(7,R)-orbits, each of which splits into two components inducing oppo-
site orientation. The orbit not containing ¢g consists of those non-degenerate 3-forms whose
induced bilinear form has signature (3,4).

The Hodge dual *¢q of g is a 4-form g
(25) wo — —d$1247 _ de1256 _ d$1346 + d$1357 + dl’2345 + dl’2367 + d$4567.

We can use ¥ and the metric to obtain an alternating vector-valued 3-form xg : R xR” xR7 —
R” defined by

(2.6) go(u, %Xo(v,w,x)) = tpo(u,v,w,z) for all u,v,w,z R,

X0 is not a proper triple cross-product on R in the sense that there exist orthonormal triples
(u,v,w) with xo(u,v,w) = 0.

Remark 2.7. The stabiliser of 1y in GL(7,R) is the subgroup Zs x Go, where Zs is generated
by —Id. We can therefore recover g from )y, modulo orientation.

Lemma 2.8. For all u,v,w € R’

(2.92) luxol* = Jlul®lv]* = go(u,v)?,
(2.9b) ux (vxw)+ (uxv)xw = 2go(u,w)v— go(u,v)w — go(w,v)u,
(29C) QD(](U,U,UJ)2+ i|XO(U7U»w)|2 = |U/\’U/\’UJ|2.

Proof. See [12, p. 540], [11, 2.2] and [36, Thm. IV.1.6] for proofs of (2.9a), (2.9b) and (2.9¢)
O

respectively.

G-structures on vector spaces. Let V' be a n-dimensional real vector space. Let P denote
the set of ordered bases of V'; equivalently, the set of isomorphisms 3 : R” — V. We call P the
set of frames of V. P has a free transitive right GL(n, R)-action determined by composition of
maps:

g-B:=PBog.
We can thus think of P as a principal GL(n,R)-fibre bundle over a point.

Definition 2.10. Let G be a subgroup of GL(n,R). A G-structure on V is a G-subbundle
of P, i.e. an orbit of the induced action of G on P. The space of all G-structures can be
identified with the quotient space P/G.

The above definition makes it clear that if H is a subgroup of G, an H-structure automati-
cally defines a G-structure.

Go—structures on a vector space. The subgroups G of interest in this paper arise as isotropy
groups of algebraic structures on R™. In such cases one can give an alternative definition of
G-structure, which we exemplify in the case G = Go.

Definition 2.11. Let V be a real vector space of dimension 7. We call ¢ € A3V* a Go-structure
(or Ga-form) if there is a linear isomorphism V =2 R” identifying ¢ with ¢.

Since Go C SO(7), a Ga-structure on V' induces an inner product and an orientation. This
is equivalent to how a Go-form defines an inner product and orientation in . We will
often find it convenient to restrict attention to those Go—structures that agree with a given
orientation.
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Definition 2.12. Let V be a real oriented 7-dimensional vector space. We call ¢ € A3V* a
positive 3-form if there is an oriented linear isomorphism V 22 R7 identifying ¢ with ¢g. Let
AiV* C A3V* denote the set of positive forms.

Note that A:j’rV* is open in A3V* by By Remark we could study Go—structures on
an oriented vector space equivalently in terms of the Hodge duals of the positive 3-forms.

Remark. Our definition of ‘positive’ agrees with that of Joyce [42], while Hitchin [40] uses
‘positive’ where we use ‘Ga-form’.

SU(n)-structures. Let 2%, ..., 2" be standard coordinates on C", and
Q =  dztA---AdE,
wo = i(de' NdE' 4+ d2 A dED).

These are, respectively, the standard complex volume form and Kahler form, and are invariant
under the action of SU(n). In fact, their stabiliser in GL(2n,R) is precisely SU(n). For Qy on
its own determines A(IC’O(C")* (as the kernel of oo — Qg A «) and hence the complex structure
on C", so the stabiliser of Qy in GL(2n,R) is precisely SL(n,C).

By analogy with Definition we can think of any complex n-form Q that is GL(2n,R)-
equivalent to €y (ie any decomposable form) as defining an SL(n, C)-structure, and any pair
(Q,w) of a decomposable complex n-form and a non-degenerate real 2-form such that
(2.14a) QANw=0,

n(

n—1) i\n — O.)n
(2.14b) (-7 = (3) QA0 =7,

as an SU(n)-structure. (2.14a)) encodes that w is (1,1) with respect to the complex structure
defined by 2, while (2.14b)) is a normalisation condition that the natural volume forms defined
by w and €2 are equal, or equivalently that |Q2] = 2™ (see Hitchin [39, §2]).

SU(3)-structures. We have a particular interest in the case of complex dimension three since
SU(3) is the stabiliser in Gy of a vector in R7. Let us now give the previously promised proof
of this fact.

Proof of Proposition[2./(i1)l Let S be the stabiliser of the basis vector e; € S® c R”. Since
Go C SO(7), S maps the orthogonal complement ef- to itself. ef- can be identified with C? by
introducing complex coordinates z! = z? + iz3, 22 = 2* + 25, 23 = 25 + iz". The action of S
on C? evidently preserves the forms

e1ap0 = de® + da® + d2®" = wy,

900‘6% _ d.’lf246 . d$257 _ d$347 _ de356 — Re Q()’

—e1athg = —dz®*T — dz®® — 42?0 + d27 = Im Qy,
so S is contained in SU(3). Conversely
(2.16) ©o = dz' Awg + Re
implies that SU(3) preserves ¢, so S is precisely SU(3). O

It follows that any SU(3)-structure on a real vector space V' of dimension 6 (together with a
covector dt on R defining orientation and length) determines a Go—structure on R&V. Moreover
we see from the proof how to express the relationship between the structures in terms of the
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forms. If the SU(3)-structure on V' is defined by (2, w) then the induced Go—structure on RGV
has Go-form

(2.17) p=dt Aw+ Rel.
Similarly, the Hodge dual 4-form 1 of ¢ takes the form
(2.18) P =1w? —dt AImQ.

Another way to think of the relationship is that the orthogonal complement to a unit vector
u in a vector space with Go—structure inherits (in addition to the metric) two structures from
the cross product: using Lemma I, : v — u X v defines an orthogonal complex structure
on u*, while the restriction/projection of the cross product to u' defines a I,-antilinear cross
product which is equivalent to a complex volume form (because the complex dimension is 3).

See also p.

Remark 2.19. Complex volume forms in dimension three have some special properties. Hitchin
[40, §2] explains that the stabiliser of Re Qg alone in GL4 (6, R) is SL(3, C). The GL(6, R)-orbit
of Re Yy in A3(R®)* is therefore open by dimension counting: dim GL(6,R) — dim SL(3,C) =
36 — 16 = 20 = dim A3(R%)*. For any 3-form « in this open set there is a unique real 3-form
B such that a + i is decomposable and the induced SL(3,C)-structure has the standard
orientation. For a real vector space of dimension 6, an SL(3, C)-structure is therefore equivalent
to a choice of orientation together with a 3-form equivalent to Re £y (reversing the orientation
while keeping the 3-form fixed corresponds to replacing the complex structure by its conjugate).

SU(2)-structures. The case of complex dimension two also plays an important role in the
paper. Let w(l) := wp be the standard Kihler form on C?, and write the holomorphic volume
form Qg as wg]] +1 wé< . As suggested by the notation, w(‘)] and w{f define gg-orthogonal complex
structures J and K on R* by the relations wy (z,y) = go(Jz,y) and wl (,y) = go(Kz,y). In

real coordinates (z') where 2! = 2! +iz?, 22 = 23 + iz

wh =da'? +da?t, wf = dat® — d2?t, W = dat + da®.
When we identify C? with the quaternions H by (z! 4 iz?, 23 + iz?) — o' + i2? + jo3 + ka?
the complex structures I, J, K correspond to left multiplication by the standard orthonormal
triple 7, j, k of imaginary quaternions. This identifies SU(2) with the automorphism group Sp(1)
of H. Furthermore, any unit imaginary quaternion defines an orthogonal complex structure,
so SU(2) preserves a whole S? of complex structures.

We can therefore think of an SU(2)-structure on a 4-dimensional vector space in two different
ways: either as a pair (w, ) as before, or as a choice of an ordered triple of 2-forms (w!, w”/, W)
equivalent to (wl,wd, wl), ie satisfying
1)2 — (WJ)Z — (WK)2

(w ,

WIAw! =0 AWE =wE AWl =0.

These two definitions of SU(2)-structures are equivalent, setting w = w! and Q = w’ + i wk.

However, the first highlights a preferred complex structure I, while the second emphasises the
two-sphere of complex structures. We will switch back and forth between these two points of
view.

If we want to choose an SU(2)-structure compatible with a particular inner product and
orientation we first choose w’ in the S? of 2-forms such that (w!)? = 2vol, and then w”/ among
the S! of such forms that are perpendicular to w! (and w’ is then determined by K = I.J). All
in all, there is therefore an SO(3)-family of SU(2)-structures inducing the same inner product

and orientation.
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Remark. Any non-degenerate complex 2-form with square 0 on a real vector space of dimension
4 is decomposable, and thus determines an SL(2, C)-structure.

Calibrations in R”. Let (V,g) be an inner product space. A k-form o € A¥V* is said to be
a calibration if, for every oriented k-plane m in V, we have a|; < voly. The oriented k-planes
7 for which o) = vol; are said to be calibrated.

A Go-form ¢ and its Hodge dual 9 define calibrations with respect to the metric g,.

Lemma 2.20.

(i) The 3-form o and the 4-form 1y = *@q defined in and respectively are
calibrations on (R, go).
(i) If u,v,w is an orthonormal triple of vectors in R7, then @o(u,v,w) = 1 if and only if
w=uXuv.
(iii) If u,v,w,x is an orthonormal quadruple of vectors in RT then vo(u,v,w,z) = 1 if and
only if u= %Xo(v,w,az).

Proof. For any orthonormal quadruple u, v, w,z € R” using Cauchy-Schwarz, ([2.9a]) and ([2.9d)

we have

(2.21) o (u, v, w) = go(u x v,w) < |u x v||w| =1,
and
(222) |7JJO(U,’U,U],$)| = |go(u7 %XO(’U,U),I’)” < |U| ’%XO(U7UJ7$)’ <1

If w = u x v then @o(u,v,w) = go(u X v,u x v) = 1. Conversely, if po(u,v,w) = 1, then
equality must hold throughout and in particular in the Cauchy-Schwarz inequality.
Hence w = Au x v for some A € R. But 1 = pg(u, v, \u x v) = Ago(u X v,u X v) = A, hence we
must have w = u X v.

Similarly we have equality in if and only if u = )\%Xo(v, w,x) for some A € R and
{%Xg(v, w, 1‘)| = 1. Hence equality holds in if and only if u = :E%Xo(v, w, x), and clearly
we have wo(iéxg(v, w,x),v,w,x) = =+1. O

Definition 2.23. An oriented 3-plane 7 in R7 calibrated by ¢y is called an associative plane.
An oriented 4-plane 7 in R” calibrated by vy is called a coassociative plane.

Lemma 2.24.

(i) A 3-plane  is associative (for one choice of orientation) if and only if Xox = 0.
(ii) Any 2-plane is contained in a unique associative 3-plane.

Proof. follows directly from and the fact that (g is a calibration.

Let {u,v} be an orthonormal basis for the 2-plane. Then {u,v,u X v} is an oriented
orthonormal basis for an associative 3-plane. Suppose 7 is any associative 3-plane containing
the 2-plane (u, v)r. Then we can choose an oriented orthonormal basis {u, v, w} for 7 extending
{u,v}. Hence by Lemma [2.20| we must have w = u x v. O

Relation to calibrations on C3. There are also standard calibrations on C", given by powers
of the standard Kihler form and real parts of normalised (n,0)-forms. The fact that wf is a
calibration for each k, and that the calibrated subspaces are precisely the complex k-planes,
is known as Wirtinger’s inequality. The other type of calibration is described by the following
lemma.

Lemma 2.25.
(i) The n-forms Re(eQq) are calibrations on (C", go) for each 6 € R.



G2-GEOMETRY VIA SEMI-FANO 3-FOLDS 15

(ii)) A real n-plane L C C™ is calibrated by Re Qqy (for one choice of orientation) if and only
iwa|L = IQOL =0.

Proof. 1t is easy to see that !QO‘ L‘ < 1 for any real n-plane L C C", with equality if and
only wg;, = 0. Thus ‘Re(ewﬂoh L| < 1 with equality if and only if L is Lagrangian and
|Im(ero)|L| =0. O

Note that for each Lagrangian plane L C C™ there is a 6 (unique modulo 27) such that L is
calibrated by Re(e®Qp).

Definition 2.26. We call the planes calibrated by Re(erg) special Lagrangian with phase 0,
or simply special Lagrangian if 6 = 0.

Now consider C? with its standard SU(3)-structure (€9, wp) as a hyperplane in R7 2 (e )C?
with the standard product Go-structure g = dx' A wg + Rey given in (2.16)).

Lemma 2.27.

(i) Let £ C C? be a real 2-plane. Then (e1) ® £ is associative in R” if and only if ¢ is a
complez line.

(ii) Let L C C? be a real 3-plane. Then L is associative in R if and only if L is special
Lagrangian.

Proof. ©o|(er)@e = Wole, SO (e1) ® £ is calibrated by (g if and only if £ is calibrated by wo.
woir, = Re gz, so L is calibrated by (g if and only if L is calibrated by Re (. (]

We can also think of the following way. Let V be a 7-dimensional vector space with
a Go-structure, u € V a unit vector, and consider the orthogonal complement u* with its
induced SU(3)-structure (2.17)). The complex structure on u* is I, : v — u x v. So for v € ut,
the unique associative 3-plane in V' containing both u and v is (u, v, I,v)g, which is the direct
sum of (u) and the unique complex line in v containing v.

G-structures and manifolds with special holonomy. Let M be a smooth n-dimensional
manifold. Let GL(M) denote the principal GL(n, R)-bundle of linear frames on M.

Definition 2.28. Let G be a subgroup of GL(n,R). A G-structure on M is a G-subbundle of
GL(M). Equivalently, it is a smooth section of the quotient bundle GL(M)/G.

The G-structures of interest to us can equivalently be defined in terms of a choice of special
algebraic structure on M.

Go—structures and manifolds with holonomy Go.

Definition 2.29. For an oriented manifold M of dimension 7, let AiT*M C A3T*M be the
smooth subbundle of positive 3-forms, in the sense of Definition A Ga-structure on M
(compatible with its orientation) is a smooth section of A3T*M, ie a smooth 3-form ¢ such
that for each © € M there is an oriented isomorphism (T, M, ¢) = (R7, ¢p).

It follows from Proposition that Af’rT*M is an open subset of A3T*M; in particular,
any small perturbation of a Go—structure ¢ is again a Go—structure.

Remark 2.30. The existence of Gao—structures on a manifold is a topological question. Go is
simply connected by Proposition so Go — SO(7) lifts to Go — Spin(7), and any Go—
structure induces a spin structure. In fact, the converse also holds: a 7-manifold M admits
Go—structures if and only if it is orientable and spin (¢f Gray [32, Theorem 3.2]).
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The reason is that Go is the stabiliser of a non-zero element in the (unique, real, rank 8)
spin representation of Spin(7). Therefore on an oriented Riemannian 7-manifold with a spin
structure, Go—structures compatible with the metric, orientation and spin structure (in other
words, Ge-subbundles of the given Spin(7)-bundle) correspond to non-vanishing sections of
the spinor bundle. Non-vanishing sections always exist because the rank of the spinor bundle
is greater than the dimension of the base.

A Ga-structure ¢ induces a Riemannian metric g, on M, and hence also a Levi-Civita
connection V,, and a Hodge star *,. We may drop the subscripts if the Go-structure is clear
from the context. The canonical 4-form ) = % is also important.

Definition 2.31. A Ga-structure defined by a positive 3-form ¢ is torsion-free if V¢ = 0.

Remark. There is a notion of the intrinsic torsion of a G-structure on M for a general Lie
subgroup G C GL(n,R) (see eg Joyce [42, §2.6]). A Go—structure has zero intrinsic torsion in
this sense if and only if it is torsion-free according to Definition [2.31]

It follows immediately from the definition of holonomy that if (M7, g) is a Riemannian
manifold, then Hol(g) is a subgroup of G if and only if there is a torsion-free Go—structure ¢
on M such that g = g,.

Definition 2.32. A Gy-manifold is a manifold M7 equipped with a torsion-free Go—structure
¢ and the associated Riemannian metric g,. We say that (M, ¢) is a manifold with holonomy
Gy or has holonomy Gg if Hol(g,) = Ga.

Holonomy Gs is a much stronger condition on M than the existence of a Go—structure, in-
volving the metric. For example, any such metric is Ricci-flat (Salamon [65, Proposition 11.8]).
On the basis of Berger’s classification of holonomy groups one can prove the following, see Joyce
[42, p. 245].

Proposition 2.33. A compact Ga—manifold has holonomy Gg if and only if m1 (M) is finite.

Using Hodge theory and the decomposition of the exterior algebra of any Go-manifold
into irreducible Go-representations one can prove the following additional restrictions on the
topology of any compact Ge-manifold (M, ¢, g) manifold with Hol(g) = Ga.

Proposition 2.34 (|42 p. 246]). Let (M, ¢, g) be a compact Go-manifold with Hol(g) = Ga,
and p1(M) € H*(M;Z) the first Pontrjagin class. Then

(i) (eUaU[g])[M] <0 for every nonzero a € H*(M;R).
(il) (1 (M) U [@))[M] < 0. In particular p1 (M) # 0.

By considering how dy and di are obtained algebraically from V¢ one can deduce the
following characterisation of torsion-free Go—structures.

Theorem 2.35 (|65, Lemma 11.5]). A smooth positive 3-form ¢ is torsion-free if and only if
dp =0 and d,p = 0 (or equivalently di) = 0).

Remark. Given a Riemannian manifold whose holonomy is contained in the group Gg, there
may be several compatible torsion-free Go—structures. But if the holonomy is exactly Ga, then
the torsion-free Go—structure is unique.

From the discussion of Remark a Riemannian manifold has holonomy contained in Go
if and only if it admits a parallel spinor for some spin structure. Wang [73] gives an explicit
way to construct a parallel positive 3-form from a parallel spinor.
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Remark 2.36. We call a Go-structure defined by a closed positive 3-form ¢ a closed Go-
structure. Joyce [42, Thm. 11.6.1] gave sufficient conditions under which a closed Ga-structure
with small enough torsion can be perturbed to a torsion-free Go-structure within its cohomol-
ogy class.

SU(n)-structures and Calabi-Yau manifolds. Let M be a real 2n-dimensional manifold with
an SU(n)-structure. Then M is equipped with an almost complex structure I, a real non-
degenerate 2-form w equivalent to a hermitian metric g, and an (n,0)-form  of constant
norm 2",

If d2 = 0 then the complex structure is integrable, and €2 is holomorphic. In particular,
the canonical bundle of M is trivial, so ¢;(M) = 0 € H?(M;Z). If also dw = 0, then M is
a Kéhler manifold. In particular Vw = 0, so Hol(g) C U(n). The fact that 2 is holomorphic
of constant norm forces that also V{2 = 0, so actually the holonomy must reduce further to
Hol(g) € SU(n).

Definition 2.37. We call an SU(n)-structure torsion-free or a Calabi—Yau structure if VQ =
Vw = 0 with respect to the induced metric. We call M?" equipped with a torsion-free SU(n)-
structure (€2,w) and its associated metric a Calabi-Yau manifold. We say that (M?" Q, w) is
a manifold with holonomy SU(n) or has holonomy SU(n) if its holonomy is exactly SU(n).

Remark 2.38. Yau’s proof |76] of the Calabi conjecture shows that any compact Kéhler man-
ifold M with ¢;(M) = 0 € H?(M;R) admits Ricci-flat Kihler metrics. Ricci-flat Kihler
manifolds are also often referred to as Calabi—Yau manifolds, which is not quite equivalent to
our definition: the vanishing of the Ricci curvature implies that the canonical bundle is flat so
that the restricted holonomy (ie the group generated by parallel transport around contractible
closed curves in M, or equivalently the identity component of Hol(g)) is contained in SU(n),
but if M is not simply connected then there need not be any global holomorphic section.

Now let M5 be a manifold with an SU(3)-structure (g, I,w, Q). Then the product manifold
S' x M has a natural product Go-structure. The pointwise model (2.17)) shows that in terms
of the forms the Ga—structure is given by

(2.39) ¢ =df Aw+ Re,

where @ is the natural variable on S'. The induced metric is the product metric, and for any
veTlTM, % x v = Iv.

Lemma 2.40. If (M®, g,I,w,Q) is a Calabi- Yau 3-fold then the product manifold S* x M with
the above Go—structure is a Go—manifold.

Observe that S' x M is not a manifold with holonomy Gs: its holonomy equals Hol(M) C
SU(3) C Go.

Hyper-Kdahler K3 surfaces. Recall that a K8 surface is a smooth compact complex surface
(S, I) which is simply connected and whose canonical bundle is holomorphically trivial, i.e.
m1(S) = 0 and Kg ~ Og. By definition, S has a non-vanishing holomorphic 2-form Q. Siu
[66] proved that any K3 surface admits Kéhler metrics, and by Yau’s solution to the Calabi
conjecture there exists a unique Ricci-flat Kéhler metric w in every Kahler class and thus
Calabi-Yau structures (w, €2). The pointwise considerations on p. [13|show that a manifold with
holonomy SU(2) = Sp(1) has an S? of integrable complex structures. A Calabi-Yau structure
(w, ) compatible with the metric corresponds to a choice of ordered oriented orthonormal
triple I, J, K in this S?, ie complex structures satisfying the usual quaternionic relations. The
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structure, including the metric, can be recovered from the associated Kéhler forms w!, w’, w®

via
w=uw, O =w +iuk.

We call a K3 surface S with the structure (w!,w’,w’) a hyper-Kihler K3 surface.

Any two K3 surfaces are related by complex deformation. In particular, there is up to

diffeomorphism a unique K3 surface S. by(S) = 22, and we will often refer to H?(S;Z) with

its intersection form as the K3 lattice L. It is the unique even unimodular lattice of signature

(3,19), ie
(2.41) L =2Eg(—1) L 30,

where Fg denotes the unique even unimodular positive definite lattice of rank 8 and U the
standard hyperbolic lattice. We denote by O(L) the group of isometries of the K3 lattice L. A
marking of a complex K3 surface (S, 1) is an isometry L = H?(S;7Z).

3. THE TWISTED CONNECTED SUM CONSTRUCTION OF Gg-MANIFOLDS

In this section we describe the main steps of our construction of compact Go—manifolds.
Starting from suitable algebraic varieties we first construct asymptotically cylindrical Calabi-
Yau 3-folds. Given a suitably compatible pair of such manifolds we then form a “twisted
connected sum” 7-manifold by gluing. The procedure is essentially the same as used by Kovalev
[44], but as we will describe we change the algebraic starting point to use semi-Fano 3-folds
rather than Fano 3-folds. The issue of how to satisfy the compatibility condition between the
ACyl Calabi-Yau manifolds is discussed in detail in Throughout this section all homology
and cohomology groups are over Z unless explicitly stated otherwise.

Asymptotically cylindrical Calabi—Yau 3-folds. We begin with a review of the definition
of asymptotically cylindrical Calabi-Yau 3-folds and an analytic existence result; the latter
reduces the analytic problem of finding asymptotically cylindrical Calabi-Yau 3-folds to a
problem purely in complex projective geometry.

Definition 3.1. Let (5%, Is, gs,ws, Qs) be a hyper-Kéhler K3 surface. We call the complex
3-fold Vo := RT x S! x S endowed with the RT-translation invariant Calabi-Yau structure
Iy = Ic + Ig,

Joo = dt? + d¥? + gg,

Weo 1= dt A d¥ + wg,

Qoo := (dY — idt) N Qg,

(where ¢t and ¥ denote the standard variables on R and S!) a Calabi- Yau cylinder. The phase

in the expression for Qs is unimportant but has been chosen to put (3.11]) in a convenient
form.

Definition 3.3. Let (V,g,I,w,) be a complete Calabi-Yau 3-fold. We say that V is an
asymptotically cylindrical (or ACyl for short) Calabi-Yau 3-fold if there exist (i) a compact set
K C V, (ii) a Calabi-Yau cylinder V, and (iii) a diffecomorphism n : Voo — V\K such that
for all k > 0, for some A > 0 and as t — oo,

(3.2)

N*w — wee = dp, for some g such that |V¥p| = O(e™)
n*Q — Qoo = ds, for some ¢ such that [V¥¢| = O(e™ M)
where V and |-| are defined using the metric goo on V. We will refer to Vo, = R xS x S as the

asymptotic end of V and to the hyper-Kéhler K3 surface (S, I, gs,ws, 2s) as the asymptotic
K3 surface of V.
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Remark. Our definition asks that n*w be cohomologous to ws, on the asymptotic end of V.
However, as long as |[n*w — weo| — 0, this is automatic. The main point of the definition is
thus to impose the existence of specific ¢ and ¢ with the stated rate of decay.

Since the complex structures on both Rt xS x S and V are determined by the corresponding
complex volume forms, similar estimates automatically hold for |V*(n*I — I)|. The same is
true for the metrics.

Remark. We could consider a more general definition of an ACyl Calabi-Yau 3-fold in which the
cross-section of the asymptotic cylinder is not a priori assumed to split as a product S! x S.
Such ACyl Calabi-Yau 3-folds do exist, but we are not yet able to use them to construct
compact Ga-manifolds. See [37] for further discussion of this and other related issues.

Our examples of ACyl Calabi-Yau 3-folds arise by application of the following ACyl ver-
sion of the Calabi-Yau theorem sharpening an earlier result of Tiau-Yau [70, Thm 5.2]. The
statement is taken from |18, Theorem 2.6]. For details of the proof see [37].

Theorem 3.4. Let Z be a closed Kihler 3-fold with a morphism f : Z — P, with a reduced
smooth K3 fibre S that is an anticanonical divisor, and let V = Z\ S. If Qg is a non-vanishing
holomorphic 2-form on S, ws a Ricci-flat Kdhler metric satisfying the normalisation condition
(2.14D), and [wg] € HY'(S) is the restriction of a Kdihler class on Z, then there is an ACyl
Calabi- Yau structure (w, Q) on V whose asymptotic limit on Rt xS xS is the product structure

B2).

Remark. Arguments similar to Lemma below show that the hypotheses of Theorem
imply Hi(Z) finite and H*°(Z) = 0, so Z must be projective.

In the statement above we use the fact that the fibration structure of Z implies that V :=
Z\ S has an obvious topological end RT x S x S. We call (Z, S) a building block if it satisfies
some additional topological conditions. These assumptions will simplify the calculation of the
topological invariants of V' in §4]

Definition 3.5. A building block is a nonsingular algebraic 3-fold Z together with a projective
morphism f: Z — P! satisfying the following assumptions:
(i) the anticanonical class — Kz € H?(Z) is primitive.
(ii) S = f*(oc0) is a nonsingular K3 surface and S ~ —K.
Identify H?(S) with the K3 lattice L (ie choose a marking for ), and let N denote the
image of H?(Z) — H?(9).
(iii) The inclusion N < L is primitive, that is, L/N is torsion-free.
(iv) The group H3(Z)—and thus also H*(Z)—is torsion-free.
Lemma 3.6. If Z is a building block then
(i) m(Z) = (0). In particular, H*(Z) and H.(Z) are torsion-free.
(i) H*°(Z) =0, so N C Pic S.
Proof. (i) is [18, Lemma 5.2]. For (ii), Serre duality implies H*%(Z) = H'(Kz)*, which vanishes
by the long exact sequence of 0 — Ky — Oz — Og — 0 together with the fact that
HY(Oz) = HYY(Z) =0. O

Remark. N C L inherits the structure of a lattice from the K3 lattice L. Because of [3.6{(ii)
we call N the polarising lattice of the building block Z. The lattice N plays a key role in this
paper as we explain shortly.
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Further topological properties of building blocks are recalled in Section[d] For now it suffices
to remark that V' = Z\ S is always simply-connected, so that any ACyl Calabi-Yau metric on
V' has holonomy exactly SU(3). Most of the building blocks we use in this paper arise from
semi-Fano 3-folds, as we discuss below in Proposition We say such ACyl Calabi-Yau
3-folds are of semi-Fano type; see Definition [3.16] for a precise definition.

Examples of ACyl Calabi-Yau 3-folds have been constructed previously by similar methods,
using building blocks obtained from genuine Fanos by Kovalev [44] or from K3s with non-
symplectic involution by Kovalev-Lee [45] (see Remark . We will call these ACyl Calabi-
Yau 3-folds of Fano type and non-symplectic type respectively. While there are 105 deformation
families of smooth Fano 3-folds and 75 deformation classes of K3 surfaces with non-symplectic
involution, deformation families of semi-Fano 3-folds are much more plentiful and therefore so
are ACyl Calabi-Yau 3-folds of semi-Fano type.

The gluing procedure. We can now outline Kovalev’s construction of compact Ga-manifolds
by combining a pair of compatible asymptotically cylindrical Calabi-Yau 3-folds. We call this
the twisted connected sum construction of compact Go-manifolds and refer to the resulting
Go-manifolds as twisted connected sums. We emphasise at the outset that finding compatible
pairs of asymptotically cylindrical Calabi-Yau 3-folds is perhaps the most involved part of the
whole construction.

Let V4 be two asymptotically cylindrical Calabi-Yau 3-folds with structures (g4, I+, wy, Q).
Then as in the asymptotic end of V4 is of the form Voo + = RT X S! x S4 where Sy is
the asymptotic hyper-Kahler K3 surface of V.. Using maps 7+ as in Definition to identify
the ends Vo + with Rt x S' x Sy, on each end we can write

W+ = Woo,+ + do+,
Q4 = Qoo+ + dot.

Let p = p(s) : R — [0, 1] denote a smooth function satisfying p(s) = 0 for s <0 and p(s) =1
for s > 1. For fixed T' > 0, consider the same manifolds V3 endowed with forms wr 4, Q7 4+
obtained by the following perturbation on the ends:

(3.7a) wrt =wt — d(p(t =T + 1)o+),
(37b) QT,i = Qi — d(p(t -1+ 1)§:|:).

Both forms are closed and in the interval ¢ € [T' — 1,T] they interpolate between the ACyl
SU(3)-structure (w+,+) on V4 and the product SU(3)-structure (woo +,200,4) on the ends
Voo, +- The C* norms of wr+ — w4+ and Qp 4 — Q4 are O(e 1),

Now consider the product (asymptotically cylindrical) 7-manifolds My = S! x Vi.. We let
6 denote the standard variable on the new S! factor, reserving the notation ¥ for the copy of
S! contained in the ends of Vi. We endow S' x Vi with the 3-forms (¢f (2.39))

o1+ =di ANwr+ +ReQp 4.

For T large the forms ¢7 4 are small perturbations of the Go-structures on S! x V4 defined
by the original Calabi-Yau structures on Vi as in , so they are again Go—structures.

To form the twisted connected sum of M, and M_ we require a certain compatibility
condition of the pair of asymptotic K3 surfaces S+ of V4. The asymptotic limit of Vi defines
a Calabi-Yau structure (w4, €+) on Sy and a preferred complex structure I on Sy. However,
recall from p that S4 admits an S? of complex structures, and that setting

(38) Wt = Wi, Oy = wi + 7:("):Ii:<7
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defines a hyper-Kihler structure (wl,w],wf). These are Kithler forms with respect to complex
structures I, J1 and K4 respectively; the special status of I is reflected by the ordering. The
compatibility condition we need for our pair of ACyl Calabi-Yau 3-folds Vi is the existence of
the following special type of map between their asymptotic hyper-Kéhler K3 surfaces.

Definition 3.9. Consider two hyper-Kéhler K3 surfaces Sy. A map r: Sy — S_ is a hyper-
Kahler rotation if v*g_ = g, v*I_ = J; and v*J_ = I; the hyper-Kahler relationship IJ = K

then implies that *K_ = — K. Equivalently, *w! = wi, rw! = wfr and r*wk = —wf.

As soon as we are given a pair of ACyl Calabi-Yau 3-folds Vi for which we can establish
the existence of a hyper-Kahler rotation r between the asymptotic hyper-Kéhler K3 surfaces
S+ then we can glue the two 7-manifolds My = S! x V4 together by their ends, as follows. On
the region defined by t € (1,7 + 1) consider the diffeomorphism

F:S'x Vot @SSP xR xS' xSy — SExRT xSt x S_ =S x Vo -,
0,t, 9, 2) — (3, T+1-1t, 0, r(x)).

Notice that by (3.7) we are working on regions where (7 +,wr +) are the standard product
structures (3.2)). Thus, using (3.8)), the Go—structures on these regions can be written

T+ = di N woo + + Re Qoo +
=dOAdt AdY+dO AW+ dI Aw] 4 dt AW

(3.10)

(3.11)

The compatibility condition for r given in implies immediately that F*or _ = o1 . Now
truncate each S! x Vi at t = T'+1 to form a pair of compact manifolds My (T) with boundaries
S! xS x S4. Using F we can glue these manifolds together at the boundary to form a ‘twisted
connected sum’ M, = M, (T) Ur M_(T). This is a smooth compact 7-manifold (independent
of T up to diffeomorphism but depending on the choice of the hyper-Kéhler rotation r), which
admits a closed Go-structure 7, defined by setting its restriction to M4 (T') to equal @7 4.
With respect to the metric of ¢r;, M, contains an approximately cylindrical neck of length
~ 2T'. The torsion of p7, (which is measured by d*y7r according to Theorem is O(e™7).
Kovalev [44, Theorem 5.34] uses this to prove that for T' sufficiently large there are nearby
torsion-free Go—structures (one could also apply more general results of Joyce, see Remark
2.30).

Theorem 3.12. Let (Vi,wi,Qy) be two asymptotically cylindrical Calabi-Yau 3-folds whose
asymptotic ends are of the form RT x St x S4 for a pair of hyper-Kihler K3 surfaces S+,
and suppose there exists a hyper-Kdhler rotation v : Sy — S_. Define closed Go—structures
o1r on the twisted connected sum M, as above. For sufficiently large T there is a torsion-free
perturbation of o1 within its cohomology class.

Whenever the Vi in the theorem have holonomy SU(3), [37, Proposition 2.15] implies that
their fundamental groups are finite and generated by the S! factors in the cylindrical ends.
The Van Kampen theorem implies m(M;) = 71(Vy) x m1(V_) is finite, so the holonomy of
the metric defined by the torsion-free Go—structure on M, is exactly Go by Proposition [2.33
Any ACyl Calabi-Yau 3-fold V of semi-Fano or Fano type is simply connected and therefore
twisted connected sums using them are also simply connected. The 74 deformation families of
ACyl Calabi-Yau 3-folds of non-symplectic type are also simply connected [45, Lem 4.2].

ACyl Calabi-Yau 3-folds from semi-Fano 3-folds. It remains to explain how we can
construct ACyl Calabi-Yau 3-folds suited to the twisted connected sum construction from
semi-Fano 3-folds. To this end we now recall from |18, §4] the definition and a few of the
basic properties of semi-Fano 3-folds; we refer the reader to [18] for proofs of the facts recalled
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here and for a much more comprehensive treatment of semi-Fano 3-folds, including relevant
algebro-geometric background.

A semi-Fano 3-fold is a particular type of weak Fano 3-fold, a generalisation of a Fano 3-fold
in which the positivity of — Ky is replaced with a sufficiently strong notion of semi-positivity.

Definition 3.13. A weak Fano 3-fold is a nonsingular projective complex 3-fold Y such that
the anticanonical sheaf —Ky is a nef and big line bundle, ie —Ky - C > 0 for any compact
algebraic curve C C Y and (—Ky)3 > 0. For any weak Fano 3-fold Y the integer (—Ky )3 is
an even integer which we write 29 — 2; (—Ky )3 = 2g — 2 is called the anticanonical degree of
Y and g the genus of Y.

The index of a weak Fano 3-fold Y is the integer r = dive¢i(Y), ie the greatest divisor of
c1(Y) € HX(Y).

From the classification of Fano 3-folds we know that there are exactly 105 deformation
families of smooth Fano 3-folds. For weak Fano 3-folds we still know that there are only
finitely many deformation families. However, there are many more deformation families of
weak Fano 3-folds as explained in [18] and a classification of all weak Fano 3-folds looks a long
way off.

If Y is a weak Fano 3-fold then for n sufficiently large the linear system |—n Ky | is basepoint-
free. It follows that

R(Y,-Ky) = @p>oH(YV; —nKy)
is a finitely generated ring called the anticanonical ring of Y. We call the birational morphism
¢: Y — X = Proj R(Y,—Ky) attached to |-Ky| the anticanonical morphism of Y and X
the anticanonical model of Y. X is a singular Fano 3-fold with mild (at worst Gorenstein
canonical) singularities and ¢: Y — X is a crepant resolution of X, ie ¢*Kx = Ky

Conversely, if Y is a projective crepant resolution ¢: Y — X of a Fano 3-fold X with
Gorenstein canonical singularities then Y is a weak Fano 3-fold whose anticanonical model
is X. In other words, one way to exhibit weak Fano 3-folds is to find projective crepant
resolutions of Gorenstein canonical Fano 3-folds. For instance a sufficiently general quartic
X C P* that contains a projective plane II is a suitable singular Fano 3-fold; X has exactly
9 singular points, all ordinary nodes contained in II and admits a projective crepant (in fact
small) resolution ¢: Y — X, obtained by blowing up the plane II: YV is a weak Fano 3-fold
which we use later in the paper—see Example [7.3

A key fact about any smooth weak Fano 3-fold Y is that a general anticanonical divisor
S € |- Ky is a nonsingular K3 surface. From now on we make the following extra assumption
about all the weak Fano 3-folds we will use in this paper.

Assumption: the linear system |— Ky | contains two nonsingular members Sy, So, intersecting
transversally.

The few weak Fano 3-folds for which this assumption is not satisfied are classified: see [18, §4]
and references therein for further details.

Under the assumption above a generic pencil in |- Ky | has a base locus which is a smooth
curve (of genus g = ¢g(Y)). Hence from Y we can construct a smooth projective 3-fold Z fibred
over P! by (generically) smooth anticanonical K3 fibres by blowing up the base locus of a
generic pencil |Sp, Seo| C |-Ky|: see |18, Proposition 4.24]. Therefore by Theorem [3.4] we can
construct ACyl Calabi-Yau structures on V := Z\ S.

However, for the purposes of this paper it is convenient to restrict to ACyl Calabi-Yau
structures obtained from a subclass of weak Fano 3-folds which we call semi-Fano 3-folds.
There is still a large number of deformation families of semi-Fano 3-folds.
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Definition 3.14. Let Y be a weak Fano 3-fold and ¢: Y — X its anticanonical morphism. If
@ is semi-small, we call Y a semi-Fano 3-fold, ie the anticanonical morphism ¢: Y — X can
contract divisors to curves, or curves to points, but not divisors to points.

From any semi-Fano 3-fold Y satisfying our assumption above we can obtain a building block.

Proposition 3.15 ([18, Props. 4.24 & 5.7]). Let Y be a semi-Fano 3-fold with H3(Y') torsion-
free, |So, Seo| C |—Ky| a generic pencil with (smooth) base locus C, S € |Sp, Sac| generic,
and Z the blow-up of Y at C. Then S is a smooth K38 surface, its proper transform in Z is
isomorphic to S, and (Z,S) is a building block in the sense of Definition . Furthermore

(i) the image N of H*(Z) — H?(S) equals that of H*(Y) — H?(S);

(ii) Ampy C Ampy, where Ampy and Amp, denote the images in Ng C HY(S) of the

Kahler cones of Y and Z;
(iii) H2(Y) — H*(S) is injective (and K = 0 in ([&.1)).

Definition 3.16. We will refer to a building block (Z, S) arising from Proposition as a
building block of semi-Fano type. By Theorem [3.4 we can obtain ACyl Calabi-Yau structures
(w,Q2)on V:=2Z\ S and we call (V,w,2) an ACyl Calabi-Yau 3-fold of semi-Fano type.

Remark 3.17. The significance of |3.15(i1)|is that Theorem |3.4] ensures that exactly the classes
in Amp, can be represented by the asymptotic limit of an ACyl Calabi-Yau Kahler form w
on V. Note that Ampy and Amp, are typically proper subcones of the Kahler cone of S, even
when Y is Fano (¢f Remark . We need to pay attention to this in the matching argument
in

Sometimes one can get different building blocks from the same semi-Fano by blowing up base
loci of non-generic anticanonical pencils (¢f Examples , . In this case extra work
is required both to check that the topological conditions of a building block are satisfied, and
to apply the matching arguments from To avoid ambiguity, the term semi-Fano type will
always refer to blow-ups of generic pencils as in Proposition and we will warn explicitly
in the few cases where we use non-generic pencils.

Remark. We do not know any example of a semi-Fano 3-fold Y with torsion in H3(Y’), but
cannot in general prove H3(Y) is torsion-free: see [18, §5] for further remarks in this direction.
This assumption is used to prove that H?3(Z) is torsion-free as required in Definition (iv).
Note that this condition is only used in order to simplify the calculation of the full integral
cohomology. Dropping it would not affect the more crucial matching arguments, but in the
absence of known examples with torsion in H3(Z) we do not concern ourselves with this
generality.

If Z is obtained—in the manner of Proposition 3.I5—from a weak Fano Y which is not
semi-Fano then the natural map H?(Y) — H?(S) cannot be injective, since the class of any
contracted divisor lies in the kernel. It is also not clear that the map has to have primitive
image; in particular Z might not be a building block in the sense of Definition because
property (iii) could fail.

By varying the choice of semi-Fano 3-fold Y within its deformation type ), the choice
of generic pencil Sy, Seo| C |—Ky| and the choice of a generic S € |Sp, Soo| We can obtain
families of ACyl Calabi-Yau structures on the same smooth 6-manifold V. Varying the ACyl
Calabi-Yau structure on V this way allows us to obtain different asymptotic hyper-Kéahler K3
surfaces S.

This observation is crucial when we come to construct pairs of compatible ACyl Calabi-Yau
3-folds. Given a fized pair of ACyl Calabi-Yau 3-folds Vi in general it will not be possible
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to construct any hyper-Kahler rotation r between the asymptotic K3 surfaces S.. However,
for ACyl Calabi-Yau 3-folds of semi-Fano type we will prove that in many cases it is possible
to deform the pair of ACyl Calabi-Yau structures on the 3-folds V. as above, so that within
these deformation families a compatible pair does exist. To achieve this it is important to
understand which hyper-Kéhler K3 surfaces can arise as the asymptotic K3 surface of ACyl
Calabi-Yau 3-folds of semi-Fano type.

If Y is a semi-Fano 3-fold then Proposition |3.15(i)| shows that the polarising lattice N of a
semi-Fano type block obtained from Y is isomorphic to H?(Y'). Therefore the asymptotic K3
surface S of an ACyl Calabi-Yau 3-fold of semi-Fano type obtained from any deformation of
Y has a primitive sublattice isomorphic to PicY = H2(Y) in Pic S.

So rk Pic S > b%(Y'), whereas a generic (projective) K3 surface S has rk Pic S = 1. In other
words, the larger b?(Y) is the more special the K3 surfaces that can arise as asymptotic K3
surfaces obtained from a fixed deformation type ) of semi-Fanos via Proposition [3.15| The
moduli theory of K3 surfaces whose Picard group contains a given sublattice N—so-called
lattice polarised K3 surfaces—is well-understood and was reviewed in our previous paper [18].
We will need to know that the generic lattice polarised K3 surface of a given type occurs as the
asymptotic hyper-Kéahler K3 surface of some ACyl Calabi-Yau structure obtained from a given
deformation type ) of semi-Fano 3-folds via Proposition [3.15] The proof of this fact relies on
semi-Fano 3-folds enjoying a better deformation theory than general weak Fano 3-folds: see
[18, §6]. The improved deformation theory uses the stronger cohomology vanishing theorems
available for semi-Fano 3-folds.

We will explain the above more precisely when we explain how to construct compatible pairs
of ACyl Calabi-Yau 3-folds Vi by orthogonal matching in Section [6}

Remark 3.18. Another kind of building blocks was defined by Kovalev and Lee [45] from K3
surfaces S with non-symplectic involution, ie with an involution 7 acting as —1 on H%?(S).
In Nikulin’s classification, 1 of the 75 families of non-symplectic involutions acts freely. In the
other 74 cases, resolving the singular set of (S x P')/(r,—1) by blow-up defines a simply-
connected building block Z, which we say is of non-symplectic type.

The polarising lattice of Z is the 7-invariant part N of H?(S). N characterises 7 in the
sense that a generic N-polarised K3 admits an equivalent involution. The matching arguments
we will use for families of semi-Fano blocks can therefore also be used for families of non-
symplectic blocks. The image Amp, C H'1(S) of the Kihler cone of Z is the full Kihler cone
of S [45, Prop. 4.1]. rk K (as defined in (4.1))) is twice the number of fixed components of 7,
so at least 2 [45] (4.3)].

Semi-Fano 3-folds from nodal Fano 3-folds. While our general theory will allow us to find
compatible pairs of ACyl Calabi-Yau 3-folds of semi-Fano type, most of the specific semi-Fano
3-folds we use to build concrete Go-manifolds in this paper satisfy additional properties which
we now describe.

An important special class of semi-Fano 3-folds are those for which the anticanonical mor-
phism ¢: Y — X is not just semi-small but small, ie contracts only finitely many curves. A
special case—and for this paper by far the most important case—is when X is a nodal Fano
3-fold, ie X has only finitely many singular points each (locally analytically) equivalent to the
3-fold ordinary double point. In this case any small resolution Y of X replaces each node with
a smooth rational curve P! with normal bundle O(—1) @ O(—1). Most of the semi-Fano 3-folds
Y we consider in detail in this paper will arise from projective small resolutions of nodal Fano
3-folds.
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Remark. When the semi-Fano Y arises as a projective small resolution ¢: Y — X of a nodal
Fano X then each exceptional curve C of ¢ gives rise to a compact rigid curve C in the ACyl
Calabi-Yau 3-fold V' = Z\ S constructed from Y using Proposition These compact rigid
curves in V will allow us to construct compact rigid associative 3-folds in twisted connected
sum Ga-manifolds built using V.

Whenever the anticanonical morphism ¢ of a semi-Fano 3-fold Y is small we have the
following additional features:

(i) The anticanonical model X is a Fano 3-fold with Gorenstein terminal (and therefore
isolated) singularities.

(ii) The small projective morphism ¢: Y — X can be flopped. Flopping yields other smooth
semi-Fano 3-folds Y’ with the same anticanonical model X and whose anticanonical
morphism ¢’': Y’ — X is also small.

(iii) X is smoothable by a flat deformation and hence is a degeneration of a nonsingular Fano
3-fold X;. In particular, the Picard ranks and the Fano indices of X and X; are equal.

The topologies of the smooth 3-folds Y and X; and the singular 3-fold X are closely related.
The following is explained in much greater detail in our previous paper [18]. In the current
paper we will need some of the facts below in our discussion of Ga-transitions in Section [§ but
not elsewhere in the paper.

Since X is singular in general it need not satisfy Poincaré duality. One way to define the
defect of X is as the following measure of failure of Poincaré duality on X,

(3.19) o(X) =1k Hy(X) — rk H*(X).

The existence of a projective small resolution ¢: Y — X can be shown to force the defect
o(X) to be positive. Also for any small resolution ¢: Y — X we have
(3.20) V(Y) =b*(X) + o(X) = b*(Xy) + o(X).

In particular, if we start from a smooth Fano X;, degenerate to the singular Fano X and
then resolve to obtain the smooth semi-Fano 3-fold Y then necessarily b?(Y) > b?(X;). For
instance, if Y is a small resolution of a generic quartic containing a plane II then one can
show that o(X) = 1, b*(X;) = b*(X) = 1 and hence bv?>(Y) = 2. Therefore the asymptotic K3
surfaces in ACyl Calabi-Yau 3-folds of semi-Fano type Y are more special than those in ACyl
Calabi-Yau 3-folds of Fano type X;. One can interpret this as saying that finding an ACyl
Calabi-Yau 3-fold compatible with an ACyl Calabi-Yau 3-fold of semi-Fano type Y should be
harder than finding one compatible with an ACyl Calabi-Yau 3-fold of Fano type X;.

If X is a nodal 3-fold with e nodes and defect o one can show that the third Betti numbers
b3 of Y, X and X, are related as follows

(3.21) V(X)=0(Xy)+o—e,  V(Y)=0b(Xy) — 2e+ 20.

Since one always has o < e the second equation shows that b3(Y) < b3(Xy).

To summarise, in passing from the smooth Fano X; to the smooth semi-Fano Y b? must
increase whereas b3 typically decreases. We will discuss the significance of these facts for
Go-manifolds arising as twisted connected sums of ACyl Calabi-Yau 3-folds of semi-Fano type
in Section &

4. TOPOLOGY OF THE Go-MANIFOLDS

In this section, we collect some tools to compute topological invariants of Ge—manifolds that
are obtained by gluing asymptotically cylindrical Calabi-Yaus. All homology and cohomology
groups in this section are over Z unless explicitly stated otherwise.
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Cohomology of the building blocks. Here we recall notation and some computations of
cohomology groups from [18, §5]. First recall the definition of a building block from We
denoted there by N the image of H?(Z) — H?(S) = L. We regard N as a lattice with the
quadratic form inherited from L. In examples, N is almost never unimodular, so the natural
inclusion N < N* is not an isomorphism. We write

T=N'={leL|<l,n>=0 VneN}.

(T stands for “transcendental”; in examples, N and T are the Picard and transcendental lat-
tices of a lattice polarized K3 surface.) Using N primitive and L unimodular we find L/T ~ N*.

Let V = Z\ S, and write H = H?(V). Since the normal bundle of S in Z is trivial, there
is an inclusion S < V well-defined up to homotopy. We let

(4.1) p: H — L the natural restriction map, and K = ker(p).
It follows from (ii) of the following lemma that the image of p equals N.

Lemma 4.2. Let f: Z — P! be a building block. Then:
(i) m1(V) = (0) and H'(V) = (0);
(ii) the class [S] € H%(Z) fits in a split evact sequence

0) =2 5% 122y 5 H2(v) = (0),

hence H*(Z) ~ Z[S] ® H?(V'), and the restriction homomorphism H?*(Z) — L factors
through p: H*(V) = H — L;
(iii) there is a split exact sequence
(0) = H*(Z) = H*(V) = T — (0),
hence H3(V) ~ H3(Z) & T;
(iv) there is a split exact sequence
(0) = N* = HY(Z) = H*(V) — (0),
hence HY(Z) ~ H*(V) @& N*;
(v) H>(V) = (0).
Corollary 4.3. Let f: Z — P! be a building block. Since the normal bundle of S in Z is
trivial, we get a natural inclusion of S x St C V. Denote by a® € H°(S), al € HL(S') the
standard generators. The natural restriction homomorphisms:
B H™(V) — H™(S x S') = a’H™(S) @ a' H™7(S)
are computed as follows:
(i) B =0;
(i) p%: H2( ) — H%(S x St) = a°H%(S) is the homomorphism p: H — L;
(iii) B3: H3(V) — H3(S x S) = al H?(9) is the composition H3(V) - T C L;
(iv) the natural surjective restriction homomorphism H*(Z) — H*(S) = Z factors through
pr: HY(V) — HY(S x S') = a’H4(S) = Z, and there is a split evact sequence:

(0) = K* — HY(V) 25 HA(S) = (0).

Lemma[£.2)and Corollary [£.3] are closely related to the long exact sequences for cohomology
of Z relative to S and V relative to its boundary S! x S, respectively.

(4.4) HY (V) — HYZ) — H*(S) — HEY(V)
(4.5) HE,(V) = HY V) S HE(S < 8) 2 HES (V)
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In particular note that H, cpt(V) — H*(Z). Also prt(V) = N*®K*, where the term N* = L/T
is the image of H3(S! x S) under 0. Its image in H*(Z) is precisely the N* appearing in

Cohomology of the 7-manifolds. We are interested in smooth 7-manifolds M constructed
as follows. Start with two building blocks (Z4,S+), (Z-,5-) and a hyper-Kéhler rotation
T: Sy — S_. Let S(S¢) = S+ x SL C V4 denote the unit normal bundles of Sy in ZL. We
glue My = Vo x S! with M_ = V_ x S}F identifying the ends via the diffeomorphism of
S(S4+) x SL = S} x T? with S(S-) x St = S_ x T? that identifies S} with S_ by the hyper-
Kihler rotation T and exchanges the two factors of T? (see ) For the purposes of this
section r is fixed and, using this identification, we let S denote S; = S_.

We now compute the cohomology groups of M in terms of the cohomology groups of Z.,
the restrictions p: H+ — L, their kernels K1 and their images Ny C L, which are prim-
itive sublattices by assumption. Our main tool is the Mayer-Vietoris exact sequence for the
decomposition M = My U M_ along the common intersection W = S x S x S!:

(4.6) H™ (M) ®H™ N (M_) — H™ (W) S ™M) 5 H™(M)oH™(M_) 5 H™(W)
We write 4™ =" @~ H™(My) & H™(M_) — H™(W).

Lemma shows that H™ (M), thus Im(p™), is torsion-free. Sequence thus yields

isomorphisms

(4.7) H™(M) ~ Im(p™) @ ker(p™) ~ ker(y™) @ coker(y™1).
The key task is thus to describe the homomorphisms ~™.
Lemma 4.8. Let Zy — P! be building blocks; let My and M be as above. We use the self-

explanatory notation:
H™(My)=a H™(V,) @al H™ Y (V)
H™M_-)=alH™(V_)®al H™ (V)
and
H™(W) = a%a’ H™(S) @ al a’ H™71(S) @ aSal H™71(S) @ alal H™2(S).
The homomorphisms y™: H™(My) ® H™(M_) — H™(W) that occur in the Mayer-Vietoris
sequence are computed as follows:

() HI(M,) @ H'(M_) = al HO(V,) & a} HO(V. ),
HY (W) =a%l HY(S) @ ala’ HO(S), and

At = <(1) 2) - HO (V) @ HY(V_) — H°(S) @ H°(S)

1s the natural isomorphism.
(i) H*(My)® H*(M_)=a"H, ®alH_,
H*(W) =a%" H?(S) @ alal H(S) = L& Z[S], and

72 = ("O* po_) ‘Hy ® H_ — L®Z[S].

) HA(M) © UML) = BV, 0 ab HE(V,) 0 al HE(V-) 00l HA(V),
H3(W) = al a® H? (S)@a al H%(S), and

3
S= ("t H3\V)eoH,oHV.)oH_ - Lo L;
Y <0 Dt 63 0> + + ( )
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(v) HY(M,) & HY(M_) = a® H(V,) & al HO(V,) & a0 HA(V.) & al HY(V.),
HY W) =a%" H*(S) @ alal H*(S) = HY(S)&® L, and
4_(BL 0 L0 4 3 4 3 4
=0 g 0 g ) E e RV OBV )0 HYV.) - HY(S) o L
Proof. Straightforward. O

Theorem 4.9.
(i) m (M) = (0) and H'(M) = (0);
(i) H2(M) = ker [H+ SH_ — N+ N_} , in other words, H*(M) ~ (Ny N"\N_)B K, G K_;
(i) HO(M) = Z[S] & (L/y, +x.) & (N_OT}) & (N, T )& HY(Z,) & HY(Z_) & K| & K_;
() H'(M) = H'(S)&(Ty NT)& (L)1) (L], 21 ) & HI(Z )& HY(Z )& K & K*
Proof. Since w1 (Vi) = (0), the van Kampen theorem for the decomposition M = M, U M_
along the common intersection W = S x T? immediately implies that 7 (M) = (0).
We know that 7° is surjective and 4! injective, hence Since ~! is surjective, H?(M) =
ker(7?) = ker (H, ®H_ — N_+N_). Thus, we have an exact sequence:
0K, ®K_ — H*M)— N,NN_—(0),
which is split since NyNN_ is torsion—free To Shownote first that, from the description
of 42, it is clear that
coker(v%) = Z[S] @ (L/n,+n_)-
Now ker(y3) is a direct sum of two pieces

kers =ker| (81 ps) s H*(Va) © Hy — L.
Each of these kernels is computed by a split exact sequence:
(0) = H3(Z3) ® K+ — kery — Ne NTy — (0)

and follows from (4.7). To show note first that, from the description of 43, it is clear
that

(4.10) coker(y?) = (L/ny+7) ® (L/N_41,)-
Now ker(y*) is the direct sum of two pieces

ker[(ﬁi BY) : HA V) @ HY(V.) — H4(5)} ® ker[(ﬁi 83): H3(Vy) @ HYV.) - L|.
The first of these kernels is isomorphic to H*(S) @ K’ & K*; the second is isomorphic to
(TyNT_)® H3(Zy) ® H3(Z_), and [(iv)| again follows from (&.7). O
Remark 4.11. If [a] € Hﬁpt(Vi) then al[a] € prt(Mi) can be pushed forward to a class in
H*(M). Denote this map by it : HY, (Vi) — H*(M). Then the restriction of § : H*(W) —

H*(M) to ala% H*(S) equals i+ 0 0+ : H*(S' x §) — H*(M). In the expression (4.10) for
Im §, we can identify L/n_ 1. as the image of it 0 O+.
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Torsion of the cohomology. From Theorem we can immediately identify the torsion part
of the cohomology.

Corollary 4.12.

(i) Tor H3(M) ~ Tor(L/N,+n_);

(ii) Tor H*(M) ~ Tor(L/N_41,) @ Tor(L/n,+1.)-

While it is not of central importance to our application, let us also determine the torsion
linking form on Tor H*(M). Recall that for a closed oriented manifold M of odd dimension
2n —1, the torsion linking form can be interpreted as follows: Let «, 8 be cocycles representing
torsion elements in H"(M). Then ka = dv for some (n—1)-cocycle v and k > 2. The mod k
reduction of y represents a class in H"~(M;Z/kZ), independent of the choices up to addition
of integral classes (it is a pre-image of [a] under the Bockstein map associated to 0 — Z —
Z — Z/kZ — 0). Therefore the linking form b([e], []) = £(v U B)[M] € Q/Z is well-defined.
b is symmetric if n is even, and skew-symmetric if n is odd.

Lemma 4.13. In the two summands are isotropic with respect to the torsion-linking form.

Proof. Using Remark we can describe the elements of the L/ {7, summand in H*(M)
as follows. Given an element in L, take a closed cochain o € C?(S;Z) representing it. Extend
ala to ay € C3(Vy;Z). Then day has compact support in Vy, and represents 04 [ala] €
Hélpt(V+). Further, a doy can be extended to a cochain on M. The extension Saw € C*(M; Z)
is closed, and the image of [a] in the L/y, 7 summand in H*(M) is [Sa].

Now suppose that [a] represents a torsion element of L/n_yi7,, ie k[a] € N_ + T, for
some k > 2. To compute the torsion linking of the image [Sa] € H*(M) with some other
torsion element we need to identify a prederivative of kS« that is defined on all of M. By
Lemma k[a] € N_ + T} means that there are [¢4] € H3(Vy) and [¢_] € H3(V_)
such that ala’k[a] = ala’[¢y]w + a%[_]jy. The representatives ¢ € C*(V4;Z) and
¢_ € C*(V_;Z) can be chosen so that ala’ ka = a#a9w+|w + a(lw_m/. Then we can define
Pa € C3(M;Z) by setting the restrictions to My and M_ to be a® (kay — 1) and aly_
respectively. Since ka’ day = d(a® (kay — 1)) on M, while 1_ is closed, d(Pa) = kSa.

Thus, if [o/] represents some other torsion element of L/y, 17 then the torsion linking
of their images [Sa] and [So/] in H*(M) is given by the integral of the cup product of the
mod k cocycles Pa and So’, which vanishes: Sa/ is zero on M_, while the restrictions of both
cochains to M are pull-backs from V... Hence the Tor L/n, +7 summand is isotropic. (]

In fact, one can see from the proof that the torsion linking form is given by the following
natural pairing

Tor(L/n_47,)x Tor(L/Nn,+7_) = Q/Z

([, [8]) = ([, [B]) -

We can write ke = n+t for some k > 1, n € N_, t € Ty. <t,> = —<n,> mod k is
independent of choice of n and t because § 1. N_ + T, and it is also independent of the
choices of representatives «, 3 € L. Therefore b([a], [8]) = £<t, 3> € Q/Z is well-defined.

Remark. If H3(Z) is not torsion-free, then Corollary remains true, except that 0 — K —

4
H4(V) AN H*(S) — 0, where there are natural isomorphisms K = Hom(K,Z) and Tor K =
Tor H*(Z). Theorem remains true too except that appearances of K should be replaced
by K+ (but proving that the short exact sequences used in the proof split becomes a bit more
complicated). Then Tor H*(M) contains summands Tor H*(Z1) @ Tor H3(Z). The torsion
linking form on these terms is the obvious one.
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Remark 4.14. The fact that the torsion of H*(M) always splits as a direct sum of two subgroups
isotropic under the torsion-linking form means that for manifolds of this twisted connected

sum type, the isomorphism class of the torsion-linking form is determined by the isomorphism
class of H*(M).

Gluing classes in H*(Z1). The Mayer—Vietoris theorem says that if we try to glue a pair of
classes in H*(M,) and H*(M_) having the same image in H*(W) to a class in H*(M) then
there is an ambiguity given by the image of § : H3(W) — H*(M). However, in this particular
construction there is an unambiguous way to glue a pair of classes in H*(Z,) and H*(Z_),
which will be important for describing the characteristic classes of M. Define

HY(Zy) @0 HY(Z.) = {(las][a]) € HY(Zy) © HYZ.) : [as)s = [a_ljs € HY(S)}.
Definition 4.15. We define a map
Y : HYZ,) @9 HY(Z_) — H*(M)

as follows. Recall that S = fi!(c0) for a fibration fi: Zy — P'. Let A C P! be a trivialising
neighbourhood of oo for fi, and let Uy = f1'(A) 2 A x S C Zi. (A* x S correspond to the
cylindrical ends Rt x S! x S of Vi, mapping Rt x St — A* by (¢,9) — z = e %), Let px :
Ut — S be the projection for the local trivialisation. For ([ay], [a_]) € H*(Z}) @y H*(Z_),
let [3] be their common image in H*(S). Then we may choose the cocycles ay € C*(Z4;7Z) so
that the restriction of a+ to Ux equals p% 8. The pull-backs of a4 to S! x Vi have the same

restriction to the cylindrical end, and patch to a cocycle on M. We set Y ([a], [o—]) to be the
class represented by that cocycle.

Let NZ be the image of N¢ in N = L/Tx. Recall from Lemma that Nt — H4(Z).
The image lies in the kernel of restriction to V' and hence also of restriction to S, so NI —
HY(Zy) @0 HY(Z-).

Lemma 4.16. Y : H*(Z,) ®y H*(Z_) — H*(M) maps onto the terms
HY(S) & (L/x_+1,) & (L/nys7.) & K & K* C HY(M),
in the expression for HA(M), with kernel N, & N'’.
Proof. Tt follows from ([#.4)) that 0 — H2 (Vi) — H*(Z+) — H*(S) — 0 is split exact. Hence

cpt
So is

O%ngt(vﬁ-)@ cpt(v—) _>H4(Z+) Do H4(Z—> _>H4(S) — 0.

Recall that H, épt(Vi) ~ Ni @ K%, where Nf = Imdy. The result follows from identifying N/,
as the kernel of i+ : Imd+ — Im ¢ in Remark [4.11] m and considering the commutative diagram

04+ PO—
H3(S' x S) @ H3(S' x §) = HA,(V.) @ H, HY (Vi) & HA(V.)
= i tie HY(Zy) @ H*(Z
/
4
H3(T? x ) d H4(M) ? HY(M,)® HY (M)

where the top row is the direct sum of the sequences (4.5) of relative cohomology for V,
and V_, and the bottom row is the Mayer—Vietoris sequence (4.6)). U
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Characteristic classes of twisted connected sums. We now consider how to determine
the characteristic classes of a twisted connected sum in terms of related data on the building
blocks Z1. We begin with a summary of the characteristic classes of relevance for a closed
oriented spin 7-manifold M.

Oriented characteristic classes. The characteristic classes of (the tangent bundle of) an ori-
ented 7-manifold M are the Stiefel-Whitney classes wa(M), ..., w7(M) and the first Pontrjagin
class p1(M). First we want to show that all the Stiefel-Whitney classes vanish for any oriented
spin 7-manifold and hence that the only oriented characteristic class of interest for a Go—
manifold is p; (M). We will use some standard facts about characteristic classes, which can be
found in Milnor—Stasheff [51]. First of all, for any vector bundle E — M the Stiefel-Whitney
class wi(F) € H¥(M;Z/27) can be determined from {w,i(E) : 2! < k} using the Steenrod
square operations Sq* : H*(M;Z/2Z) — H"t*(M;Z/27) 51, 8B], eg

(4.17) ws = Sql wy + wiws.

Hence all Stiefel-Whitney classes of an oriented rank 7 bundle are determined algebraically by
wy and wy. Further, Wu’s formula [51, Theorem 11.14] expresses the Stiefel-Whitney classes
of a closed n-dimensional manifold M as

(4.18) wy = Z SqF "t w;,

where the Wu class v(M) can be defined as the Poincaré dual to Sq*: H* *(M;Z/2Z) —
H™(M;7Z/27). Applying (4.18)) recursively, we find for any closed oriented manifold that
vy = w1 = 0, vy = wg, combining with (4.17)) gives v3 = 0, and

(4.19) Vg = W4 + w%

since Sq%a = a? for any a € H*(M;Z/2Z). Because Sq* vanishes on H*(M;7Z/27) for i < k,
Wu classes above the middle dimension always vanish (cf [51, page 132]), so wy = w3 for any
closed orientable 7-manifold M. If M is spin, then we = 0, and hence all other Stiefel-Whitney
classes vanish too.

Spin characteristic classes. The Stiefel-Whitney and Pontrjagin classes are all stable, ze they
are invariant under addition of trivial bundles. The stable characteristic classes of an oriented
vector bundle are pull-backs of elements of H*(BSO) under a classifying map M — BSO, where
BSO is the classifying space for the stable special orthogonal group SO = lim,_,+, SO(n). If
the vector bundle is spin then the classifying map can be lifted to BSpin, and we can pos-
sibly define further characteristic classes by considering H*(BSpin). BSO and BSpin have
isomorphic cohomology groups over Q or mod p with p an odd prime, but over Z and mod 2
there is extra subtlety that was first studied by Thomas [68]; however, for our purposes we
will only be interested in the first nonzero (integral) class in H*(BSpin) and we can give
a direct and elementary description of this class as follows. The stable spin group Spin is
2-connected, with 73(SU(2)) = 73(Spin), realised by the inclusion SU(2) < Spin(4) given by
the standard rank 2 complex representation. The homotopy long exact sequence of the fibra-
tion Spin < ESpin — BSpin, where ESpin is contractible, shows that BSpin is 3-connected
with m4(BSpin) = Z. By the Hurewicz theorem H*(BSpin) = Z, and we denote the stable
characteristic class corresponding to a choice of generator by p /5.

The following well-known lemma implies that if there is no 2-torsion in H*(M) then p, /2(M)
is determined from the Pontrjagin class p;(M). Since we are mostly concerned with the case
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when H*(M) is torsion-free, for simplicity we choose to phrase our subsequent main discussion
in terms of p; (M), addressing the refinements concerning p; /o(M) in supplementary remarks.

Lemma 4.20 (cf [68, (1.5),(1.6)], [49, Lemma 2.4]). For any spin bundle, p1 = 2p, /5 and
wq = py1/2 mod 2.

Proof. Because H*(BSpin) = H*(BSU(2)), it suffices to prove that the relations hold for
SU(2)-bundles; these are complex rank 2 bundles with ¢; = 0, so they are spin because
ws = ¢; mod 2. The generator for H4(BSU(2)) is ¢ so, fixing the sign of py /2, any SU(2)-bundle
has p1/p = —c2. On the other hand, py = —2¢ + c% [51, Corollary 15.5] and wg4 = ¢ mod 2
[51, 14B] for any complex vector bundle. O

Since as we explained above w4 = 0 for any closed spin 7-manifold we deduce the following;:

Corollary 4.21. If M is a closed spin 7-manifold then p;o(M) is even, and hence p1(M) is
divisible by 4.

Remark. For an oriented vector bundle F' — M with wz(E) = 0, py/2(F) is independent of
the choice of spin structure [49, page 4].

Remark. We used above that wi(E) = 0 if and only F is orientable, and that if also wa(E) = 0
then E is spin. Another interpretation is that w; and wsy are the successive obstructions to
trivialising F over the 1- and 2-skeleta, respectively, of the base manifold. There is a similar
obstruction-theoretic interpretation of the vanishing of p; /o which we now explain, though we
will make no subsequent use of this fact. The relation of p; /2(E) of a spin vector bundle F to
the generator of 73(Spin) means that it is the primary obstruction to stable trivialisability of E
in the sense of Steenrod [67, Definition 35.3]: that Spin is 2-connected implies that F is always
stably trivialisable over the 3-skeleton of the base manifold, and p; /Q(E) is the obstruction to
stable trivialisability over the 4-skeleton. Because Spin has 74 = 75 = mg = 0, there are no
further obstructions until degree 8, so the tangent bundle of a spin 7-manifold M is stably
trivial if and only if p /(M) = 0. The relation between obstruction classes and Pontrjagin
classes was determined by Kervaire [43].

There are no further spin characteristic classes of interest in degree below 8, not even
if we consider unstable classes of a rank 7 spin bundle, ie we consider classes obtained by
pullback from H*(BSpin(7)) and not only H*(BSpin). Since we are studying manifolds with
Ga—structures we could also consider characteristic classes defined by elements of H*(BGa),
but there are no classes of interest beyond p; /5 of the associated spin bundle. H*(BSpin(7))
and H*(BGy) are both described by Gray [32, Theorem 3.4].

Computing p1 of twisted connected sums. The restrictions p; (St x Vi) of py (M) to St x V4 do
not determine p; (M) since the Mayer-Vietoris boundary map H3(W) — H*(M) is non-trivial.
Another point of view is that the isomorphism class of a vector bundle on M is not determined
by the isomorphism classes of its restrictions to V4 and V_: it also depends on (the homotopy
class of) the isomorphism one uses to glue the bundles together on the overlap. However, it
turns out that we can determine p; (M) from p;(Z+), using the map Y from Definition

Recall that p1(Z) = —2¢2(Z) + ¢1(Z)? for any complex manifold Z. If Z is a building block
then c1(2)? =0, so p1(Z) = —2co(Z). The image of co(Z4) in H*(S) is c2(S), so in particular
(c2(Z4),e2(Z-)) € HY(Zy) @o HY(Z_), and Y (ca(Z4.), ca(Z-)) is defined.

Proposition 4.22. Let M be a twisted connected sum of the building blocks Z and Z_. Then
pr(M) = =2V (e2(Z5), ea(Z-)).
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Proof. We need to find a suitable cocycle representing p;(M). Let E7(R) be the tautological
bundle over BSO(7) = @“7(]1%00), the Grassmannian of oriented 7-planes. A classifying map
for TMisag: M — @“7(11%“’) such that there is a vector bundle isomorphism G : TM —
g*E7(R). By definition, there is a cocycle p; € C*(Gr7(R*); Z) such that p (M) = (g% p1] for
any classifying map g.

Consider Zy as the union of Vi = Z1 \ S and Uy = A x S, and define a vector bundle
Ry over Zy4 by gluing TVy and TUy as follows: on the overlap RT x S! x § = A* x S,
(t,9) = 2z = x+iy = e " map TS to T'S by the identity, and T (R xS') to TA* by % — 8%,
a% — 8%. Identifying a complex vector bundle with the (1,0)-part of its complexification, this

is the complex linear map % — z'a% — %. In contrast, TZ is formed by gluing TVy and TUL

by the derivative of (¢,9) +— z, which maps % — if% — z%. For comparison, if we glue the
trivial complex line bundle C over V4 to C over Uy by u +— 2z~ u over A* x S, then the result
is [-5], the line bundle over Z1 with divisor —S. Now

RraeC =Tz o[-5],

because both bundles are the result of gluing TVy ¢ C to TU+ & C by homotopic maps; at
(2,p) € A*x S, the difference of the gluing maps sends (v, w, u) € TS®TA®C to (v, zw, 2~ u),
and any A* — SU(2) is homotopic to a constant since SU(2) is simply-connected. Because p;
is additive and p; ([-S]) = [~S]? = 0, we find

p1(Ry) = p1(Z+) = —2c2(Z4).

Let f : S — Gro(C*®) be a classifying map for the complex vector bundle T'S, with an
isomorphism F : T'S — f*FE5(C). Identifying C @ C* = C* embeds Gry(C®) < Grs(C>),
and f*F3(C) 2 Ca® f*E5(C). Let fy: Zi — Gr3(C™) be a classifying map for Ry such that
J+juy = [ opx and the restriction of the isomorphism Fy : Ry = f1E3(C) to Uy maps the
T'S factor of Ry, = TUx to f*E2(C) by F, and the T'A factor to C by the identity map.

Let g+ : Vi — Gr3(C*®) and G4 : TVy — ¢4 E3(C) be the restriction of fy and Fy. The
gluing map in the definition of Ry has been chosen precisely to ensure that, restricted to the
cylindrical end Rt xS! x S, G4 maps T(RT xS') — C by u(%—i%) — u (and T'S — f*E5(C)
by F'). Finally, define g : M — évm(Roo) by patching the compositions

S x Vi — Vi 55 Grs(C®) — Gri(R®);

this is possible because on the neck region R x T? x S, both g, and g_ equal the composition
of f with projection to S. Further, on the neck region the restrictions G4 : T(R x T? x S) —
g*E7(R) =2 R® @ f*E4(R) are both translation-invariant, and differ by a constant rotation of
the R? factor. By picking a path from this rotation to the identity we can interpolate between
G, and G_ to define an isomorphism G : TM — ¢g*E7(R). Hence g is a classifying map for
TM, and

(M) = [g7p1] = Y ([fio1], [fZ91]) = Y (p1(Z4), p1(Z-)). a

Remark. If Ky = 0, then Corollary (iv) implies that H*(Vy) =2 H*(S) = Z, and c(V4) is
completely determined by the fact that the restriction of ca(Vi) to S is ca(S) = x(S) = 24.
Thus considering p1 (S* x Vi) = —2co(V4) instead of c2(Z+) really does lose a lot of information.

Remark 4.23. Note that ¢;(R+) = 0; indeed the gluing map in the construction matches the
non-vanishing complex 3-forms Q4 and dz A (wf + iw!) over Vi and Ux. In particular Ry is
a spin bundle, and its spin characteristic class p /o(R+) equals —ca2(R4) = —c2(Z+). Carrying
out the proof of Proposition [4.22| using classifying maps to appropriate versions of BSpin and
BSU therefore proves the more refined statement that p; /o(M) = —Y (c2(Z4), c2(Z-)).
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Remark. If we work with real coefficients then the relation py (M) = Y (p1(Z+), p1(Z-)) is more
conveniently proved using Chern—Weil theory. It is clear how to define Y as a map on de Rham
cohomology Hin(Z4) ®o Hip(Z-) — Hjn(M). For a Riemannian metric g on M, a certain
quadratic polynomial function of the curvature of g defines a differential form p;(g) € Q*(M)
representing pi (M) € Hin(M).

Let gg be a metric on S, and g+ a metric on V4 that equals dt? + d¥? + gg on the cylindrical
end. Let ¢/, be a metric on Zy that equals g+ outside a neighbourhood of S and is a product
metric on A xS, equal to |dz?|+gg near S. Then p1(g’.) = p1(|dz?|)+p1(gs) = p1(gs) on Ax S,
so the differential forms p;(g+) and p1(gl )y, are equal. Finally let g on M be a patching of

d6? + g+ on S' x V. Then py(M) = [p1(g)] = Y ([p1(g})], [p1(92)]) = Y (p1(Z4), p1(Z-)).

Smooth type of connected-sum Gs—manifolds. Many of the Ga—manifolds we construct
in this paper are 2-connected; in this case we can compute classifying topological invariants
and in many cases determine the diffeomorphism type of the underlying smooth 7-manifold.
These are the first compact manifolds with holonomy G for which the diffeomorphism type of
the underlying 7-manifold has been determined. We will see in §7] that in many cases we can
get 7-manifolds with the same invariants by taking the twisted connected sum of completely
unrelated pairs of building blocks, and can thus construct different metrics with holonomy Gg
on the same underlying smooth 7-manifold. Judicious choices of pairs of building blocks allow
us to vary the number of compact associative 3-folds we can exhibit in different Go-holonomy
metrics on the same smooth 7-manifold.

Let us first review the classification theory of smooth 2-connected 7-manifolds; we concen-
trate on the simplest case, namely where the cohomology is torsion-free. Lemma [4.29| gives
sufficient conditions on a twisted connected sum manifold M to ensure that M is 2-connected
with torsion-free cohomology, and therefore the classification theory discussed below applies
to M.

Almost-diffeomorphism classification of smooth closed 2-connected 7-manifolds. Two smooth
manifolds M, N are almost-diffeomorphic if there is a homeomorphism M — N that is smooth
away from a finite set of points; this is equivalent to M being diffeomorphic to N#X for
some homotopy sphere 3. Recall that by the h-cobordism theorem, any homotopy sphere
in dimension n > 4 is an exotic sphere, ie a smooth manifold homeomorphic to S™; under
connected sums the homotopy spheres form a finite abelian group denoted ©,. The group
©7 of exotic 7-spheres is Z/28Z. It turns out that the classification of smooth 2-connected
7-manifolds is the same up to homeomorphism as up to almost-diffeomorphism; in particular
there are at most 28 smooth structures on any 2-connected topological 7-manifold.

Let M be a smooth connected closed 7-manifold that is 2-connected, ie m1 (M) and ma(M)
are trivial. Then Hi(M) = Hy(M) = 0 by the Hurewicz theorem, so H'(M) = H*(M) =0
by universal coefficients and H®(M) = H®(M) = 0 by Poincaré duality. So apart from
H°(M) = H"(M) = Z the only non-vanishing cohomology groups are H3(M ), which is torsion-
free, and H*(M), whose free part is isomorphic to H3(M). If H*(M) is torsion-free then all
the information about the cohomology of M reduces to the integer b3(M) = b*(M).

Another invariant of M is the first Pontrjagin class py (M) € H*(M). If H*(M) is torsion-
free then the position of py (M) in H*(M) up to isomorphism is determined by the greatest
divisor divp;(M) € N; recall from Corollary that this always divisible by 4. For our
purposes, the following special case of the classification results of Wilkens |74, Theorem 3] will
suffice.

Theorem 4.24. Smooth closed 2-connected 7-manifolds M with H*(M) torsion-free are clas-
sified up to almost-diffeomorphism by the isomorphism class of the pair (H*(M),p1(M)), or
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equivalently by the non-negative integers b*(M) and divpi(M). Moreover, any pair of non-
negative integers of the form (k,4m) is realised as k = b*(M) and 4m = div p1 (M) for some
smooth closed 2-connected T-manifold M.

By Novikov [60] rational Pontrjagin classes are natural under homeomorphisms. In the ab-
sence of torsion in H*, so are the integral classes, ie p; (M) = f*p1(NN) for any homeomorphism
f: M — N. Since the classifying almost-diffeomorphism invariants are also invariant under
homeomorphism, it follows that the classification up to homeomorphism is the same.

Remark 4.25. When H*(M) has torsion, the invariants in Theorem need to be amended.
Instead of p1 (M), one should use the spin characteristic class py o(M) € H*(M). The torsion-
linking form b : TH*(M) x TH*(M) — Q/Z (defined following [4.12)) is another obvious
invariant; Wilkens showed that the isomorphism class of the triple (H*(M), b, p1/2(M)) classi-
fies M up to almost-diffeomorphism when H*(M) has no 2-torsion. Crowley [19, Theorem B]
showed that when H*(M) has 2-torsion one obtains classifying invariants by replacing b with
one of 2 possible “families of quadratic refinements”. (All triples of invariants are realised
subject only to the constraint that p; /(M) is divisible by 2.)

Remark 4.26. [19, Theorem 6.11] can be paraphrased as stating that smooth closed 2-connected
7-manifolds are classified up to homotopy equivalence by the mod 24 reduction of the invariants
in the almost-diffeomorphism classification. When H*(M) has no 2-torsion this is the tensor
product of the triple (H*(M),b,p;/2(M)) with Z/247. In the case when H*(M) is torsion-
free, this means that M is classified up to homotopy equivalence by the pair b*(M) and
div p1 (M) mod 48.

Concrete realisations of 2-connected smooth 7-manifolds. We can give concrete descriptions of
many 2-connected smooth 7-manifolds using S3-bundles over S* and connected sums thereof.
The trivial bundle S? x S* gives a 2-connected 7-manifold with torsion-free cohomology; clearly,
it has H3(M) = H*(M) = 7Z and vanishing first Pontrjagin class p;(M) (since S? x S* is
parallelisable). The k-fold connected sum k(S? x S*) gives a 2-connected 7-manifold with
H3(M) = H*(M) = Z* with p;(M) = 0 (since connected sums of stably parallelisable mani-
folds are stably parallelisable, and Pontrjagin classes are stable).

Via the usual ‘clutching’ construction for bundles over a sphere, equivalence classes of linear
S3-bundles over S* are in one-to-one correspondence with 73(SO(4)) = Z @ Z. Convenient
generators for m3(SO(4)) are given by

plu)v =wvu™t, o(u)v = uv;

here we have identified S* with the unit quaternions and composition denotes quaternionic
multiplication. Identifying the pair of integers (m,n) with the element mp + no € w3(SO(4))
hence determines a real rank 4 vector bundle &, , over S* and its corresponding 3-sphere
bundle My, ,, :== S(&mn) — S*, with projection map .

By the homotopy long exact sequence of a fibration, any S?>-bundle over S* is 2-connected.
Together with the fact that H*(M,, ) = Z/nZ (using the Gysin sequence and that the Euler
number of the bundle is e(&,, ) = n) this determines all the homology groups of the bundle.
For the S*-bundles M,, ¢ with Euler number 0 we have (cf Crowley and Escher [20, Fact 3.1])

H3(Mpo) =2 HY(My,0) = 7*HY(SY) =2 Z; p1(Mp ) = 4mry € Z;

where kg := 7*14 € 7*H(S?) is the generator of H*(M,, ) = Z and 14 denotes a generator of
H4(S*) =2 7.
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Remark 4.27. The connected sum MPE := M, o # (k—1)(S® x S*) is a 2-connected smooth 7-
manifold with torsion-free cohomology, b%(MF) = b*(MF) = k and div py (MF) = 4m; taking
a further connected sum with any exotic 7-sphere ¥ € ©7 = Z /287 yields another 2-connected
7-manifold with the same invariants which may or may not be (oriented) diffeomorphic to Mk .

Almost-diffeomorphism to diffeomorphism classification. In general, finding the number of (ori-
ented) diffeomorphism classes in the almost diffeomorphism class of a 2-connected 7-manifold
M 1is equivalent to identifying the inertia subgroup

I(M) C ©7 := {X € O7| M#X is oriented-diffeomorphic to M}.

Theorem 4.28 ([75, Theorem 1]). Let M be a closed 2-connected 7-manifold. If H*(M) has
no 2- or 7-torsion and d is the greatest divisor of p1(M), then the inertia subgroup I1(M) C O7
consists of the elements of ©7 divisible by d/8. (If p1(M) is a torsion element then we interpret
d to be 0, and I(M) is trivial.)

So, for example, if ged(pi(M),8-28) divides 8 then I(M) = O7 and any manifold almost-
diffeomorphic to M is actually diffeomorphic to M. If there is torsion in H*(M) then one
can still say that I(M) C (d,/4)O7 where d is the greatest divisor of p; (M) modulo torsion
[75, Corollary to Proposition 5], but the precise value of I(M) may depend on the torsion
linking form [21].

If M has holonomy Gs then, by Proposition [2.34(ii), p1 (M) is never a torsion class even if
H*(M) has torsion.

Application to twisted connected sums. We now consider compact Go—manifolds M constructed
as a twisted connected sum from a pair of building blocks Z,,Z_ from the point-of-view of
their diffeomorphism and almost-diffeomorphism type. To begin with we deduce from our
results on the cohomology of twisted connected sum manifolds a simple sufficient condition
for M to be 2-connected and for H*(M) to be torsion-free. Combined with our calculation of
p1(M) we can then apply the classification Theorem

Lemma 4.29 (2-connected twisted connected sums with torsion-free H*).
(i) If K+ =0 (ie H*(Vy) — H*(S) is injective; recall (4.1)) ), NyNN_ = 0 and the inclusion
N1 + N_ C L is primitive then M is 2-connected.
(i) If Ny L N_, then H*(M) is torsion-free.

Proof.
(i) We know from Theorem that (M) = 0. Theorem [4.9(ii)| implies that H?(M) = 0
and Corollary that H3(M) is torsion-free. So mo(M) = Ho(M) = 0.

A 12((i1);

(ii) Follows from O

The twisted connected sum construction relies on being able to find pairs of suitably com-
patible ACyl Calabi-Yau 3-folds Vi = Z1 \ S+. We will often refer to finding such compatible
pairs as solving the matching problem. We will see (¢f Proposition that the easiest way
to find solutions to the matching problem involves
e using building blocks of semi-Fano type which automatically (Proposition have K = 0;
e applying results of Nikulin [58] to embed the orthogonal direct sum N, L N_ primitively

in the K3 lattice L (“primitive perpendicular gluing”).

This will allow us to obtain a large class of examples of compact Ge—manifolds that are 2-
connected and have H*(M) torsion-free. When K+ = 0 and N, 1 N_, Theorem implies
that

V(M) =b" (M) =b3(Zy) + b*(Z_) + 23.
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So by Theorem to understand the almost-diffeomorphism type of such M it remains only
to determine the divisibility of pj(M).

Remark. If M is 2-connected but H*(M) has torsion then we could still apply the almost-
diffeomorphism classification theory of Wilkens and Crowley as in Remark Recall from
Remark [£.14] that the isomorphism class of the torsion-linking form of a twisted connected sum
Ga-manifold is determined by the isomorphism class of H(M). Hence for 2-connected twisted
connected sums the isomorphism class of the pair (H*(M),py(M)) is sufficient to determine
the almost-diffeomorphism class, except possibly when H*(M) has 2-torsion.

Remark 4.30. Of all the Go—manifolds constructed by Joyce’s orbifold desingularisation meth-
ods [41,42] only one example has b?> = 0; in particular, none of the other Joyce Go-manifolds
are 2-connected. Since the diffeomorphism classification of general simply-connected smooth
7-manifolds is still unsolved, the determination of the diffeomorphism type of Joyce’s Go—
manifolds remains a challenge. The example with b = 0 is found in [42, Thm 12.5.7], and has
b3 = 215. It is in fact topologically a twisted connected sum of blocks of the type described in
the following remark.

Remark 4.31. The non-symplectic type blocks described in Remark always have rk K > 2
in (1.1). Hence by Theorem [4.9(ii) any twisted connected sum Go-manifold M constructed
using at least one such building block has b?(M) > 2; in particular, the diffeomorphism clas-
sification of such twisted connected sum Go—manifolds also remains open. The non-trivial K
of these blocks arises from resolving singularities by blow-ups; in some cases it is possible to
desingularise by smoothing instead to obtain blocks with K = (0). While the details are beyond
the present scope, Joyce’s example with b2 = 0 can be seen to be recovered topologically by
using such blocks from K3s with non-symplectic involution with fixed lattice U(2), ie double
covers of P! x P! branched over a smooth curve of bidegree (4,4).

Let N% be the image of Ny in N = L/Ty C H*(Z) as before. From Proposition and
Lemma we immediately deduce

Corollary 4.32. Let M be a twisted connected sum of the building blocks Z and Z_. Then
divp1 (M) = 2ged(ca(Z4) mod N, ¢o(Z-) mod N,).

In particular any common divisor of 2co(Z4.) and 2¢o(Z_) also divides p1 (M), and if Ny L N_
then
divp1 (M) = 2ged(ca(Zy), ca(Z-)).

Here the ‘greatest common divisor’ of ca(Z4) and co(Z_) should simply be interpreted as
the greatest integer by which both are divisible in the respective Z-modules H*(Z.) (and
H*(Z+) mod NZ%).

For the building blocks used in this paper, we already computed the greatest divisors of
c2(Z) in 18], see Table [2| In examples of twisted connected sums where N4 and N_ are not
perpendicular (so that N/ are non-trivial), we need more detailed information about c3(Z).
When N/ is primitive, corresponding to H*(M) being torsion-free, [18, Lemma 5.18] can be
applied to give the information we need for building blocks constructed from semi-Fanos using
Proposition (In general, it is a little easier to compute div p;(M) modulo the torsion
in H4(M).)

Lemma 4.33. divp; (M) € {4,8,12,16, 24,48} for any twisted connected-sum Go—manifold M.

Proof. Since M is spin, p1 (M) is divisible by 4 according to Corollary (we can also deduce
this from Corollary and c2(Z) being even for any building block Z |18, Lemma 5.10]). On
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the other hand, M contains a K3 surface S with trivial normal bundle, so the image of p; (M)
in H4(S) =2 Z is p1(S) = —2c2(9) = —2x(5) = —48. O

Remark. The examples in Table [3| show that the restrictions in Lemma [4.33| are the only
constraints on the possible greatest divisors of p; of twisted connected sum Go—manifolds.

Remark. Together with Remark the lemma above implies that a pair of 2-connected
twisted connected sum Go-manifolds with torsion-free H* are almost-diffeomorphic if and
only if they are homotopy equivalent.

Corollary 4.34. For a 2-connected twisted connected sum Go-manifold M with H*(M)
torsion-free either

(i) The inertia group I(M) = ©7 and hence the almost diffeomorphism class of M consists
of a single diffeomorphism class; this holds when div p; (M) € {4,8,12,24}; or
(ii) The inertia group I(M) consists of all even elements in ©7 =~ 7Z/287Z and hence the
almost diffeomorphism class of M contains exactly two diffeomorphism classes; this holds
when divp; (M) € {16,48}.
In particular, knowing only b*(M) determines the diffeomorphism type of M up to 8 possibil-
1ties.
Proof. Follows immediately from Theorem [4.28 and Lemma [£.33 O

Remark 4.35. Eells and Kuiper [29] defined a Z/28Z valued invariant for (in particular) closed
simply-connected spin 7-manifolds M with b*(M) = 0 (ie H*(M) finite). This invariant clas-
sifies the elements of ©7, and can be used to detect the connected sum action of ©7 and thus
distinguish between the diffeomorphism types in an almost-diffeomorphism class. This invari-
ant can be generalised to the case when b*(M) > 0, in such a way that it distinguishes between
all smooth structures on M when M is 2-connected, but is more complicated to define and
compute when p; (M) is not a torsion class [21].

5. CONSTRUCTION OF ASSOCIATIVE SUBMANIFOLDS

Let (M, g) be a Riemannian manifold. A k-form o on M is a calibration if doo = 0 and, for
all z € M and every oriented k-plane 7 in T;; M, we have c, < vol;. An oriented submanifold
i A M is calibrated if, for all z € A, 7, := i.(T;A) attains the equality: o, = voln,.
The fundamental property of any calibrated submanifold is that it minimises volume in its
homology class |36, Thm. I1.4.2].

It follows from Lemma that, on any Go-manifold (M, ), the (parallel) 3-form ¢ is a
calibration. The corresponding calibrated 3-dimensional submanifolds are known as associative.

In this section we explain that if the ACyl Calabi-Yau 3-folds Vi used in the twisted
connected-sum construction of Go—manifolds M described in §3| contain appropriate compact
calibrated submanifolds, then these will give rise to associative submanifolds of M. More
precisely, if C' C Vi is a holomorphic curve, then S' x C is an associative in S! x Vi, and if
L C V4 is special Lagrangian, then {#} x L is associative. We will prove that under certain
conditions it is possible to perturb these to manifolds that are associative with respect to
the torsion-free Go—structure on M, when the neck-length parameter in the construction is
sufficiently large.

Geometry of associative submanifolds. This subsection recalls basic features of the ge-
ometry of associative submanifolds. Let A be an associative submanifold in a Ge-manifold
(M, ). Let NA denote the normal bundle of A.

Lemma 5.1. The normal bundle NA of an associative submanifold A is differentiably trivial.
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Proof. Since N A is a rank 4 real vector bundle over a 3-dimensional base it admits at least
one global nowhere-vanishing section v. Since A is 3-dimensional and orientable its tangent
bundle is differentiably trivial, i.e. it admits three global linearly independent sections e;.
Lemma [2:20] shows that the cross product on M defines an operation TA x NA — NA. Thus
v,e1 X v,e9 X v,e3 X v are global linearly independent sections of N A. (]

Let V denote the Levi-Civita connection defined by the metric ¢ on M. Recall that for
x € A the projections T,M — T,A and T, M — N,A corresponding to the orthogonal
splitting T, M = T, A & N, A define connections on the bundles TA, NA. When necessary we
will distinguish these via the notation V', V1.

The cross product TA x NA — N A gives the normal bundle a Clifford bundle structure.
Together with the connection V- this defines a natural Dirac operator I : T(NA) — T'(NA).
For v € T'(NA) we can express [Pv as follows. For any # € A let eq, ez, e3 denote a positive
orthonormal basis of T, M, and let

3
(5.2) Do(z) =) e x (Vgv).
=1

I is a first order differential operator. One can check that it is elliptic and formally self-adjoint,
1.€.

/<le,w>dvol:/<v,]ﬁw>dvol.
A A

Remark. ID is in fact a twisted Dirac operator, in the sense that NA ®g C is isomorphic as a
Clifford bundle to a twisted spinor bundle S ® E. For the relation TA = AiN A implies that
for any spin structure P on A (which exists because A is 3-dimensional and orientable) there
is a lift of the SO(4)-structure of NA to a Spin(4)-structure, so that P is associated via the
projection of Spin(4) = Spin(3) x Spin(3) to one factor. Then NA ®g C is the tensor product
of the two vector bundles associated to the spin representations of Spin(4), and one of these
is the spinor bundle S associated to P. See McLean [50, §5] and Lawson-Michelsohn [47].

The Dirac operator plays an important role in the deformation theory of associative sub-
manifolds. Given the Ga—structure ¢, we can define a global vector-valued 3-form x on M

modelled on (2.6)):
g(u, %X(v,w,z)) =¢Y(u,v,w,z) forall u,v,w,z € T, M,

where 1) = %p. Then A C M is associative if and only if the normal vector field F(A, ) =
x(T'A) € T'(NA) vanishes, where T'A is interpreted as a simple unit norm section of A3TM
over A. Recall that we can parametrise the deformations of A as follows. Let exp denote the
exponential map on M. Then all (small) deformations of A, up to reparametrisation, can be
obtained as A, = i,(A) for some v € I'(NA) close to the zero section, where i, : A — M is
defined by
io(2) = expe(v(2)).

Given v, F(A,) defines a section of NA,. In other words, if we let A/ be the vector bundle
over I'(N A) whose fibre over v is I'(INA,), then F is a section of N.

The associative deformations of A are parametrized by the zero set of F' in a small neigh-
bourhood U of the zero section in T'(NA). We say that A is isolated if F~1(0) = {0}, i.e. if
there do not exist other associative submanifolds attainable as small deformations of A.

Because F'(0) = 0, the differential DFy : I'(NA) — I'(NA) is defined naturally (without
any connection on N), and it is precisely equal to ID (see |50, §5] or [31, Theorem 2.1]). We
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call the kernel of P the infinitesimal deformation space of A, and say that A is rigid if this
space vanishes.

We could attempt to study the set F~!(0) via the Implicit Function Theorem. It is first
necessary to pass to the Banach space completions of the relevant spaces and maps, eg using
Sobolev spaces. If A is closed then the standard theory of elliptic operators shows that )
extends to a Fredholm operator. It follows that if A is rigid then it is also isolated. As ID is
formally self-adjoint it has index 0, and the obstruction space coker Ip vanishes if and only if
A is rigid. Therefore we can use the Implicit Function Theorem to prove smoothness of the
deformation space of a closed associative only when the space is in fact discrete.

Persistence of associatives. We prove that any rigid associative submanifold A will persist
under small deformations of the ambient Go—structure.

Theorem 5.3. Let A be a closed associative in a Go-manifold (M, p). If ker ) = 0 then for
any small deformation of the Go—structure, there is a unique small deformation of A which is
associative with respect to the new Go-structure.

When we apply Theorem we will often first replace M by an open neighbourhood of A
in order to avoid regions where the Go—structure has torsion. Even if the obstruction space
ker I) is non-zero, A may be “unobstructed in a family”. Infinitesimal deformations of the
Go-structure on M correspond simply to 3-forms, and so the derivative of ¢’ — F(A, ') at
¢ is a map Q3(M) — ['(NA). Let R4, : Q3(M) — ker I) denote the composition with the
projection T'(N A) — coker ) = ker ).

Theorem 5.4. Let A be a closed associative in a Go—manifold (M, p), and {¢s : s € G} an
m-dimensional family of deformations of ¢ such that Ry, : TG — ker ID is an isomorphism.
Then there is a ball B C R™, a family of perturbations Ay of A parametrised by b € B (a
smooth function A x B — M) and f : B — G, such that each Ay is associative with respect
to f(b). The same conclusion holds with G replaced by any sufficiently small deformation to a
family of Go—structures G'.

The perturbation Ay is rigid as an f(b)-associative unless b is a critical point of f. Theorem
is of course a special case of Theorem [5.4] It can be proved with less cumbersome notation.

Proof of Theorem[5.3 As above, mapping v € Ly, (N A) to the image A, = i,(A) identifies
a neighbourhood U of A in the space of L¥ 41-submanifolds of M with a neighbourhood of
the origin in L ,(NA). Choose a trivialisation of the bundle N over U, ie isomorphisms
I'(NA,) =T(NA) for each v. Let {¢; : t € (—€,€)} be a 1-parameter family of Go-structures
(containing ¢ = ¢q). Consider the map

U x (—€,¢) = Li(NA), (A" t) — F(A ).

By hypothesis, the derivative at (A, 0) is bijective on the first factor. By the Implicit Function
Theorem, a neighbourhood of (A, 0) in the pre-image of 0 is the graph of a function ¢ — A’(t),
ie for each perturbation ¢; of the Go-structure there is a unique L7 4-Derturbation A, of A
that is associative with respect to ;. Because the deformation operator I is elliptic, v is a

solution of a non-linear elliptic equation, and is smooth by elliptic regularity. O

Proof of Theorem[5.4 Let {pst: s € G,t € (—¢,¢€)} be a one-parameter family of deformations
of G (with ¢, o corresponding to the initial Go—structure ¢ on M, with respect to which A is
associative). With U as before, consider the map

U x g X (_676) — LZ(NA)v (Alv 57t) = F(A/7908,t)
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The derivative TAU x Ts,G x R — LY (N A) at (4, s0,0) equals 1) on TyU = L}, (N A), while
the composition of the derivative with the projection to coker Ip equals R A, on the Ty G factor.
Hence the derivative is an isomorphism transverse to ker )@ {0} ®R. By the Implicit Function
Theorem, a neighbourhood of (A4, sg,0) in the pre-image of 0 is a graph over B x (—¢',¢€’), for
some small ball B C ker I). For each fixed t € (—¢,€’), this defines a family of deformations

{Ap:be B} andamap f: B— G ={ps::s€g}. O

In the situation where we want to use the unobstructedness in a family, there is an obvious
family A of initial associatives, and we can perturb the whole family.

Corollary 5.5. Suppose that A is a smooth compact (possibly with boundary) m-dimensional
family of closed associatives in a Go—manifold (M, ), and that {¢s : s € G} is an m-
dimensional family of deformations of ¢ such that Ry, : TG — ker ID is surjective for each
A € A (so dimker I) = m). Then for any sufficiently small deformation of G to a family of
Go-structures G', there is a small deformation A" of A and a smooth map f : A" — G such
that each A" € A’ is associative with respect to f(A').

Proof. For each A € A, Theorem [5.4] describes how to deform a neighbourhood of A, provided
that G’ is a sufficiently small deformation of G. Because A is compact it can be covered by
finitely many such neighbourhoods. O

When A is without boundary, f : A" — G’ will definitely have some critical points, so some
elements of A’ are not rigid.

Associative submanifolds and complex curves. Let (V, 2, w) be a Calabi—Yau 3-fold, and
consider S' x V with the torsion-free Go-structure ¢ = df A w + Re ) as described in ([2.39).
Let C' be a complex curve in V. Then Lemma implies that S' x C' is an associative
submanifold. The aim of this section is to relate the properties of the associative submanifold
to those of the complex curve.

Recall that a Calabi-Yau 3-fold V' carries a global holomorphic (3, 0)-form . We will denote
its real part by « and its imaginary part by 3, i.e. Q = a+ i. We can define a cross product
on TV via the formula

(5.6) g(a xb,c) = afa,b,c),
where g is the Calabi-Yau metric of V. Of course, this coincides with the projection onto TV
of the cross product on S' x V. The fact that Q is I-linear and ¢ is Hermitian implies that the

cross-product is [-antilinear. It has the usual property that a x b is perpendicular to both a
and b. In particular, for a complex curve C' C V the cross product gives a complex linear map

(5.7) TC x NC — NC.
Moreover, because € is parallel
(5.8) V(a x b) =Vaxb+ax Vb.

Let us now review some well-known facts concerning holomorphic vector fields. Given any
complex manifold (V,I) with real tangent bundle TV, recall the isomorphism of complex
vector bundles (T'V, ) = T1OV given by

(5.9) X=X —ilX.

Recall also that any holomorphic bundle £ — V' has a natural Cauchy-Riemann operator
0 : T(E) — QY%(E) whose kernel consists of the holomorphic sections of E. A Hermitian
metric h on E defines a Chern connection V : T'(E) — QY(E): it is uniquely characterized
by the properties Vh = 0 and V%! = 9, where V%! := %(V + V) is the (0, 1)-component
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under the splitting Q! (E) = QM0(E) @ Q%(E). Because g is a Kihler metric on V, the Chern
connection on T'V coincides with the Levi-Civita connection V. Hence the Chern connection
on NC coincides with the projection V. In particular the Cauchy-Riemann operator on NC
is just the (0,1)-part of V. We can use this fact and the complex Clifford structure (5.7)) to
define an operator
P :T(NC) —T(NC)

whose kernel is exactly the space of holomorphic normal vector fields: for v € T'(NA) and
x € C pick any unit vector a € T,C' and set

Dv(z) :=ax (Vg +IV1,) 0.

Since this is unchanged if we replace a by Ia, it is in fact independent of the choice of a.
It defines a complex first-order linear elliptic operator, which we will refer to as the complex
Dirac operator on NC'. Using (5.8]) and I-antilinearity of the cross-product we find

<Pv,w> = dive(v x w) + <v, Pw>

where dive denotes the divergence operator on vector fields tangent to C', defined via an
orthonormal basis of T'C' by diveX = <V, X, e;>. Under integration, the divergence term
vanishes, so ¢ is formally self-adjoint:

/<]ch,w>dvol:/ <v, P w> dvol.
C C

Let us now return to the product Go-manifold S' x V and the associative submanifold
S! x C. We can identify the normal bundle of S' x C C S! x V with the normal bundle of
C C V; notice however that any section v will depend on both the 6 variable and the variable
on C. Choose a point (#,x) € S x V. Set ey := % and let e = a be any unit vector on T,C
so that e3 = I'a. Then becomes

Dv = % x 9+ ax (Veu)t + Ia x (Viw)t.
where ¥ denotes the derivative with respect to 6. As seen at (2.39)), % x v = Iv. Using that
V1 is I-linear and the cross product is I-antilinear we can then rewrite Pv as follows:
(5.10) Dv=1TI0+ax (V,w%—VIaIv)J‘:Iz}—i—]Dcv.

Normal holomorphic vector fields represent the infinitesimal deformations of C' as a complex
curve in V. The curve C is said to be rigid if it has no infinitesimal holomorphic deformations.
In the previous section we saw that the solutions to JJv = 0 (for the Dirac operator defined in
(5.2])) correspond to the infinitesimal (associative) deformations of an associative submanifold
of a Gy—manifold.

Lemma 5.11. For the associative submanifold S' x C' C S' x V', the kernel of ID is the pull-back
of the kernel of ID°. Thus S x C' is rigid if and only if the complex curve C' is rigid.

Proof. The facts that ) is I-antilinear and formally self-adjoint and that v — I0 is a com-
position of two skew-adjoint maps imply

<P, Iv>p2 = 0.
Therefore (5.10)) implies that ||Pv]|2, = [P 0|2, + [9]/2. O
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Associative submanifolds and special Lagrangians. Let (V,Q,w) be a Calabi—Yau 3-fold,
and consider as before S' x V' with the torsion-free Go—structure ¢ = df Aw+Re Q described in
([2-39). If L C V is a special Lagrangian 3-fold then Lemma [2.27(ii)| implies that Ly = {6} x L
is associative in S! x V for any 6 € S'. We assume that L is closed.

We want to describe the relation between the deformation theory of the associative Ly and
the special Lagrangian L. Note that since we can deform Lg simply by changing 6 € S!, it is
never rigid, and the obstruction space coker I is always non-trivial. We will therefore study
the map Q3(S! x V') — coker I§ in order to apply Theorem later.

Let us first recall the deformation theory of a closed special Lagrangian L C V [50, §3].
According to Lemma for L to be special Lagrangian is equivalent to w);, = Im Q) = 0.
The Lagrangian condition implies that we can identify the normal bundle NL with T*L by
o+ ow. We can therefore parametrise small deformations of L by small o € Q'(L).

Since w and Im Q are closed, the cohomology classes represented by their restrictions to L
are homotopy invariant, so the restrictions are exact for all deformations of L. The special
Lagrangian deformations of L are therefore parametrised by the zero set of a map

QL) — dQY(L) x dQ*(L).

The linearisation of this map at 0 (corresponding to L) is Dy : a — (da,dx«). This is
surjective, with kernel H!(L), the space of harmonic 1-forms on L. Thus the deformations of
L are always unobstructed, and form a smooth manifold near L of dimension b'(L).

Now consider the associative Ly = {0} x L. Its normal bundle N Ly in S* x V is a direct sum
of the trivial bundle spanned by % and the normal bundle NL of L in V. We can identify it
with A°T*L @ A'T*L. Then the Dirac operator I) : T'(NLy) — I'(N Ly) is interpreted as
QL) x QL) = QL) x QY(L),

(f, ) — (d*a, df + *da)
(see Gayet |31} Proposition 4.7]). The kernel consists of the harmonic forms. In particular, the
infinitesimal deformation space of Ly consists of the infinitesimal special Lagrangian deforma-
tions of L in V together with translations of §. (Note that on the second factor, ((5.12]) equals

xDp,, which is of course consistent with the fact that Ly is associative if and only if L is special
Lagrangian.)

(5.12)

Lemma 5.13. Let L C V be a closed special Lagrangian submanifold. For the associative
submanifold Ly C S' x V, the kernel of ID is the direct sum of the kernel of Dy, and the span
of %.

Now we study the map from infinitesimal deformations of the Gao—structure, parametrised by
93(81 x V'), to the obstruction space coker IP. In the identification of I with , coker Ip
corresponds to HY(L) @ H'(L). The map from Q3(S' x V) to coker I is the composition
of a point-wise map AST¥(S! x V) — A°TFL @ AT} L and the projection to the harmonic
forms. We are interested primarily in torsion-free deformations of S' x V', and (at least for V
compact/ACyl with b'(V) = 0) up to diffeomorphism and rescaling of the S' factor they are
all products.

Lemma 5.14. Let (0, 7) be an infinitesimal deformation of the SU(3)-structure (2, w), and let
¢ be a 1-parameter family of Go—structures with % =dOINT+Reo. Then %F(Lg, gpt)‘tzo €
D(NLg) = Q%L) x QY(L) corresponds to (x(Imoyr),*(7r)), and the image in coker ) =
HO(L) ® HY(L) to the de Rham projection.
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Proof. %F (Lg, ¢¢) is a linear function of %. Without loss of generality ¢, = df A w; + Re ()

where (£, w;) is a deformation of (Q,w) tangent to (o, 7). Then (2.18]) gives % =wWAT—

df A Im o, from which we can deduce the result. O

In particular, consider the case when L is a rational homology 3-sphere, ie b'(L) = 0, so
that L is rigid as a special Lagrangian. If (9, w;) is a 1-parameter family of deformations of the
Calabi-Yau structure on V and [, dhéiﬂt # 0, then the S'-family of associatives {Lg : 6 € S'}
is unobstructed with respect to the 1-parameter family ¢; = df A w; + Re (), in the sense of

Corollary

Associatives in twisted connected sums. We now put together the results of the section to
identify the data we can use to construct associatives in twisted connected-sum Go—manifolds.
As in Theorem let (Vi,wyi,Q4) be two asymptotically cylindrical Calabi-Yau 3-folds
with asymptotic ends of the form Rt x S' x Sy for a pair of hyper-Kahler K3 surfaces S4,
and r: S, — S_ a hyper-Kihler rotation. Let M, be the twisted connected sum of S! x V4,
and @, the torsion-free Go—structure with ‘neck length’ 27" defined in Theorem

Proposition 5.15. Let C' C V. be a closed rigid holomorphic curve. Then for sufficiently
large T, there is a small deformation of the image of S' x C' C St x V. in M, that is associative
with respect to ¢rr, and this associative is rigid.

Proof. By Lemma S x € ¢ S! x V. is a rigid associative.

Recall that the Go-structure g7, with small torsion defined before Theorem is exactly
the product Go-structure on the complement of {t > T'} in S' x V;, and hence near S' x C
when T is large. The C* norms of the difference between o7y and @7, are of order O(e ™),
so Theorem implies that S' x C' can be perturbed to an associative with respect to @,
for any sufficiently large T O

Constructing associatives from closed special Lagrangians L C V4 requires a little bit more
work since, as pointed out above, the associatives Ly = {#} x L C S! x Vi are never rigid. We
restrict our attention to the case when b'(L) = 0, so that L is rigid as a special Lagrangian
and the obstruction space of Ly is 1-dimensional. We can find a 1-parameter family of torsion-
free deformations of S! x V4 such that the family {Lg : § € S'} is unobstructed (in the sense
required to apply Corollary if the class of L in the homology of V. relative to its boundary
is non-zero. (In this section, all homology and cohomology refers to R coefficients.)

Lemma 5.16. Let L™ be a closed submanifold of an ACyl manifold V™ with cross-section X.
If [L] € Hy(V, X) is non-zero then there is an exponentially decaying harmonic m-form B on

V' such that fLﬂ #0.

Proof. The image of the Poincaré dual of L under H,;™ (V) — H"~™(V') is non-zero, and
represented by an exponentially decaying harmonic form a (Lockhart |48, Theorems 7.6 & 7.9)).

Take f = xa. O

Corollary 5.17. Let L C V. be a compact special Lagrangian with b'(L) = 0, such that
[L] # 0 € H3(Vy, S'xS,). Then there is a 1-parameter family of deformations oy of the
product Go—structure on S' x V., all with the same asymptotic limit as @, with respect to

which {Lg : 6 € S'} is unobstructed in the sense of Corollary .

Proof. Take 8 € Q3(V,) as in the previous lemma. There is a unique complex 3-form o on
V4 such that Imo = f and o is an infinitesimal deformation of © as an SL(3, C)-structure
(¢f Remark [2.19)). Because the map 5 +— o is SU(3)-equivariant it maps harmonic forms to
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harmonic forms. Because b'(Vy) = 0, (0,0) is an infinitesimal deformation of (Q,w) as an
SU(3)-structure.

Re o is an infinitesimal deformation of the product Ga—structure Re Q2+ df A w, and because
it is harmonic it can be integrated to a 1-parameter family of torsion-free deformations ¢; 4
[59, Proposition 6.18]. It follows from Lemma that {Lg : # € S'} is unobstructed in this
family. O

Since each ¢+ (t € [—¢, €]) has the same asymptotic limit as ¢4, the hyper-Kéhler rotation
T matches ¢; 4 and ¢_. Thus for T sufficiently large we can define a 1-parameter family of
torsion-free Go-structures {@; 7, : t € [—¢,€]}. Corollary implies

Proposition 5.18. Let L C V. be a compact special Lagrangian with b*(L) = 0, such that
[L] # 0 € H3(Vy, S'xSy). Then for T large enough there is a smooth map f : St — [—e¢, €] and
a deformation {Lj : 6 € S'} in M, such that each Ly, is associative with respect to (6),T,r-

f has at least 2 critical points, which correspond to associatives that are not rigid.

Remark 5.19. If V4 is compactifiable in the sense that Vi = Z,\ S, for a K3 divisor S with
trivial normal bundle in a compact complex manifold Z;, then H3(Zy) — H3(Zy, AxSy) =
H3(Vy, S'xS,) since H3(Sy) = 0. If Zy is in turn a blow-up of a weak Fano Y, then the
preimage of any closed homologically non-trivial L C Y not meeting the blow-up locus or S
will represent a non-trivial class in Hz(V,, S'xS.).

6. THE MATCHING PROBLEM

Recall that Theorem [3.12] allows us to form a twisted connected sum Go—manifold from any
pair of ACyl Calabi-Yau 3-folds Vi satisfying a compatibility condition on their asymptotic
hyper-Kéhler K3 surfaces Si. In [1§], we constructed large numbers of suitable ACyl Calabi-
Yau 3-folds, applying Theorem [3.4}—the ACyl version of the Calabi-Yau theorem—to building
blocks Z4+ obtained from semi-Fano 3-folds as in Proposition In fact, as we already
remarked by varying various choices made in the construction we obtain families of ACyl
Calabi-Yau structures on the same underlying smooth 6-manifold Z \ S. To complete the
construction of Go—manifolds, it remains to explain how to find compatible pairs of such ACyl
Calabi-Yau 3-folds; this will require us to exploit the freedom we have to vary the ACyl
Calabi-Yau structures on both building blocks.

We reformulate the compatibility condition in terms of existence of “matching data” between
a pair of building blocks, which are certain triples of cohomology classes in Lg = H?(S;R).
The definition of the matching data is linked to the moduli theory of algebraic K3 surfaces.
This formulation will help us prove the existence of many pairs of compatible ACyl Calabi-Yau
3-folds given some additional algebraic geometry input. We remark at the outset that the same
pair of deformation families of building blocks Z4 may be matched in different ways and hence
give rise to several different twisted connected sum Go-manifolds.

In this section we describe one convenient strategy for finding matching data which we
term “orthogonal gluing”. Given some additional input about the deformation theory of the
building blocks used to construct the ACyl Calabi-Yau 3-folds, orthogonal gluing allows us
to reduce the problem of finding compatible pairs of ACyl Calabi-Yau 3-folds Vi = Z4 \ St
almost entirely to arithmetic questions about the pair of polarising lattices N4 of the building
blocks Z.. For ACyl Calabi-Yau 3-folds of semi-Fano type the deformation theory we need
was developed in [18| §6]. In §7| we use orthogonal gluing to find many compatible pairs of
ACyl Calabi-Yau 3-folds.

At the end of §7] we also discuss so-called “handcrafted nonorthogonal gluing”. This allows
matching in situations impossible to achieve using orthogonal gluing; the price ones pays is
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that the method is much more labour-intensive as it requires more precise information about
K3 moduli spaces.

Reformulating the existence of hyper-Kahler rotations. Let us first recall the set-up
for the gluing Theorem [3.12] Vi is a pair of ACyl Calabi-Yau 3-folds with asymptotic limits
RT x S' x S4. The S+ are K3 surfaces, with preferred complex structure Iy, Kihler form
wl and holomorphic volume form Q.. Because this is a hyper-Kéhler structure, there are
further complex structures Ji and K4, with Kéhler forms wf and w¥ (Q4 = w] +iwX). The
compatibility condition for V; and V_ is that S1 are related by a hyper-Kdhler rotation as in
Definition we need an orientation-preserving isometry r: Sy — S_ such that v*(I_) = J,

and r*(J_) = I (with the isometry condition this implies v*(K_) = —K,). Equivalently,
rwl = wi, r*w! = w{r and T*wk = —wf.

We use the Torelli theorem to reduce this relation to the action on cohomology.

Lemma 6.1. Let h : H?>(S_;7Z) — H?(Sy;Z) be an isometry, extend it to H?(S_;R) —
H?(S,;R), and suppose that

B! = W]l hlw’] = W] and hwX] = W],
Then there is a hyper-Kahler rotation v : Sy — S_ such that v* = h.
Proof. Consider the complex structure J_ on S_. w! — iw® is a holomorphic 2-form with

respect to J_. Therefore h maps H>%(S_,.J_) to H*°(S,,I,), ie it is a Hodge isometry
between the complex K3 surfaces (S_,J_) and (S, ;). Moreover, the Kihler class [w’] is
mapped to the Kéahler class [wi] Therefore the strong Torelli theorem implies that there is
a holomorphic map r: (S4,I1) — (S, J_) such that r* = h. Since the holomorphic 2-forms
are uniquely determined by their de Rham cohomology classes, r*w! = w:{ and r*wX = —wf .
Further v*w’ = wi, by uniqueness of a Ricci-flat K&ahler metric in its cohomology class. Thus

T is a hyper-Kéhler rotation. O

It is useful to rephrase the previous lemma in the language of the moduli theory of K3
surfaces. Recall that a marking of a complex K3 surface (S, 1) is an isometry L = H%(S;Z).
H?9(S) c H%(S;C) can be identified with an oriented real 2-plane in H?(S;R), and its image
in Lg is the period of the marked K3 surface.

Proposition 6.2. Let (ko,ky,k_) be an orthonormal triple of positive classes in Lg. Let
(S4, I1) be complex K3 surfaces with markings h4 : L — H?(S+;7Z