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Abstract

Background: Primaquine is a key drug for malaria elimination. In addition to being the only drug active against the dormant
relapsing forms of Plasmodium vivax, primaquine is the sole effective treatment of infectious P. falciparum gametocytes, and
may interrupt transmission and help contain the spread of artemisinin resistance. However, primaquine can trigger
haemolysis in patients with a deficiency in glucose-6-phosphate dehydrogenase (G6PDd). Poor information is available
about the distribution of individuals at risk of primaquine-induced haemolysis. We present a continuous evidence-based
prevalence map of G6PDd and estimates of affected populations, together with a national index of relative haemolytic risk.

Methods and Findings: Representative community surveys of phenotypic G6PDd prevalence were identified for 1,734
spatially unique sites. These surveys formed the evidence-base for a Bayesian geostatistical model adapted to the gene’s X-
linked inheritance, which predicted a G6PDd allele frequency map across malaria endemic countries (MECs) and generated
population-weighted estimates of affected populations. Highest median prevalence (peaking at 32.5%) was predicted
across sub-Saharan Africa and the Arabian Peninsula. Although G6PDd prevalence was generally lower across central and
southeast Asia, rarely exceeding 20%, the majority of G6PDd individuals (67.5% median estimate) were from Asian countries.
We estimated a G6PDd allele frequency of 8.0% (interquartile range: 7.4–8.8) across MECs, and 5.3% (4.4–6.7) within malaria-
eliminating countries. The reliability of the map is contingent on the underlying data informing the model; population
heterogeneity can only be represented by the available surveys, and important weaknesses exist in the map across data-
sparse regions. Uncertainty metrics are used to quantify some aspects of these limitations in the map. Finally, we assembled
a database of G6PDd variant occurrences to inform a national-level index of relative G6PDd haemolytic risk. Asian countries,
where variants were most severe, had the highest relative risks from G6PDd.

Conclusions: G6PDd is widespread and spatially heterogeneous across most MECs where primaquine would be valuable for
malaria control and elimination. The maps and population estimates presented here reflect potential risk of primaquine-
associated harm. In the absence of non-toxic alternatives to primaquine, these results represent additional evidence to help
inform safe use of this valuable, yet dangerous, component of the malaria-elimination toolkit.
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Introduction

A third of malaria endemic countries (MECs, 35/99) now plan

for malaria elimination [1–3]. This strategy is very distinct from

routine malaria control, requiring not only the reduction of clinical

burden, but complete depletion of the parasite reservoir by

attacking the gametocytes responsible for transmission and killing

the silent hypnozoites that may otherwise relapse [4–8]. Prima-

quine, an 8-aminoquinoline, is the only drug available for each of

those therapeutic compartments [9,10], and is thus key to any

elimination strategy [11]. However, this drug can also be

dangerously toxic to individuals with a genetic deficiency in

glucose-6-phosphate dehydrogenase (G6PDd), usually a clinically

silent condition [12]. Tafenoquine (GSK) is a new drug in phase

IIb/III clinical trials intended to replace primaquine, but is likely

to retain haemolytic toxicity in G6PDd patients [13]. No

alternative non-toxic drugs with these unique modes of action

are currently close to clinical trials [8].

The 2010 World Health Organization (WHO) guidelines for

uncomplicated P. falciparum malaria treatment recommend a single

dose of primaquine alongside artemisinin-based combination

therapy (ACT) to prevent parasite transmission, particularly as a

component of pre-elimination or elimination programmes [14,15]

and as part of artemisinin resistance containment programmes

[16]. This gametocytocidal therapy has been shown to be effective

in low endemicity settings in combination with an ACT [17], and

in theory could significantly reduce transmission levels [18].

However, evidence for a derived community benefit is poor and a

recent Cochrane review finds little support for these WHO

treatment guidelines [19]. Transmission may be sustained by sub-

microscopic gametocyte levels [7,20], meaning that effective

blocking of community transmission may require wider drug

administration beyond symptomatic cases [4,21].

Key to sustaining progress towards malaria elimination is the

prevention of parasite reintroduction from the relapsing malarias

P. vivax and P. ovale [8]. This therapeutic target is complicated by

the absence of diagnostic testing for liver-stage parasites [22],

and recent studies suggest high prevalence of hypnozoites, even in

areas considered to have relatively low transmission intensity

[23]. Although recommended dosages vary regionally, 14-d

regimens of primaquine (either 15 or 30 mg daily adult doses)

are advised for successful hypnozoite treatment [14]. The key

impediment to attacking hypnozoite reservoirs among endemic

populations in this way is the risk of potential harm from

primaquine [24].

Primaquine can cause mild to severe haemolysis in G6PDd

patients. The mechanism of primaquine-induced haemolysis is not

fully understood. Reduced G6PD enzyme activity levels are likely

to create a redox equilibrium within red blood cells that favours

oxidised species of highly reactive primaquine metabolites. In one

hypothesis, the 5-hydroxyprimaquine metabolite would be domi-

nated by its oxidised quinoneimine species in G6PDd red blood

cells, which may then react with the haem moiety of haemoglobin

and cause its displacement to the lipid bilayer of red blood cells

[25]. The resulting acute intravascular haemolysis may be mild

and self-limiting, or very severe and threaten life [26,27]. Freely

circulating haemoglobin may cause the most severe clinical

symptoms, such as renal failure [28]. There is currently no

practical point-of-care field test for G6PDd [29], leaving most

primaquine treatment decisions blind to haemolytic risk. There is

a difficult ethical balance for weighing the benefits of transmission

reduction and relapse prevention against poorly defined haemo-

lytic risks [24].

Understanding the distribution and prevalence of this genetic

risk factor in any given area may substantially inform risk and thus

better equip policy makers and practitioners alike in designing and

implementing primaquine treatment practices. We respond here

to demands from the malaria community for a prevalence map of

this genetic condition [22,30]. Existing published maps of G6PDd

have important limitations. They either present average frequency

data summarised to national levels thereby masking sub-national

variation [31,32] and enabling mapping only for countries from

where surveys were identified, leaving gaps in the maps [33]; or

use broad categorical classes to present basic data extrapolation

[34]. None exclude potentially skewed or unrepresentative survey

samples (such as malaria patients), none consider prevalence in

females, none have a framework for assessing statistical uncer-

tainty, and none have mechanisms for incorporating G6PDd

spatial heterogeneity into population affected estimates.

In addition to the public health importance of G6PDd in the

context of malaria elimination, the clinical burden of this genetic

condition includes a range of haematological conditions, including

neonatal jaundice and acute haemolytic anaemia in adults trig-

gered by a range of foods, infections, and other drugs [26,35].

Across the Asia-Pacific region, risk of neonatal complications due

to G6PDd already justifies significant investment through inclusion

in neonatal screening programmes in Malaysia, the Philippines,

Taiwan, and Hong Kong [35].

In this study, we compile data from available sources of G6PDd

prevalence surveys, and use these as the evidence-base to inform a

Bayesian geostatistical model specifically adapted to the gene’s X-

chromosome inheritance mechanism. This model generates

spatially continuous G6PDd prevalence predictions, and allows

quantification of prediction uncertainty. The model predictions

are then matched with high-resolution population data to estimate

numbers of deficient individuals within MECs, accounting for the

predicted sub-national heterogeneity in deficiency rates. Finally,

we assemble a database of G6PDd variant occurrences and

propose here an index for how the prevalence map could be used

to stratify haemolytic risk at the national level.

Methods

This study’s methodological objectives involved the assembly of

representative community G6PDd prevalence surveys and the

development of a Bayesian geostatistical model used to derive (i)

maps of G6PDd prevalence within MECs, (ii) sex-specific

estimates of the populations affected by this deficiency, and (iii)

associated uncertainty metrics. These results were then combined

with information on the distribution of the underlying G6PDd

variants to generate an index for stratifying haemolytic risk from

G6PDd. Each of these aspects is discussed briefly here, and in

more detail in Protocols S1, S2, S3, S4, S5, S6. A schematic

overview of the methodology is given in Figure 1.

Prevalence Survey Database Assembly and Inclusion
Criteria
A literature search of online bibliographic databases was

conducted to identify published community surveys of G6PDd.

Existing databases published by Singh et al. in 1973 [36], Mourant

et al. in 1976 [37], Livingstone in 1985 [38], and Nkhoma et al. in

2009 [33] were reviewed for any further sources. Direct contact

with national screening programmes and researchers in the field

was also undertaken to identify additional unpublished data. All

identified surveys were reviewed for suitability for informing the

G6PDd prevalence mapping analysis (Protocol S1).

G6PD Deficiency Map and Population Estimates
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Inclusion criteria were applied to ensure: (i) community repre-

sentativeness: all potentially biased samples were excluded (e.g.,

any patient groups including malaria patients, ethnically selected

samples, and family-based studies); (ii) gender representativeness:

only surveys reporting sex-specific raw data were included; (iii)

spatial representativeness: only surveys that could be mapped with

relatively confined extents (#3,867 km2) were included to ensure

that sub-national variation could be represented [39,40]; (iv)

clinically significant deficiency: only phenotypic diagnoses were

considered. Because of the narrow range of primers usually used in

molecular investigations, DNA-based diagnoses were excluded as

they are susceptible to underestimating deficiency rates (Protocol

S1) [24]. This study focused on G6PDd prevalence within MECs

(corresponding to 99 countries, as defined in Protocol S1.5), with a

particular focus on countries eliminating malaria (35 countries),

but imposed no spatial restrictions to the dataset in order to make

maximal use of existing information, particularly around the edges

of the MEC limits.

The WHO uses mild and severe categorisations for G6PDd

[31], with different treatment recommendations for each in

relation to primaquine regimens [14]. Only through specific

individual level G6PD testing can these be differentiated. The

community level G6PD deficiency map presented here represents

the prevalence of all clinically significant enzyme deficiency, as

Figure 1. Schematic overview of the procedures and model outputs. Blue diamonds describe input data. Orange boxes denote data
selection methods and analytical models. Green rods indicate model outputs.
doi:10.1371/journal.pmed.1001339.g001
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would be diagnosed by the common phenotypic diagnostic tests.

Additional resolution into the severity of the deficiency is derived

from the G6PDd variant database described below.

The Model
A Bayesian geostatistical framework [41–46] was adopted to

model the global prevalence of G6PDd. This framework used the

evidence-base of surveys to generate predictions for G6PDd

frequencies across the MECs, together with quantified uncertainty

estimates for the predictions. This framework, developed for

mapping the prevalence of a range of inherited blood disorders

[40,47,48] was adapted to the X-linked inheritance mechanism of

the G6PD gene [12]. Unlike females who have two copies, males

inherit only a single copy of the G6PD gene, thus frequencies of

deficiency in males correspond to the population-level allele

frequency. Assuming populations to be at Hardy-Weinberg

equilibrium [49,50], squaring the deficiency allele frequency (q)

gives an estimate of the expected prevalence of homozygous

females (q2). Phenotypic expression of female heterozygous

(2q(12q)) deficiency ranges across a spectrum of enzyme activity

levels. Expression is variable due to irregular Lyonization rates

[51] and inconsistent cut-off points of phenotypic diagnostic

methods (Protocols S1, S2, and S5). Thus only a proportion of

heterozygotes are diagnosed as phenotypically ‘‘deficient’’ [51,52].

As no clear genotype-phenotype relationship could be identified

from the observed survey data (Protocol S5), the model was

given the flexibility to determine this relationship empirically,

directly from the input data. The deviance of expected genetic

heterozygotes from observed phenotypic deficiency cases (h) varied

between surveys; h was modelled as a spatial variable, with values

learned from the data, but not modelled as a spatially structured

variable. The deviance value represents both the proportion of

heterozygotes diagnosed as phenotypically normal, as well as

actual deviance from expected Hardy-Weinberg equilibrium due

to factors such as selection, consanguinity, migration, or small po-

pulation sizes.

The model framework is thus p(d) = q+q2+2q(12q)h; where p(d) is

the probability of an individual being phenotypically deficient, and

q is the allele frequency for deficiency. From this equation,

frequencies of hemizygotes (males, q), homozygotes (females, q2),

and all deficient females (homozygotes and phenotypically

deficient heterozygotes: q2+2a(12q)h could be estimated. The

model was fitted to the data and 1 million Markov chain Monte

Carlo (MCMC) iterations [53] were used to generate full posterior

predictive distributions (PPDs). The PPDs are summarised by the

median value of the predictions and mapped continuously at

565 km resolution. Prediction uncertainty was quantified as the

interquartile range (IQR) of the PPD. The model and its

implementation are fully described in Protocol S2.

To validate the model predictions, an independent model

iteration was implemented with a 95% subset of the dataset,

allowing comparison of the predicted frequencies with observed

frequencies from the 5% hold-out data. The hold-out data sample

was selected to preferentially include spatially isolated data points,

so as to ensure that the full prediction surface was included in the

validation. Moreover, isolated areas are harder to make predic-

tions for, and are therefore a conservative assessment of model

reliability. Further details about validation methodology and

derived statistics are given in Protocol S3.

Estimating Populations Affected
To quantify the prevalence of G6PDd across national and

regional populations, areal estimates (regional aggregates that

account for uncertainty) [47] were calculated by relating the model

predictions to high resolution population density data from the

Global Rural Urban Mapping Project (GRUMP) beta version,

adjusted to United Nations (UN) population estimates for the year

2010 [41,54]. The areal-prediction model [47] was implemented

to repeatedly sample G6PDd PPDs from selected locations,

weighted according to population density, at a 565 km resolution.

So, for each area of interest, the model generated an areal

frequency PPD adjusted to the population density distribution

across the area of interest. Multiplying the resulting aggregated

G6PDd frequencies from the areal PPDs by UN 2010 national

level population data adjusted for national-level sex ratio [55] gave

estimates of the population numbers affected by each phenotype.

To account for the stochasticity of the sampling, this process was

repeated ten times for the national estimates, and five times for

aggregated regional estimates (because of computational con-

straints) in order to calculate the Monte Carlo standard error

associated with the estimates. This process is fully described in

Protocol S4.

Stratifying National G6PDd Severity
In order to stratify the potential haemolytic risk associated with

G6PDd, a simple index was developed that incorporated both the

national prevalence of the trait and the severity of the local genetic

variants.

Predicted national prevalence was stratified into three categories

(#1%, .1–10%, and .10%). Stratifying the severity of the local

forms of G6PDd was more involved. A second online literature

review was conducted to assemble all reports of genetic and

biochemical variants, using the same search methods as for

assembling the prevalence data. All occurrences of named G6PDd

variants were abstracted into a database and mapped to the

country where they had been observed. Variants were then

grouped according to their severity: the only severity classification

widely applied to all variants is that proposed by Yoshida et al.

[56], and endorsed by the WHO [31], which classifies variants

according to their residual enzyme activity levels, their polymor-

phic/sporadic occurrence in populations, and the severity of their

clinical symptoms (Protocol S6). Limitations to this classification

system are reviewed in the Discussion. Only variants of class II

(residual enzyme activity ,10%) and class III (10%–60%) were

relevant to this study. A score based on the relative composition of

variants from these classes was assigned to each country to

represent the relative proportions of class II and III variants: a

proxy indicator of the severity of local variants. If no data were

available from a country, a conservative approach was followed

which took the highest score (most severe) from any neighbouring

country.

The prevalence and variant severity scores were then multiplied

to give a stratified measure of the relative haemolytic risk of

G6PDd in each country. A similar uncertainty index was

determined on the basis of the uncertainty in the prevalence

estimates, and the availability and heterogeneity of variant data in

each country. The variant data, risk scoring tables, and

uncertainty estimates are presented in more detail in Protocol S6.

Results

The Prevalence Survey Database
Literature searches were conducted to collate all available

reports of representative community G6PDd prevalence. A total of

17,272 G6PD abstracts were identified from online bibliographic

databases, together with 472 potential data sources found in

existing G6PDd databases [33,36–38] and unpublished reports.

Following careful review, 1,601 abstracts were considered suitable

G6PD Deficiency Map and Population Estimates
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for our study and their full texts were reviewed for data. The

Filipino Newborn Screening Reference Center (National Institutes

of Health, Philippines) also contributed their universal screening

results since 2004 to this study, adding 636 spatially unique

locations to the database.

The total number of surveys identified that met the inclusion

criteria was 1,734 globally, with 74% from MECs (n=1,289)

(Figure 2A). Surveys were unevenly distributed, some areas having

been examined in micro-mapping studies (such as Sri Lanka) and

universal screening (Philippines) while large extents of other areas

remain unstudied (e.g., extensive parts of Indonesia, Madagascar,

and central Africa). Within the MECs, 85% of surveys (n=1,101)

were from 23 Asian countries; 10% of surveys (n=132)

represented 23 African countries; data from only nine countries

in the Americas were identified, corresponding to 4% of surveys

(n=56). Male data were reported from 99% of the surveys, while

62% presented female data. Overall numbers of individuals

sampled were 2.4 million males and 2.0 million females.

The database is described in more detail in Protocols S1 and S5,

with additional discussion about the influence of diagnostic

methodology on test outcome in males and females. Female

diagnosis is known to depend on numerous factors; however, in

the absence of any standardised or established mathematical

relationships for modelling the genotype-phenotype association in

females, we decided to use the input dataset as the evidence-base,

and the mapping model was given the freedom to determine this

spatially variable relationship according to the raw data (Protocols

S1, S2, S5).

G6PDd Prevalence Predictions: Overview
The survey database formed the evidence-base for the

geostatistical model, which predicted both the spatially continuous

map of G6PDd allele frequency (Figure 2) and the estimates of

G6PDd populations (Figure 3); all model predictions are

summarised with median values [53]. Model outputs indicated

G6PDd to be widespread across malarious regions, with lowest

frequencies in the Americas and highest in tropical Africa; an

overall allele frequency of 8.0% (IQR: 7.4–8.8) was predicted

across all MECs (Table 1). High population density in Asia meant

that the highest numbers of G6PDd individuals were predicted to

be from this continent (Table S1). The database and resulting

model outputs indicated heterogeneity in G6PDd prevalence, with

considerable variation across relatively short geographical distances

in many areas (Figure 2B). All model predictions must be considered

in relation to their associated uncertainty metrics (IQR; Figure 2C,

Tables 1, S1 and S2). Model uncertainty is greatest where data

points are scarce (Figure 2A) or where available data indicates

heterogeneity (Protocol S2). Limitations to the database and the

weaknesses that these lead to in the predictions are considered in the

Discussion.

G6PDd Allele Frequency Map
Large swathes of the American MECs were predicted to have

median G6PDd frequencies #1% (40.8% land area), with G6PDd

being virtually absent from northern Mexico, Costa Rica, Peru,

Bolivia, and much of Argentina (Figure 2). Prevalence increased

towards coastal regions, peaking in Venezuela where the majority

of the continent’s predictions of .5% were located. Model

uncertainty was relatively low across most of the Americas (IQR:

,5%), with the IQR increasing to 5%–10% across the Amazon

region where data were extremely scarce, and peaking between

15%–20% across Venezuela.

At the continental level, G6PDd was most prevalent across sub-

Saharan Africa: 65.9% of the land area was predicted to have

median G6PDd prevalence $5%, and 37.5% a median preva-

lence $10%. Predictions ranged from ,1% at the continental

extremities (western Sahel, Horn of Africa, and southern Africa) to

.20% in isolated pockets of Sudan, coastal west Africa, and

around the mouth of the river Congo. These broad patterns were

interspersed with some striking sub-national variation within

countries with deficiency hotspots, including Nigeria (range: 2%

[IQR: 1–6] to 31% [22–42]), Sudan (1% [0–2] to 29% [19–41])

and Democratic Republic of Congo (DRC) (4% [1–11] to 32%

[23–41]). These areas were also associated with the highest levels

of model uncertainty—a reflection of this sub-national heteroge-

neity and also of the scarcity of input data from these areas.

Highest prediction uncertainty across the continent was found in

Sudan, Chad, and central Africa between DRC and Madagascar.

The highest median predicted prevalence of G6PDd across the

entire MEC region was 32.5% in the Eastern Province of Saudi

Arabia (specifically, around the urbanised coastal areas of Al-Qatif

and Ad-Dammam). More broadly, rates across this disparately

populated peninsula as a whole were heterogeneous, for example,

dropping to prevalence of 3% (IQR: 2–4) in the central Al-Kharj

and Riyadh area of Saudi Arabia. Further east, predicted

prevalence remained high into southern Pakistan.This region

had the highest uncertainty of the entire map (IQR exceeding

30%). No surveys were available from the south of Pakistan, and

the closest neighbouring surveys in southern Iran, Oman, and

western India reported prevalence of .20%, contrasting data

from northern Pakistan. Prediction uncertainty dropped across

central and southeast Asia, and predicted prevalence remained

largely ,10%, with three notable G6PDd prevalence hotspots in

the central and southeast Asia regions peaking to.20%: (i) among

the tribal, endogamous groups of Orissa province in east India, (ii)

a patch along the northern Lao/Thai border, and (iii) much of the

Solomon Islands archipelago. Underlying the broadly smooth

continental-level variation, some areas were predicted to have

highly heterogeneous sub-national G6PDd prevalence. Across Lao

People’s Democratic Republic (PDR), for instance, frequencies

were predicted to range from 1% (IQR: 0–2) to 23% (16–32);

predictions in Indonesia were from 0% (0–1) to 15% (10–21) in

Nusa Tenggara; in Papua New Guinea, frequencies ranged from

1% (0–2) along the southern coast to 15% (10–22) along the East

Sepik northern coast (Figure 2B–2C).

Validation Statistics
The predicted allele frequency surface was evaluated against a

hold-out subset of the data selected with spatially declustered

randomization that preferentially selected data sparse sites where

model predictions would be inherently most difficult [41]. Dif-

ferences between predicted and observed prevalence returned a

mean error of 1.45% and a mean absolute error of 4.07%. These

indicate a slight tendency of the model to overestimate prevalence,

and relatively more substantial error in the magnitude of pre-

diction precision. Full validation results are given in Protocol S3.

G6PDd Prevalence Predictions: Population Affected
Estimates
The second modelling process related the allele frequency

predictions to population distribution, generating sex-specific

aggregated estimates of G6PDd populations, weighted by popu-

lation distribution across the spatial regions of interest: national,

malaria endemic, and the subset of 35 MECs targeting malaria

elimination. These population-weighted estimates were modelled

separately from the mapping process, and used the full model

predictions, not just the summary median allele frequency map

(Figure 2B). As with the map, these areal predictions and their

G6PD Deficiency Map and Population Estimates
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Figure 2. The global distribution of G6PDd. (A) shows the global assembly of G6PDd community surveys included in the model dataset; data
points are coloured according to the reported prevalence of deficiency in males (n=1,720). Background map colour indicates the national malaria
status (malaria free/malaria endemic/malaria eliminating). (B) is the median predicted allele frequency map of G6PDd. (C) presents the associated
prediction uncertainty metrics (IQR); highest uncertainty is shown in red and indicates where predictions are least precise.
doi:10.1371/journal.pmed.1001339.g002
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Figure 3. Population-weighted areal estimates of national G6PDd prevalence predictions. (A) summarises national-level allele
frequencies, while (B) displays national-level population estimates of G6PDd males. Values are in thousands.
doi:10.1371/journal.pmed.1001339.g003

Table 1. G6PDd allele frequency and G6PDd population estimates across malaria endemic countries (n= 99) and the subset of
malaria eliminating countries (n= 35).

G6PDd Allele

Frequency and

Population Estimates Median (SE) Q25(SE) Q75(SE)

MECa Eliminatingb MECa Eliminatingb MECa Eliminatingb

Allele frequency 8.04%(0.02%) 5.30%(0.01%) 7.44%(0.02%) 4.43%(0.02%) 8.81%(0.03%) 6.68%(0.02%)

G6PDd males 220,130(669) 61,227(96) 203,729(597) 51,200(184) 241,114(847) 77,223(251)

G6PDd females
(homozygotes onlyc)

17,115(n/a) 3,100(n/a) (n/a) (n/a) (n/a) (n/a)

G6PDd females
(all females)

132,932(467) 35,205(71) 121,618(550) 28,862(96) 147,814(693) 45,608(144)

All figures are in thousands. Q25 and Q75 refer to the low and high limits of the IQR of the model predictions. Numbers in brackets represent the Monte Carlo standard
error (SE) of the estimates; presented in the same units as the associated estimate. Full explanations are given in Protocol S4.
aTotal regional male population: 2,736,515; Total regional female population: 2,644,975. Source: GRUMP-adjusted projected UN 2010 population estimates and sex-ratio
data from UN World Population Prospects 2010 Revision.
bTotal regional male population: 1,156,300; Total regional female population: 1,105,603. Source: GRUMP-adjusted projected UN 2010 population estimates and sex-ratio
data from UN World Population Prospects 2010 Revision.
cFigures derived from the allele frequency estimates so do not have specific model-derived uncertainty metrics.
n/a, not available.
doi:10.1371/journal.pmed.1001339.t001
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associated uncertainty were summarised with median and IQR

values (Tables 1 and S1).

We estimated overall G6PDd allele frequency across MECs to

be 8.0% (IQR: 7.4–8.8); using 2010 population data (Protocol S4),

this corresponded to 220 million males (IQR: 203–241) and an

estimated 133 million females (122–148), including 17 million

homozygous females (assuming Hardy-Weinberg equilibrium).

Across the subset of malaria eliminating countries (Figure 1),

prevalence was lower, at 5.3% (4.4–6.7). Population estimates for

2010 across this subset of eliminating countries were 61 million

G6PDd males (51–77) and an expected 35 million G6PDd females

(29–46), including 3 million homozygous females.

National frequency estimates ranged from 0.1% in Cape Verde

(IQR: 0.0–0.5) and the Democratic People’s Republic of Korea

(0.0–0.4) to 22.3% in the Solomon Islands (15.7–30.9), 22.5% in

the Congo (17.3–29.6) and 23.0% in Benin (17.0–30.1). Reflecting

the prevalence map, national allele frequency estimates were

generally lowest in the Americas and highest in Africa (Figure 3A).

Converting these national-level allele frequency estimates to

G6PDd population numbers (G6PDd males; Figure 3B), however,

shifts attention away from Africa towards the highly populous

Asian countries, notably China and India where 41.3% of G6PDd

males within MECs were predicted to be. Overall, the Americas

contributed only 4.5% of the MEC G6PDd male population, sub-

Saharan Africa 28.0%, and Asia an estimated 67.5%.

Index of National G6PDd Severity
Data searches for reports of G6PDd variants identified 527

occurrences of class II variants and 405 class III variants from a

total of 54 countries out of 99 MECs (Table S3). Occurrences of

these data points were used to score the severity of the overall

composition of variants in each country, with scores inferred from

neighbouring countries in instances where no data points had been

reported (Figure 4A). Once combined with a rank of G6PDd

prevalence, an overall score of the severity of risk from G6PDd

was derived for each country (Figures 4B–4C). A similar scoring

was used to determine the relative confidence in the severity

scores, shown in Figures 4D–4E. Further figures and the table of

all variant occurrences by country are given in Protocol S6 and

Table S3.

This index of risk is predicated on the current state of

knowledge of G6PDd variant occurrence and the relationship

between variants and haemolysis, as outlined in the Discussion.

From the present dataset, we see strong regional patterns in the

distribution of variants, with sub-Saharan Africa being predomi-

nantly ranked as having mildly severe variants (class III),

predominantly A2, though some class II variants were reported

from Sudan and South Africa, and Senegal and the Gambia in

west Africa (Table S3). Relatively few data were available from the

Americas, but these included a greater diversity of variants

including a minority of class II variants. In contrast, variant

reports were more heterogeneous across Asia, a majority of which

were class II (most commonly Mediterranean, then Canton and

Kaiping), though certain class III variants were also widely

reported (Mahidol, then Chinese-5 and Gaohe being most

frequently identified); the predominance of class II variants put

the classification of all Asian countries as having severe variants.

Combining these variant severity scores with the scores of

G6PDd prevalence gave an index of overall risk from G6PDd for

each MEC. Greatest haemolytic risk from G6PDd was found in

the Arabian Peninsula and across west Asia, where both

prevalence and variant severity (dominated by the class II

Mediterranean variant) were high. Across the Asian continent,

risk remained high (level 5 of 6, increasing to level 6 in the Mekong

region where prevalence was at its highest). In contrast, despite

high prevalence, the low severity of the variants reported from sub-

Saharan Africa resulted in the lowest risk categorizations from

G6PDd globally, which was a moderate risk (mostly levels 2 to 3 of

6, though increasing to level 5 in countries where class II variants

had been reported).

The uncertainty inherent in this synthesis is considerable;

however, the index indicated that according to the metrics

employed in this study, uncertainty ranked highest in many sub-

Saharan countries and most countries in the Americas (where 19

of 21 countries had uncertainty ranked 5–6 out of 6). Further data

from these regions would substantially improve reliability both of

the modelled prevalence predictions, as well as of the variant

severity categorisations, many of which had to be inferred from

neighbouring countries.

The framework proposed here can be updated and refined as

new data about variant occurrence and haemolytic risk become

available.

Discussion

G6PDd is widespread across malarious regions, where we

estimated the deficiency to have an overall allele frequency of

8.0%. We have developed here an evidence-based, geostatistically

modelled, and spatially continuous prevalence map of G6PDd,

together with uncertainty metrics and population estimates of

affected individuals. Although highest levels of G6PDd frequency

are predicted in sub-Saharan Africa, high population density

makes Asia the centre of weight of G6PD deficiency-burdened

populations. We discuss our results first in relation to existing

G6PDd maps, and then in their public health context in relation to

the coincident severity of local variants. Important limitations to

the maps and population estimates stem from weaknesses in the

underlying database of surveys. These are also discussed, in

relation to the difficulties of predicting deficiency in females, in

assessing the robustness of the model predictions, and in

overcoming the barriers to predicting the severity of primaquine-

induced haemolysis.

Comparison with Existing Maps and Population
Estimates
Previous G6PDd maps have been published by the WHO

G6PD Working Group in 1989 [31], Cavalli-Sforza et al. in 1994

[34], and more recently in 2009 by Nkhoma et al. [33]. Both the

WHO and Nkhoma et al. maps present data averages at national

levels, thus masking all sub-national variation and making direct

comparisons with our continuous prevalence map difficult.

Further, Nkhoma et al.’s map has many gaps for countries from

where no data could be found. However, all maps show broadly

similar patterns, with lowest frequencies in the Americas, highest

rates predicted across the tropical belt of sub-Saharan Africa, and

generally heterogeneous distributions across Asia ranging from

virtually absent to relatively high. Comparison of the national-

level, population-weighted allele frequency estimates generated

here with the WHO categories showed no obvious trends, with

estimates for 29% of MECs predicted higher here than by WHO,

frequencies in 36% of countries being predicted lower than those

predicted by WHO, and 35% having consistent values. Reasons

for these disparities relate both to the criteria imposed on the

survey evidence-base (with both WHO and Nkhoma et al.

including surveys that were excluded from this current study for

risk of bias or lack of spatial specificity, corresponding to 108 and

17 surveys, respectively) and the statistical methods involved

(accounting for the sample size and spatial distribution of data
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points, and relating G6PDd prevalence to spatial patterns of

population density). The new map also has the benefit of two

decades of additional surveys since the publication of the WHO

map, and more than six times the number of surveys (in spite of

the stricter inclusion criteria) than were used by Nkhoma et al.

(280 surveys versus 1,734). Globally, the WHO study estimates

2.6% of male newborns to be hemizygous for G6PDd alleles. As

our study focused on the subset of countries with highest G6PDd

prevalences (MEC versus non-MEC [31]), our MEC regional

estimate (8.0%; IQR: 7.4–8.8) cannot be directly compared to the

global WHO figure. However, the considerably higher regional

estimate predicted here is more consistent with the recent estimate

of 7.3% (95%; confidence interval: 7.0–7.6) of the global

population by Nkhoma et al. [33]. Disparity between estimates

may result from the population weighting used in this present

study, which ensures that prevalence in densely populated regions

contributes proportionally more in the regional estimate than

through simple national estimate averages. Finally, this study is the

first to model G6PDd prevalence in females. The previous studies

discussed here, selected that 10% of heterozygous females would

be diagnosed as phenotypically deficient. The flexible Bayesian

model developed for the current study, and the extensive database

of female survey data, enabled an empirical assessment of this

spatially variable threshold. The resulting estimates, however, are

subject to the same limitations as the original diagnostic tests used

(Protocol S5). Diagnosing heterozygotes, who express two popu-

lations of red blood cells—normal and deficient—is highly

sensitive to the enzyme activity level thresholds imposed, as the

deficiency can be masked by cells expressing normal activity.

The population of G6PDd cells, however, is as vulnerable to

haemolytic stress as the deficient cells of hemizygotes or female

homozygotes. This source of diagnostic uncertainty should be

considered when interpreting these predictions of deficient

females, which are based directly upon the diagnostic results.

Model Uncertainty
The evidence-based nature of the analysis leaves the model

predictions vulnerable to weaknesses in the underlying database.

While some of these limitations can be quantified, such as

prediction uncertainty in areas with very scarce data, others

cannot. The current study presents a methodological advance over

previously published maps for being the first to quantify any aspect

of prediction uncertainty. In brief, our mapping procedure

involved 500 repeated predictions being made from the optimised

Markov chain Monte Carlo (MCMC) algorithm (Protocol S2).

The median of all predicted values for each pixel is displayed in

Figure 2B, and the IQR (50% confidence interval) of the repeated

predictions was used to quantify model uncertainty (Figure 2C).

Where model uncertainty is lowest, the 500 repeated predictions

will fall within a small range, and the IQR will be correspondingly

small; less straightforward predictions are associated with larger

IQR values. In general, model uncertainty increases where fewer

data are available and sample sizes are smaller, and where

observed prevalence values are heterogeneous. This same princi-

ple applies to the population affected estimates.

Not all sources of uncertainty, however, could be accounted for

by the model, which is dependent on the input dataset to represent

the underlying G6PDd prevalence patterns. No global resource

of genetic relatedness among populations was available, thus dif-

ferences in prevalence between geographically close but geneti-

cally distant communities could only be represented in the map

through the inclusion of surveys, thus, a scarcity of data may mask

significant heterogeneity. For example, high prevalence of G6PDd

among populations such as the endogamous groups of Orissa

could not have been predicted by the model without data points

from those communities. While the final dataset provides relatively

good coverage, there are some large expanses lacking data where

additional surveys are most needed to improve confidence in our

knowledge of G6PDd prevalence, as indicated in the uncertainty

map. These include several South American countries, large parts

of central and southern Africa, and some highly populous

Indonesian islands; the careful geopositioning of all surveys in

this study allows specific gaps in the datasets to be identified that

are masked in nationally aggregated maps. However, uncertainty

in some of the data point geopositioning was also unaccounted for.

While 80% of surveys could be mapped as points (,10 km2), 20%

were less specific and mapped as polygons up to 35 km in radius of

which centroid coordinates were used in the model (Protocol S1).

The relative uncertainty introduced from this level of geoposition-

ing uncertainty was deemed acceptable relative to the level of

uncertainty, which would have been introduced by excluding

those 20% of data points altogether. Finally, uncertainty in the

prevalence estimates themselves stemming from the diagnostics is

discussed in Protocols S1 and S5. In brief, the binary expression of

normal activity versus deficiency is generally considered to be

relatively reliably detected in males by most diagnostics [26,31],

though the quality of reagents and the practical difficulties of field-

based settings for instance will produce some errors. As discussed

previously, diagnostics for heterozygous females are altogether

more complex and uncertain. The most ambiguous diagnostics for

assessing the deficiency phenotype—molecular-based methods,

due to the gene’s extensive genetic variability—were excluded

(Protocol S1).

G6PDd Applications to Malaria Treatment
G6PDd is of pertinence to malaria treatment due to the

potentially dangerous consequences of exposing G6PD deficient

individuals to the vitally important anti-malarial drug primaquine.

An endemicity map of P. vivax has recently been developed [57]

indicating where this anti-relapse drug is likely to be most needed,

with greatest demand being in countries targeting elimination

[14]. The G6PDd map presented here can contribute to the

evidence-base for weighing risk and benefit in formulating

primaquine treatment strategies that could greatly accelerate the

elimination of malaria transmission. We predict here that within

countries targeting malaria elimination, G6PDd had an allele

frequency of 5.3%, corresponding to an estimated 61 million

G6PDd males and 35 million G6PDd females, with most of those

occurring in Asia. However, there is evidence of a protective role

for G6PDd against severe P. falciparum malaria [58,59], and an

Figure 4. Index of severity risk from G6PDd. (A) shows the national score of variant severity, determined by the ratio of class II to class III variant
occurrences reported from each country; (B) maps the risk index from G6PDd, accounting for both the severity of variants (A) and the overall
prevalence of G6PDd (Figure 3A); the scoring matrix describing these scores is given in (C), specifying the different categories of risk determined by
the scores of national-level prevalence of phenotypic deficiency (rows) multiplied by severity scores of the variants present (columns). (D) represents
the uncertainty in the assembly of the risk index based on the prevalence scores (E rows) and in the assessment of variant severity (E columns). These
uncertainties relate specifically to the analysis of these data into the risk index, and do not account for the underlying uncertainty in their
interpretation in relation to haemolysis (see Discussion).
doi:10.1371/journal.pmed.1001339.g004
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effect has recently been reported against P. vivax parasitaemia as

well [60,61]. This being so, the prevalence of G6PDd in clinical

cases of malaria may be lower than among the general population,

though the precise nature of the protective effect (including which

genotypes benefit) remains controversial [62,63]. In any event,

G6PDd prevalence in the broader population, as we present,

remains a useful measure of the risks incurred with prescribed

primaquine therapy. This may be particularly true where mass

drug administration that includes primaquine is considered.

G6PDd Severity
The diagnostic tests commonly used in community surveys

determine a binary deficient/non-deficient classification; the

prevalence map presented here corresponds to this binary

classification, an indicator of whether primaquine may or may

not be tolerated. Such diagnostics, however, cannot predict clinical

severity of primaquine-induced harm, which is known to range

from clinically inconsequential to life threatening [24]. More than

186 mutations have been described to the gene [64], which encode

proteins expressing a spectrum of residual enzyme activity. In an

attempt to encapsulate a measure of that variability in deficiency

severity, we devised a simple index accounting for the relative

prevalence and severity of G6PDd variants, which is intended as a

guide to stratify broad categories of G6PDd-associated risk

between countries and regions. However, interpretation of this

analysis is constrained by major knowledge gaps. First, in relation

to the evidence-base: there were no data from almost half of MECs

(45 of 99) meaning that severity scores had to be inferred for many

of them. Further, it is likely that reporter bias and preconceptions

regarding which mutations are common, and thus worthwhile

testing for, will have a strong effect on the collated database.

Second, relating this index to primaquine-induced haemolytic risk

assumes an inverse correlation between variant enzyme activity

levels and primaquine sensitivity. Although this relationship has

been found with the three variants in which the primaquine

sensitivity phenotype has been characterised (A2, Mediterranean,

and Mahidol [24]), further research into the association between

the numerous other genetic variants and their susceptibility to

primaquine is essential to substantiate this assumption. Third, the

classification used here to distinguish ‘‘more severe’’ from ‘‘less

severe’’ variants, in other words, the enzyme classifications into

classes II and III, uses an arbitrary cut-off of 10% enzyme activity,

which is not founded on clinical evidence of significance to

haemolytic severity [31,56]. It has been suggested that the

distinction between these classes is blurred and may no longer

be useful [65]. Fourth, the mechanism of haemolytic trigger by

primaquine remains to be determined: this basic biochemical

research would offer a rational basis for all of the above, and

enable much more robust predictions of haemolytic risk using the

datasets already collated here (of G6PDd prevalence and of the

distribution of G6PDd variants).

In the absence of evidence supporting robust predictions of

relative risk of severe haemolysis, residual enzyme activity is an

easily obtained, albeit as yet not validated, surrogate. While such a

surrogate could help inform the risk and benefit for using

primaquine in any given population, in clinical practice with

patients it is the dichotomy of normal versus deficient that guides

primaquine treatment decisions. No treatment recommendations

refer to residual enzyme activity [66]. As such, the current map of

phenotypic deficiency prevalence remains the most detailed,

robust, and appropriate risk assessment of overall G6PDd-

associated harm, whether mild or severe, relevant to public health

policies of mass primaquine administration. The insight offered by

the severity index presented here corroborates the high G6PDd-

associated risk that the majority of the global population at risk of

P. vivax [57] faces.

G6PDd in African Malaria Endemic Countries
At the continental level, highest prevalence of G6PDd is

predicted across sub-Saharan Africa, where prevalence drops

below 5% only on the edges of its distribution in eastern and

southern Africa. In spite of being so common, the implications of

G6PDd-associated primaquine reactions are not currently of

major concern due to the present status of malaria control across

much of the continent. High P. falciparum endemicity [41] means

that drug policy almost exclusively targets the clinical stages.

Transmission blocking therapies in such settings have not proven

effective or sustainable [67]. Furthermore, the continent has

relatively few people at risk of P. vivax [57,68] due to the

predominance of the Duffy negativity blood group [40], which is

generally refractory to P. vivax. Thus, despite endemicity of the

other relapsing human malaria, P. ovale, primaquine for anti-

relapse is not applied in Africa [69]. However, this basis for not

applying primaquine may well disappear as malaria control

programmes reduce endemicity to sustainably low transmission

levels, thus increasing the feasibility of elimination. When low

transmission intensity is reached, policy in Africa will need to

consider the treatment and practice questions now being faced in

Asian and American MECs. Any primaquine treatment policy will

have to account for the high prevalence of G6PDd across this

continent. The G6PDd variant causing deficiency across the

African population is commonly attributed to the ‘‘mild’’ A2

mutant (Table S3) [70], and thus primaquine-associated risk of

harm is thought to be minor and self-limiting [71], reflected by the

moderate risk levels predicted across most of the continent

(Figure 4B). However, recent evidence of low primaquine dosage

triggering severe anaemia in an A– type individual (a genotype

commonly considered very mildly deficient) [72], and findings

from extensive DNA sequencing identifying a greater diversity of

G6PD mutations than previously acknowledged [70,73], calls for

caution when using primaquine in these areas of high G6PDd

prevalence, in spite of the relatively mild nature of primaquine

sensitivity of the A2 variants, as determined in otherwise healthy

adults (rather than in children with malaria).

G6PDd in Countries Targeting Malaria Elimination
Malaria eliminating countries (Figure 2) face steep challenges in

achieving their ambitions. Prominent among these many chal-

lenges include: (i) endemic P. vivax malaria, and emerging

resistance to chloroquine, previously the drug of choice for

treating acute attacks, and recently arteminisin resistance also; (ii)

high prevalence of carriers of the clinically silent and diagnostically

invisible P. vivax hypnozoite; and (iii) the predominance of

asymptomatic carriers of sexual and asexual blood stages despite

low transmission intensity. The problem of P. vivax resistance to

chloroquine is discussed elsewhere [74], but is most prevalent and

threatening in south and southeast Asia [75], where its emergence

greatly compounds the difficulty of the therapeutic problem [76].

A recent study along the Thai-Myanmar border [23] documented

very high prevalence of P. vivax parasitaemia in the 63 d following

therapy for acute P. falciparum malaria (20%–51%; correlated with

drug half-life). Those rates seem to support rational and pragmatic

use of anti-hypnozoiticidal primaquine treatment for all malaria

patients where these parasites occur together [77]. Further,

another study in the hypo-endemic Solomon Islands found that

fewer than 30% of PCR-diagnosed blood infections were detected

by expert microscopists, and only about 5% of infected individuals

were symptomatic (overall prevalence was 9% according to PCR
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diagnostics but only 2.7% with microscopy) [78]. Both of these

studies demonstrate the important parasite reservoir represented

by asymptomatic, sub-microscopic, and latent infections, and the

WHO now reconsiders its long-standing recommendation against

mass drug administration as an element of malaria control [79].

Primaquine is the only chemotherapeutic tool currently

available for attacking hypnozoites and mature gametocytes. As

explained elsewhere [24], the available data on the safety of any

regimen of primaquine may be considered almost completely

inadequate by any contemporary clinical and pharmacological

standards. Any MEC considering a strategy for attacking the silent

hypnozoite and gametocyte reservoirs would greatly benefit from

an adequate evidence-base for rational weighing of clinical risk

and benefit in their areas of operations. Such an assessment may

require evaluation of local G6PDd variants for vulnerability to

primaquine and, ideally, point-of-care G6PDd screening to

exclude those at risk of harm. Such strategies would come with

substantial financial and logistical outlays, but could be most

usefully directed to areas with highest potential benefit with

minimal risk of harm, as indicated by the many national maps of

G6PDd prevalence embedded within the global map presented

here. Additional information about the severity of local variants

would help support this decision-making process. The map in this

study, and any subsequent iterations (worthwhile if substantial

numbers of new surveys become available), provides one of the many

pieces of evidence to consider when strategizing for chemothera-

peutic policy aimed at elimination of transmission and relapse.

Future Prospects and Conclusions
There is no immediate prospect of relief from the serious

constraints to chemotherapeutics for malaria elimination. A new

drug in phase IIb/III trials in 2012, Tafenoquine, is strategized as

a successor to primaquine, but it is also likely to come with

haemolytic toxicity in G6PDd patients, and thus the same

constraints would apply [8]. The very brief dosing with

Tafenoquine, combined with its relatively long plasma half-life,

will require even greater caution in individuals affected by severe

variants; though risks will be similar for patients with mild

variants that lead to self-limiting haemolysis. Minimising treat-

ment duration of primaquine from the standard 14 d has also

been discussed as a means to promote course adherence and

reduce risk of resistance emergence [30]. In other words, the

stakes in 8-aminoquinoline therapies will increase as the

commitment to elimination rises alongside a determination to

attack the parasite stages that threaten success. Evaluation of risk

informed by the G6PDd maps and population estimates

presented here may guide appropriate investments in measures

that will minimise the harm incurred by hypnozoites and

gametocytes chemotherapeutics. For instance, an important

potential tool in minimizing harm is a point-of-care diagnostic

capable of excluding those at risk of harm caused by 8-

aminoquinoline therapies. One such rapid diagnostic test in

laboratory development showed promise in its first field

evaluation [80]. As well as directly improving individual-level

safety, such a kit may also vastly expand the available data to

refine prevalence maps like that presented here, improving its

resolution and margins of error. Areas where additional data

would be most informative are those with highest uncertainty in

the current map (Figure 3) where no, or only very few, surveys

were found. Furthermore, a single diagnostic test could contrib-

ute towards standardising diagnoses and removing the potential

variation between diagnostic kits, which is inherent within the

current database. Although diagnosis in males is generally

considered consistent with existing kits (Protocol S1), a single

test would ensure this.

The prominence of G6PDd represents a barrier to current

options for malaria elimination therapy. Nevertheless, the unique

properties of primaquine are increasingly in demand as commu-

nities target depletion of their parasite reservoirs. It is evident that

no measures are currently in place to ensure safe delivery of

primaquine within the context of G6PDd risk. The complexity and

diversity of both malaria epidemiology and G6PDd mean that no

single solution will be applicable for ensuring safe and effective

primaquine treatment. The maps and population estimates

presented here represent one component of this treatment

decision-making framework, and pave the way for further data

collection and refinement of mapping studies of G6PDd severity.

The relative urgency of this important component to determining

appropriate elimination therapy may be determined by the relative

prevalence of G6PDd and malaria endemicity in any given area

[57,81].

All maps at national and regional scales and in GIS and image

formats, population estimates, as well as the input surveys database

are freely available on the Malaria Atlas Project website (MAP;

http://www.map.ox.ac.uk/).
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Editors’ Summary

Background Malaria is a parasitic infection that is trans-
mitted to people through the bites of infected mosquitoes.
Of the four parasites that cause malaria, Plasmodium
falciparum is the most deadly and P. vivax is the commonest
and most widely distributed. Malaria parasites have a
complex life cycle. Infected mosquitoes inject ‘‘sporozoites’’
into people, a form of the parasite that replicates inside
human liver cells. After a few days, the liver cells release
‘‘merozoites,’’ which invade red blood cells where they
replicate rapidly before bursting out and infecting other red
blood cells. This increase in the parasitic burden causes
malaria’s characteristic fever and can cause organ damage
and death. Infected red blood cells also release ‘‘gameto-
cytes,’’ which infect mosquitoes when they take a blood
meal. In the mosquito, gametocytes multiply and develop
into sporozoites, thus completing the parasite’s life cycle.
Malaria can be prevented by controlling the mosquitoes that
spread the parasite and by avoiding mosquito bites by
sleeping under insecticide-treated bed nets. Treatment with
effective antimalarial drugs also decreases malaria transmis-
sion.

Why Was This Study Done? The Global Malaria Action
Plan aims to reduce malaria deaths to zero by 2015 and to
eradicate malaria in the long-term through its progressive
elimination in malaria-endemic countries (countries where
malaria is always present). Primaquine is a key drug for
malaria elimination. It is the only treatment effective against
the gametocytes that transmit malaria between people and
mosquitoes and against P. vivax ‘‘hypnozoites,’’ which
hibernate in the liver and cause malaria relapses. Unfortu-
nately, primaquine induces mild to severe destruction of red
blood cells (hemolysis) in people who have a deficiency in
the enzyme glucose-6-phosphate dehydrogenase (G6PD).
G6PD deficiency (G6PDd) is common in some ethnic groups
but the global distribution of individuals at risk of prima-
quine-induced hemolysis is unknown and there is no
practical field test for G6PDd. Consequently, it is hard to
design and implement primaquine treatment practices that
balance the benefits of malaria transmission reduction and
relapse prevention against the risk of hemolysis. Here, the
researchers use a geostatistical model to map the prevalence
(frequency in a population) of G6PDd in malaria-endemic
countries and to estimate how many people are affected in
these countries. They also develop a national index of
relative hemolytic risk.

What Did the Researchers Do and Find? The researchers
fed data from community surveys of the prevalence of
phenotypic G6PDd (reduced enzyme activity) for 1,734 sites
(including 1,289 sites in malaria-endemic countries) into a
geostatistical model originally developed to map global
malaria endemicity. The model predicted that G6PDd is
widespread across malaria-endemic regions, with the lowest
prevalences in the Americas and the highest in tropical Africa
and the Arabian Peninsula, but that most G6PDd individuals
live in Asian countries. The predicted prevalence of G6PDd
varied considerably over relatively short distances in many

areas but, averaged across malaria-endemic countries it was
8%, which corresponds to about 350 million affected
individuals; averaged across countries that are currently
planning for malaria elimination, the prevalence was 5.3%
(nearly 100 million affected individuals). Finally, the research-
ers used data on the geographical occurrence of G6PD
variants classified according to their enzyme activity levels as
mild or severe to derive an index of hemolytic risk from
G6PDd for each malaria-endemic country. The greatest risk
was in the Arabian Peninsula and west Asia where the
predicted prevalence of G6PDd and the occurrence of severe
G6PD variants were both high.

What Do These Findings Mean? These findings suggest
that G6PDd is widespread and spatially heterogeneous
across most of the malaria-endemic countries where prima-
quine would be valuable for malaria control and elimination.
The accuracy of these findings is limited, however, by the
assumptions made in the geostatistical model, by the
accuracy of the data fed into the model, and by the lack of
data for some malaria-endemic countries. Moreover, there is
considerable uncertainty associated with the proposed index
of hemolysis risk because it is based on phenotypic G6PDd
enzyme activity classifications, which is presumed, but not
widely demonstrated, to be a surrogate marker for hemo-
lysis. Nevertheless, these findings pave the way for further
data collection and for the refinement of G6PDd maps that,
in the absence of non-toxic alternatives to primaquine, will
guide the design of safe primaquine regimens for the
elimination of malaria.

Additional Information Please access these Web sites via
the online version of this summary at http://dx.doi.org/10.
1371/journal.pmed.1001339.

N Information is available from the World Health Organiza-
tion on malaria; its 2011 World Malaria Report provides
details of the current global malaria situation (some
information is available in several languages)

N The US Centers for Disease Control and Prevention provide
information on malaria (in English and Spanish), including
a selection of personal stories about malaria

N Information is available from the Roll Back Malaria
Partnership on the global control of malaria and on the
Global Malaria Action Plan

N Information on the global mapping of malaria is available
at the Malaria Atlas Project website where G6PD deficiency
prevalence maps, population estimates and the data used
in this study can also be accessed

N Information about G6PD deficiency for affected families
can be found on KidsHealth from the Nemous Children’s
Health System and the G6PD Deficiency Association
website

N MedlinePlus provides links to additional information on
malaria; the MedlinePlus Encyclopedia provides informa-
tion about G6PD deficiency (in English and Spanish)
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