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Ga-doped ZnO films grown on GaN templates by plasma-assisted
molecular-beam epitaxy

H. J. Ko,a) Y. F. Chen, S. K. Hong, H. Wenisch, and T. Yao
Institute for Materials Research, Tohoku University, Katahira, Aoba-Ku, Sendai 980-8577, Japan

D. C. Look
Semiconductor Research Center, Wright State University, Dayton, Ohio 45435

~Received 8 August 2000; accepted for publication 9 October 2000!

We have investigated the structural and optical properties of Ga-doped ZnO films grown on GaN
templates by plasma-assisted molecular-beam epitaxy. The carrier concentration in Ga-doped ZnO
films can be controlled from 1.3331018/cm3 to 1.1331020/cm3. Despite high Ga incorporation, the
linewidth of ~0002! v-rocking curves of Ga-doped ZnO films still lies in the range from 5 to 15 arc
min. Photoluminescence~PL! spectra of Ga-doped ZnO films show dominant near-bandedge
emission with negligibly weak deep-level emission, independent of carrier concentration. The PL
spectrum exhibits a new emission line at 3.358 eV, which corresponds to exciton emission bound to
a Ga donor. To avoid degradation of the PL intensity, the maximum dopability of Ga in ZnO is
determined to be around 2.631019/cm3. © 2000 American Institute of Physics.
@S0003-6951~00!02050-7#

ZnO is a II–VI compound semiconductor with a direct
band gap of 3.37 eV at room temperature. Recently, it has
attracted considerable attention because of its large exciton
binding energy of 60 meV. This large exciton binding energy
enables optically pumped excitonic lasing at room
temperature,1,2 and high-temperature stimulated emission up
to 550 K due to exciton mechanism.3 So far, high-quality
ZnO layers have been grown either pulsed laser deposition4

or plasma-assisted molecular-beam epitaxy~P–MBE!.5,6

ZnO layers can be grown in a layer-by-layer mode,5,6 which
have lead to the growth of ZnO layers with high quality
enough to show biexciton emission.7 The next major focus
will be on conductivity control by impurity doping.

Undoped ZnO films generally exhibitn-type conduction
with typical carrier concentration of;1017/cm3.8,9 It should
be mentioned that the control of carrier concentration in
n-type ZnO has not been achieved yet for single-crystalline
epilayers, although carrier concentration in a range from 1018

to 1020/cm3 will be needed for laser-diode application. This
letter will report on the control of carrier concentration of
n-type ZnO films up to;1020/cm3 by doping with Ga.

Group III elements Al, Ga, In, and group VII elements
Cl and I can be used asn-type dopants in P–MBE of ZnO
films. Because of high reactivity of Al, oxidation of the Al
source during ZnO growth may become a problem. Ga and
In are less reactive and more resistive to oxidation, compared
to Al. Cl and I may have a memory effect, so that the re-
sidual electron concentration would not be low after Cl or I
were used. On the other hand, the covalent bond lengths of
Ga–O and Zn–O are estimated to be 1.92 and 1.97 Å, re-
spectively using atomic radii,10 which should be compared
with those of In–O~2.1 Å! and Zn–Cl~2.3 Å!. A slightly
smaller bond length of Ga–O than that of Zn–O is expected

to make the deformation of the ZnO lattice small even in the
case of high Ga concentration, while the larger bond lengths
of In–O and Zn–Cl would deform the ZnO lattice more se-
riously. This is why Ga has been selected as an-type dopant
in ZnO in our experiments.

Ga-doped ZnO films have been grown on 4-mm-thick
epitaxial GaN layers by P–MBE. The epitaxial GaN wasn
type with a carrier concentration of 631016/cm3. The
growth of Ga-doped ZnO films was carried out at 750 °C
with a Zn equivalent flux of 1.5 Å/s and an oxygen flow rate
of 1.5 sccm, which gave rise to an oxygen rich condition.
The thickness of the Ga-doped ZnO films was around 0.65
mm.

Figure 1 shows room temperature carrier concentrations
~dots! of Ga-doped ZnO films measured by the van der Pauw
method as a function of Ga cell temperature, and the calcu-

a!Author to whom correspondence should be addressed; electronic mail:
koko@imr.tohoku.ac.jp

FIG. 1. Carrier concentration~dots! of n-type ZnO films doped with Ga as
a function of Ga cell temperature and calculated Ga concentration~solid
line! vs estimated Ga temperature.
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lated Ga concentration~solid curve! versus estimated Ga
source temperature. The Ga concentration (NGa) incorpo-
rated in the films was calculated byNGa5p@NA /
(2pmGakBTGa)#1/2/vG , wherep is the vapor pressure of Ga,
NA and kB are the Avogadro and Boltzmann constants, re-
spectively,mGa and TGa are the Ga atom weight and the
estimated Ga source temperature, respectively, andvG is the
growth rate. As the Ga cell temperature increases from 270
to 400 °C, the electron concentration increases exponentially
from 1.3331018/cm3 to 1.1331020/cm3, and the electron
mobility ~m! decreases~m5120.5 cm2 V21 s21 for 1.33
31018/cm3, m536.7 cm2 V21 s21 for 2.5831019/cm3, and
m551.1 cm2 V21 s21 for 9.5331019/cm3!. The increment of
carrier concentration up to around 1020/cm3 is in good agree-
ment with the variation of calculated Ga concentration,
which suggests that most of the incorporated Ga atoms form
shallow donors and are activated at room temperature. As the
Ga cell temperature exceeds 400 °C, the carrier concentration
shows a tendency toward saturation due to an onset of carrier
compensation.

Figure 2 shows full width at half maximum~FWHM!
values of ~a! v-rocking curves and~b! 2u/v diffraction
curves of the~0002! reflection of Ga-doped ZnO films as a
function of carrier concentration. The insets in Fig. 2 show
typical diffraction curves of the~0002! reflection of a ZnO
film with a carrier concentration of 9.631018/cm3 for bothv
and 2u/v scans. The line profiles for both diffraction curves
are well fitted by Gaussian curves, which implies that Ga
doping causes neither degradation of interface nor serious
change in crystal structure, even at high doping level up to
;1020/cm3. As the carrier concentration in Ga-doped ZnO
layers increases from 1.3331018/cm3 to 1.1331020/cm3,
both FWHM values forv and 2u/v diffraction curves gradu-
ally increase from 5 to 15 arc min and 61 to 94 arc sec,
respectively. Such a gradual increase in the linewidth of dif-
fraction curves is generally observed in impurity doped crys-
tals and can be attributed to increase in local strain around
impurity atoms or point defects associated with the impurity
atoms.11,12 We note, however, such a gradual increase in
FWHM value would be overtaken by an abrupt increase
when a considerable change in lattice structure occurred,

such as formation of small angle grain boundaries, genera-
tion of dislocations, and stacking faults. It should also be
noted that the FWHM values of the~0002! v-rocking curves
of Ga-doped ZnO layers lie in the range of undoped ZnO
layers.13 We stress that despite high Ga doping, ZnO films
exhibit only slight degradation in crystal structure.

Figure 3~a! shows a low temperature photoluminescence
~PL! spectrum of a Ga-doped ZnO layer with a carrier con-
centration of 2.5831019/cm3. The excitation intensity of the
325 nm line from a He–Cd laser was 80 mW/cm2. The
bound excitonic emission dominates the PL spectrum@Fig.
3~a!#, while deep-level emission at around 2.3 eV is negligi-
bly weak. The deep-level emission intensity shows only
slight variation with carrier concentration as shown in Fig. 4,
although the x-ray diffraction linewidth increases with car-
rier concentration~Fig. 2!. These facts imply that Ga doping
does not contribute to the creation of defects responsible for
the deep-level emission, but it produces local strain around
Ga atoms or point defects associated with Ga impurities
which do not affect the deep-level emission.

Figure 3~b! shows details of the bound exciton emission

FIG. 2. FWHM values of~a! v-rocking curve and~b! 2u/v diffraction curve
of the ~0002! reflection of Ga-doped ZnO films as a function of carrier
concentration. Insets show~a! v-rocking curve and~b! 2u/v diffraction
curve of the~0002! reflection of a Ga-doped ZnO film with a carrier con-
centration of 9.631018/cm3.

FIG. 3. ~a! PL spectrum for Ga-doped ZnO film with a carrier concentration
of 5.731018/cm3, and~b! bound exciton emission spectra of undoped ZnO
~dotted curve! and Ga-doped ZnO~solid curve! films.

FIG. 4. Integrated PL intensity ofI Ga emission for Ga-doped ZnO films as
a function of carrier concentration.

3762 Appl. Phys. Lett., Vol. 77, No. 23, 4 December 2000 Ko et al.

Downloaded 25 Sep 2012 to 130.108.121.217. Redistribution subject to AIP license or copyright; see http://apl.aip.org/about/rights_and_permissions



spectra of undoped ZnO~dotted curve! and Ga-doped ZnO
~solid curve! films with a carrier concentration of 5.7
31018/cm3. The bound exciton emission lines at 3.356,
3.360, and 3.367 eV dominate the PL spectrum of undoped
ZnO films. These emission lines could be correlated with
defect complexes, as was conjectured in an earlier work.14 In
that case, after a high-temperature anneal, only the lowest-
energy~3.356 eV! exciton survived. It is noted that Ga dop-
ing makes a considerable change in the bound exciton emis-
sion spectrum. The PL spectrum of Ga-doped ZnO shows a
new emission line at 3.358 eV which hereafter is calledI Ga.
The emission line at 3.360 eV disappears, while emission
lines at 3.356 and 3.367 eV are greatly reduced in intensity.
We suggest that the newly observed emission lineI Ga can be
ascribed to bound exciton emission associated with a Ga
donor.

The integrated PL intensity ofI Ga emission is plotted in
Fig. 4 as a function of carrier concentration at room tempera-
ture. The PL intensity increases with increasing carrier con-
centration up to 5.731018/cm3. Then, it shows a saturation
behavior until 2.5831019/cm3, beyond which it decreases
abruptly. The same such behavior is generally observed in
impurity-doped semiconductors and is understood in the fol-
lowing manner: The increase of the PL intensity in the low
carrier concentration regime is due to an increase in the in-
tensity of the impurity-related emission, which is the Ga-
donor related exciton emissionI Ga in the present case. How-
ever, the doping of impurities higher than a certain threshold
would generate defects. Those defects would reduce the
emission intensity by introducing either radiative deep levels
or nonradiative channels. At high doping levels impurity
clusters or impurity-defect complexes may limit radiative
efficiency.15 A similar phenomenon was observed by Tsang
et al.16 in GaP crystals. They interpreted the behavior of their
bound exciton emission as being due to nonradiative Auger
recombination processes associated with delocalized elec-
trons in the impurity band. It is suggested from Fig. 4 that
those two competing factors balance in the carrier concentra-
tion range of 1019/cm3 and the formation of defects or non-
radiative channels dominates for carrier concentration higher
than 331019/cm3, presumably due to the onset of carrier
compensation as is observed in Fig. 1. We conclude that the
dopability of Ga in ZnO is limited to 2.631019/cm3, at least
in terms of PL.

In conclusion, we have demonstrated that the carrier

concentration inn-type ZnO films grown by P–MBE on
GaN templates can be well controlled from 1.3331018/cm3

to 1.1331020/cm3. The effective doping of Ga, with mini-
mized carrier compensation, is achieved even for the high
carrier concentration of 1.1331020/cm3. The FWHM value
of the ~0002! x-ray rocking curves of the Ga-doped ZnO
films increases from 5 to 15 arc min with increasing carrier
concentration, which is still within the FWHM values of un-
doped ZnO films. Low-temperature PL spectra of Ga-doped
ZnO show dominant bound exciton emission at 3.358 eV and
negligibly weak deep-level emission at around 2.3 eV. This
bound exciton emission emerges by Ga doping and overtakes
the bound exciton emissions observed in undoped ZnO lay-
ers. The intensity ofI Ga emission increases with carrier con-
centration up to 5.731018/cm3, shows a saturation behavior
from 5.731018/cm3 to 2.5831019/cm3, and eventually rap-
idly decreases above 2.5831019/cm3. The maximum dop-
ability of Ga in ZnO is inferred to be around 2.6
31019/cm3, if PL quality is used as a criterion.
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