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Abstract

Many organisations now routinely gather vast and ever-increasing amounts of data in the ordinary course
of their business. While much of this information is collected for day-to-day operational reasons, many
businesses are now realising that this data has much additional value for improving operational processes.
Large databases can form the basis of decision support systems, often based around adata warehouse.
Such systems may then be used for a variety of applications such as trend spotting, pattern recognition,
behavioral modeling and customer worth assessment.

Against this backdrop, the termdata mining is used to refer to the process of searching through a large
volume of data to discover interesting and useful information. The authors have traditionally sought to
divide data mining into three types or levels—undirected or pure data mining, where the system is left
almost entirely unconstrained to discover patterns in the data free of prejudices from the user;directed
data mining, where the user may specify some constraint to “steer” the system through its search; and
hypothesis testing and refinement, where the user poses some hypothesis and the system first evaluates
the hypothesis and then seeks to refine it.

The system specified and built during this project—GA-MINER—is unique in being applicable to all three
levels of data mining. Although undirected data mining has been the defining goal, the system has been
deliberately built to enable also directed data mining and hypothesis refinement. The project has suc-
ceeded in its initial goal to implement a parallel genetic-algorithm based data mining tool for rule discov-
ery and has maintained the principle that discovered knowledge must be scrutable and understandable.
Performance results have shown that the system is scalable on both Symmetric Multi-processor (SMP)
and Massively Parallel Multi-processor (MPP) systems.

Fast and flexible development of GA-MINER was made possible by its implementation in theReproduc-
tive Plan Language (RPL2), an extensible language, interpreter and run-time system for the implementa-
tion of stochastic search algorithms, with a special emphasis on evolutionary algorithms such as genetic
algorithms.

A central component of GA-MINER is thepattern template, which defines the general form of the pat-
terns of “interest” to the user and restricts the search space to those patterns which are consistent with this
form. A prototype graphical user interface has also been implemented to allow users to manipulate the
pattern template and to visualise the results of the search. One of the biggest challenges in this project
has been to produce a system that can differentiate between interesting and uninteresting patterns. The
project considered several evaluation functions for estimating pattern interest, mainly based on statistical
measures, and our experience has shown that many of these evaluation mechanisms give highly similar
results. While falling short of providing fully satisfactory definitions of interesting patterns, the evalua-
tion functions have been sufficiently successful for the system to discover several useful patterns in the
databases provided by our industrial collaborators, GMAP Ltd. and Barclay Bank Plc.

Many of the insights, ideas and results of GA-MINER are also being exploited by Quadstone Ltd in its
Decisionhouse product. The commercial market for data warehousing and data mining tools is expanding
rapidly and increasing competition is forcing all businesses to put their customers at the centre of their
operation. They are therefore collecting and trying to exploit data that they can obtain on these customers.
Although hardware and database software now supports very large stores of data, there is no software
currently available to analyse large data volumes efficiently, or to perform effective data mining operations
in acceptable timescales. GA-MINER has provided many of the underlying architectural and analytical
insights that have enabled the imminent product release of Decisionhouse, which aims to fulfill this need
for scalable data mining software.
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Chapter 1

Motivation and Objectives

1.1 Business Trends

The globalisation of business, together with increasing levels of competition, is combining with the falling
cost and increasing power of information technology (IT) to change fundamentally the way that businesses
operate. On the one hand, pressures for cost reduction, rationalisation and greater consistency have led
companies to replace many human functions with computer-based processes, both behind the scenes and
at the point of customer contact. These changes have been particularlypronounced in the financial services
and insurance sectors, together with retailing and telecommunications, and have brought many benefits
to the companies that have embraced them. On the other hand, businesses are increasingly finding that
despite the masses of data they collect, process and (sometimes) store, they seem ever more remote from
their customers, This has two primary effects. The first is that gross mistakes are often made because com-
puters operate only those sanity checks explicitly programmed into them, and will often fail to “notice”
bizarre conditions that no human would be likely to ignore. The second is that marketing and customer
worth assessment become much harder, because the business “knows less” about its customers.

The central plank of IT relevant to customer relationship management is, of course, the database. Database
systems are now central to running most customer-facing businesses, and are typically seen to support
several classes of core functions:

� transaction processing

� batch processing

� ad-hoc querying

� Management Information System (MIS) and Executive Information System (EIS) functionality.

Transaction and batch processing are the critical functions that “run the business”, whereas thead hoc
querying and MIS/EIS functions simply give primitive access to the data and provide management with
the information it needs in summary form.

Over recent years, many businesses have started to realise that databases have the potential, in principle,
to re-establish a closer link with their customers.Data warehouses have been conceived and are being
built to collect together large volumes of business data—often at some level of aggregation above trans-
action level—with the aim of fulfilling adecision support function. Adecision support system (DSS) is
supposed to help businesses to turn large (and by this token necessarily incomprehensible) volumes of
data into much smaller quantities of high-quality business information that can be understood by human
beings. Decision support systems can offer this functionality through a wide variety of techniques and
applications, including

� visualisation of and visual navigation through large data volumes, typically presented hierarchically
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Figure 1.1: Decision support systems are typically high-end Unix servers, taking periodic snapshots from
business-critical mainframes.

� trend spotting

� outlier detection

� cluster analysis

� induction, pattern recognition and classification

� behavioural modelling

� customer worth modelling.

Against this backdrop, the termdata mining—precisedefinitions of which will be discussed in section 1.3—
is used to refer to the process of searching through a large volume of data, typically initially resident in
a database, to discover interesting, useful, information. This is the context in which the current project
was conceived, though its focus is much narrower than some current uses of the term ‘data mining’ might
suggest.

1.2 Trends in Business Computing

Business-critical function such as transaction and batch processing are still, today, typically run on tra-
ditional mainframes in most (large) businesses. The machines on people’s desks are typically PC’s or
(less often) dumb terminals. However, the companies investing in decision support systems usually build
these on very different platforms from mainframes. A typical situation is illustrated in figure 1.1 A typical
data warehouse will be will be built on a high-end Unix server, typically a shared-memory architecture
with 8–16 nodes. Examples of such platforms include the Sun Sparccentre 2000, SGI Challenge, Sequent
Symmetry, and Cray CS6400. Slightly less commonly, a distributed-memory Unix platform such as an
AT&T (“Teradata” / NCR) 3600, a Meiko Computing Surface or an IBM SP2 will be used.

A striking characteristic of these servers is that they are almost invariably parallel, and in many cases the
databases used on them—typically Oracle, Informix, Sybase or DB2—actually exploit this parallelism.
(Indeed, it could be argued that databases are the most powerful and complex examples of parallel appli-
cations in mainstream use.)

The traditional distinctions between parallel architectures were between “single-instruction-stream,single-
data-stream ” (SIMD) machines, which consist of large numbers of simple processors executing a com-
mon intruction stream in lockstep (typically 1,024–65,536) and “multiple-instruction-stream, multiple-
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data-stream” (MIMD) machines which have smaller numbers of more powerful processors (typically 2–
1,024), executing (potentially) different programs. However, except for specialised applications such as
image processing, MIMD architectures have established near-complete domination. The main distinction
today is between shared- and distributed-memory architectures. Here, however, boundaries are blurring
fast.

Traditional distributed-memory platforms, now usually called MPP (“massively parallel processing”) or
“shared nothing” architectures, used message-passing programmingparadigms to communicatedata along
physical links between processors. The memory of the entire machine was therefore partitioned into dis-
tinct address spaces. In contrast, traditional shared-memory architectures (now more commonly called
“symmetric multiprocessors”, or even merely “high-end servers”) used a single address bus and offered a
programming model based around a single address space. Mechanisms such as semaphores were used to
control write access when necessary (though shared-memory machines, even more than their distributed-
memory counterparts, have been used primarily as throughput engines for sequential applications). The
distinctions are blurring fast as:

1. Kendall Square Research first introduced “virtual shared memory”machines, which offereda shared-
memory programming model on distributed hardware.

2. Other manufacturers have quietly followed suit, so that today even the Cray T3D, one of the most
scalable distributed-memory machines in existence, uses a single address space offers direct read
and write facilities to locations on other processors.

3. As memorysizes increase beyond the 32-bit limit (4Gb theoretical, 1–2Gb in practice), 32-bitshared-
memory architectures no longer offer a single address space. While this will change as 64-bit pro-
cessors become more common, note that even the DEC Alpha—sold as a fully 64-bit processor—
has fewer than 64 physical address pins.

4. Some manufacturers are now discussing supporting shared-memory programming models over dis-
tributed networks of workstations or servers (as opposed to integrated parallel machines).

At one level, therefore, architectural trends are converging. Nevertheless, building a scalable parallel ap-
plication remains an extremely subtle business, requiring considerable attention to data locality, caching,
contention and so forth. Even more critically, the demands of databases and related data-intensive ap-
plications such as decision support systems, are very different from those of the traditional scientific and
technical applications that spurred the development of the early parallel architectures. In the context of
commercial applications, it tends to be memory bandwidth and I/O bandwidth that limit performancemore
than raw processing power (in the sense of flops or MIPS). It is these pressures that are arguably driving
some of the more radical architectural developments today.

1.3 Data Mining

Since this project was proposed, the term “data mining” has become a key marketing “buzz word” in
many software and related markets, including those of databases, data warehousing, marketing, machine
learning, pattern recognition and image processing. As suppliers have rushed to attach the label to many
existing products and processes, the term has inevitably become somewhat debased, so it is important to
revisit what we have meant by the term.

The authors have traditionally sought to divide data mining into three types or levels as follows:

� Undirected or Pure Data Mining.
With undirected data mining, the concept is that the user simply asks of the data miner: “Tell me
something interesting about my data”. The key point here is that the user isnot specifying what
kind of rule is desired. The importance of this is that the system is left completely unconstrained
(at least by the user) and is therefore given the greatest “freedom” to discover patterns in the data
free of prejudices from the user. It seems likely that in these circumstances there is the greatest
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scope for finding completely unexpected patterns in the data, which has been one of the “promises”
of data mining.

In fact, arguably the user could be a little more specific and still leave enormous freedom to the
data miner, by specifying, for example, a field of interest. Here the (conceptual) challenge might
be: “Tell me something about my female customers”.

� Directed data mining.
The user may ask something much more specific, such as: “Tell me about links between income
and expenditure” or “Characterise my highest-spending customers”. Clearly here a much stronger
“steer” is being given to the system. In this case, the problem usually changes from a general
pattern-detection problem to a rather better definedinduction problem. (Induction is most natu-
rally thought of as the problem of reasoning or inference under partial information, so thatde-
duction is not possible.) Induction problems have been extremely well studied using a variety of
statistical and machine-learning techniques including various forms of regression, linear (or “ad-
ditive”) scorecarding, a range of decision tree methods, classification neural networks (typically
“feed-forward” networks, also known as “multi-layer perceptrons) and various forms of cluster
analysis and nearest-neighbour methods.

� Hypothesis testing and refinement.
The final form of data mining we have traditionally considered involves the user conceptually say-
ing: “I think that there is a positive correlation between sales of peaches and sales of cream: am I
right?”. Now the idea is that the system first evaluates the hypothesis but then—if the evidence for
it is not strong—seeks to refine it. Depending on what scope for variation the system is allowed,
this may make the task even more directed than “directed data mining”, as described above, or al-
most as open as “undirected data mining”, if all parts of the original hypothesis are allowed to be
varied.

The system—GA-MINER—that we have specified and built is unusual in being applicable to all three
kinds of data mining. It is undirected data mining that has been our defining goal, but we have deliberately
built a system which allows directed data mining and hypothesis refinement also to be tackled. Directed
data mining is achieved by fixing certain parts of the pattern over the course of the run, and hypothesis
refinement is achieved by “seeding” the system with the hypothesis but then allowing some or all parts of
it to vary.

It should be emphasized that the mainstream use of the term data mining is slightly different from ours.
Most systems that we are aware of are really induction engines, tackling what we would call “directed data
mining”. There is a community that has existed for a while specialising in what it has called “Knowledge
Discovery in Databases (KDD)”, and indeed there has been a series of workshops attached to IJCAI on
this theme, and a mailing list (KDD-nuggets) exists for this community. In 1995, the authors registered
for the workshop “Knowledge Discovery in Databases (KDD)”, but by the time it was held, KDD had
been redefined to stand for “Knowledge Discovery and Data Mining (KDD)”. The standard usage of the
terms adopted at that conference is that “knowledge discovery” is the complete process of finding pat-
terns in databases, corresponding roughly to the union of our three levels of “data mining”, while the term
“data mining” is used for thesearch component of a larger process that involves data collation, extraction,
cleansing, pre-processing, post-processing, presentation and comprehension.

The authors suspect that the KDD terminology will gain wider popularity, but that the term “data mining”
itself will for some time be used to mean very different things to different people.

In the remainder of this report, we will use data mining in the sense of the three levels introduced above,
usually with a focus on “undirected data mining”, but specialising where appropriate to the other forms.

1.4 What Makes a Pattern “Interesting”?

We have so far discussed data mining in terms of the search for interesting patterns in databases, but have
as yet given little regard for what makes a pattern interesting.
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In a highly interactive data mining system, users may have extensive control over the search process, guid-
ing it towards patterns which they themselves regard as interesting. However, as the level of automation
in a data mining system increases, there is an ever more important need for some numeric measure of the
relative goodness of patterns. Before proceeding further, we must first attempt to quantify the subjective
concept of “interesting” in order that “good” patterns may be distinguished from the “bad” automatically
during the search.

We may identify some features as being common to interesting patterns. First and foremost, an interesting
pattern must summarise some correlation which exists in the data. This is not to say that the pattern must
be entirely accurate, but we must be able to calculate some numeric measure of the degree to which it is
accurate. General patterns, which apply to larger portions of the database are, other things being equal,
preferred, though generality and accuracy are often in conflict. The pattern should also avoid expressing
trends that can be explained by chance variation and fluctuations in the data, and should therefore include
some concept ofstatistical significance.

Patterns must capture non-trivial correlations, not simply “truisms”. For example, the fact that all male
customers in a database have the title “Mr” may well be entirely correct, but cannot be regarded as in-
teresting or useful. Defining “truisms” can in itself be problematic. We could regard them as statements
expressingfunctional dependencies about the database, known collections of fields whose values func-
tionally determine the values in another field, or the term could also be widened to include known corre-
lations between variables. Fortunately, we may bypass the provision of a definition for “truisms”, as they
represent just one example of a more general problem, which is easier to define, though unfortunately,
more difficult to solve. That is, how a data mining system handles patterns already known to exist in the
database, and uses them not only for the purpose of avoiding re-discovery or re-presentation of known
relationships, but also as domain knowledge within an ever-growing knowledge-base which can be used
to assist in the derivation of new patterns. This problem is further compounded in databases which may
change over time, rendering at least some patterns out-of-date.

Patterns must be approachable, in the sense that they be formulated and presented in a form easily di-
gested and understood by humans. It may be be acceptable to simplify a pattern, thereby reducing its
accuracy and significance, if such simplification results in more readable and understandable knowledge.
Thisscrutabilty of patterns is particularly important if data mining systems are to be accepted by the busi-
ness community. Also important, is configurability towards a particular application domain or user, since
the same database may be mined by many different people, all of whom have an interest in very different
patterns.

From the discussion here, it is clear that the definition of “interesting” represents an immensely difficult
task and indeed most of the considerations outlined above are the subject of ongoing research (e.g. Silber-
schatz & Tuzhilin, 1995). We have yet to resolve the problem of defining “interesting” to our satisfaction,
but pragmatism requires that we construct at least some measure of this quantity. In general, GA-MINER
restricts itself to measures of statistical significance, combined with heuristics for pattern simplification.
The details connected with the evaluation a pattern’s goodness are presented in section 4.4 along with the
various pattern definitions supported by the system.

1.5 Scrutability of Patterns

For a data mining system to be usable by businesses, it must present its findings in a form which is un-
derstandable by non-scientists. Some techniques such as neural networks can produce clusterings of the
database which implicitly represent useful knowledge. However, this knowledge is not immediately un-
derstandable by a typical end user of a decision support system and as such, it will receive little interest
from business users.

Perhaps the most direct and understandable form in which a pattern may be expressed is as an explicit
rule, perhaps expressed as predicates (if x then y,). The rule need not be strictly correct in order for it to
be useful and indeed in general this is a stronger requirement than one would wish to impose. Picking
out trends and correlations that are true to some degree is the more typical aim, because data is generally
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noisy in the true sense of containing errors, and more importantly because correlations do not have to hold
perfectly in order to constitute useful, exploitable information. Thus the predicateif x then y, which trans-
lates formally tox implies y, could be more usefully replaced in the present context byx tends to imply
y, or evenx increases the likelihood of y (which could itself be formalised asP�yjx� � P�y�, whereP
denotes probability). Similar rule patterns are found in a variety of data mining systems. e.g. EXPLORA
(Hoschka & Kloesgen, 1991; Kloesgen, 1992, 1994a; Gerbhardt, 1994), the Knowledge Discovery Work-
bench (Piatetsky-Shapiro, 1992) and Data Surveyor (Holsheimer & Kersten, 1994) (see section 3).

Other pattern forms are also of interest. Some systems, for example, Forty-Niner (Zytkow & Baker, 1991;
Zytkow & Zembowicz, 1993) present results in the form of cross-tabulations or contingency tables, while
EXPLORA provides a whole range of patterns for use in a variety of knowledge discovery tasks. Although
the original goal of GA-MINER was to develop an explicit rule-generating data mining system using ge-
netic algorithms, we have gone beyond this to consider other pattern forms when they have been helpful
in maintaining the property of scrutability.

1.6 Ease of Use

Given the nature of a general purpose data mining system, we may reasonably expect that users of the
system will come from a variety of disparate backgrounds, will use the system for a diverse range analysis
tasks and will be equipped with varying levels of technical expertise. The importance of an appropriate
user interface to such a system is clear.

A general purpose system must be approachable to all these users. The system should therefore be config-
urable in nature, both to particular application domains and to particular users. An appropriate graphical
user interface should be provided, giving control over the nature and extent of the search. More advanced
features of the system, for example, the ability to modify the search method, should be restricted to expert
menus.

Ideally, the system should also interface cleanly with a variety of standard database management systems,
allowing users to access data from systems with which they are familiar. It is unlikely that data mining
systems reliant upon specific database hardware platforms will be widely accepted in the business com-
munity, partly because of commitments to previously installed systems, but also because of the increasing
trend towards open systems. However, current database management systems may well adapt to incorpo-
rate the facilities required for the efficient support of data mining software.

Clearly, the presentation of patterns to users is of vital importance. Graphical presentations are likely to
be easier to understand, and are particularly useful when they can be incorporated into reports. As data
mining systems become more sophisticated, facilities for automatic report generation will be required,
although such reports will undoubtedly still require some level of manual editing to reconcile the system’s
and user’s respective views of what is interesting. Some ideas for pattern presentation are discussed by
Kl ösgen (Kloesgen, 1992).

1.7 Objectives

The objective of GA-MINER is to investigate the utility of genetic algorithms as a software architecture
for large scale parallel data mining. The emphasis is largely on the less-directed forms of data mining
(see section 1.3) and on the search for scrutable rules which are directly comprehensible. The work also
aims to consider any implications of the software model, or indeed of the data mining task itself, on the
underlying hardware architecture required for its efficient support.

The detailed objectives of GA-MINER project may be summarised as follows:

� Determine a suitable representation for patterns. The representation must be capable of expressing
sufficiently interesting knowledge about the database, while retaining enough simplicity to ensure
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scrutability. The emphasis is on patterns which express easily assimilable knowledge. The repre-
sentation is also of vital importance given the selection of genetic algorithms as the pattern search
method, since it will define the heritable units which may usefully be propagated through the genetic
operators.

� Construct a parallel genetic-based data mining system, capable of finding patterns within real-world
data. This requires the design and implementation of suitable recombination and mutation opera-
tors, as well as operators for collecting sets of rules, and for rule simplification.

� Investigate the relative merits of a variety of measures of goodness for patterns, with a view to for-
mulating the notion of “interestingness” for a rule.

� Investigate the scalability of the genetic data mining system on both distributed memory and shared
memory hardware platforms, and td to determine any aspects of the particular genetic algorithm
method chosen which may have an impact on the performance or architectural design of database
systems.

1.8 Review of Progress

All of the original stated objectives of the project have been met, with the construction of a parallel ge-
netic data mining system to discover probabilistic rule patterns in large databases. The system has been
demonstrated to be scalable (see section 5.3) on both shared-memory and massively parallel distributed
memory platforms. Furthermore, it has been possible to engage in development of the system beyond that
originally envisaged, with the inclusion of several pattern forms in addition to the main explicit rule form,
and a prototype graphical user interface has been constructed.

Clearly, there is still much useful research to be done, many ideas for which are detailed in section 7.2.
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Chapter 2

Background

Before considering GA-MINER in depth, we first provide some background on the chosen approach and
methods used by the system. Section 2.1 gives an introduction to stochastic search and optimisation, fol-
lowed in section 2.2 by an overview of evolutionary algorithms. We then briefly introduce theReproduc-
tive Plan Language (section 2.3), an extensible language, interpreter and run-time system for the imple-
mentation of stochastic search algorithms, which has been used for the implementation of GA-MINER.
Finally, in section 2.4 we consider issues concerned with database interfacing, including sampling, pre-
processing and a description of the databases used during the course of this research.

2.1 Background on Stochastic Search and Optimisation

An optimisation problem is one in which the goal is to find the best possible way to perform some task or
configure some system. In the present case the goal is to find the best possible rule. In considering such an
optimisation problem, it is helpful to think in terms of asearch space, which is the set of all the possible
solutions to the problem at hand, where by a ‘solution’ we mean anypossible rule, not just the best one,
i.e. a solution isany way of performing the task at hand.

In order to perform an optimisation, it is necessary to have a way of measuring the quality of any possible
solution from the search space. This is achieved by employing anobjective function (also known as an
evaluation function), which, when presented with a solution assigns to it a numerical value which in some
way reflects its quality. In the present case, the objective function is the rule quality.

The goal of the optimisation is to find the solution in the search space that has the highest—or sometimes
the lowest—value of the objective function. If more than one solution has the same maximum value for
this, the goal is usually to find one of these solutions, though occasionally it is to find all of them. A
solution having the maximum value of the objective function across the whole search space is called a
global optimum (figure 2.1).

It should be noted that unless the form of the objective function is particularly simple, or the search space
is very small, it is generally impossible to construct optimisation techniques that are guaranteed to find
a global optimum. This is because, in general, the only way to be certain that a particular solution is the
best possible is to generate and evaluate every possible solution to the problem at hand—a process called
exhaustive search or enumeration. Bearing in mind that the universe has only, on most estimates, been in
existence for some���� seconds, even if a computer could search a collosal one trillion solutions a second
(����), and had been processing since the start of time, it would not have made a noticeable dent in many
problems, in which search spaces regularly exceed�����. Typical problems in the present context, assum-
ing a resolution of a mere��� possible values per clause, have search spaces of order��. For this reason,
most optimisation problems are tackled using non-guaranteedsearch techniques, which explore the space
of possible solutions but do not guarantee to find a global optimum. Good search techniques, neverthe-
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Figure 2.1: Thesearch space consists of all potential “solutions” to the problem. In general, there will be
one or moreoptimal way (shown here as stars), which maximises the value of the objective function and
represents the best way to “solve” the problem.
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Figure 2.2: The diagram illustrates a search beginning at the initial point shown and repeatedly trying out
various moves, accepting some (i.e. moving the “current point”) but rejecting others.

less, normally produce near optimal solutions relatively quickly, and in many cases do, in practice, locate
a global optimum.

Most search techniques begin by choosing one point (solution) from the search space as a starting point.
The choice of this point may be either random or informed. (If non-random, it may be the currently best
known solution, or a solution generated by some other method.) Thereafter, the process typically involves
maintaining a notion of acurrent point, which is initially set to the starting point. The search normally
proceeds by repeatedly generating a trialmove within the search space by modifying the current point
(solution) through the application of amove operator, which modifies the current solution in some way.
The quality of the new point generated is then measured using the objective function and a decision is then
made about whether to replace the current point with the new point. In the simplest case, the “move” to the
new point is made if it is better than (or at least as good as) the current point. Such techniques are known
generically ashill climbers. A general search process of the type discussed in this section is illustrated in
figure 2.2.

The selection of a move operator to use for the search effectively imposes astructure orconnectivity on the
search space. This is because normally a move operator will bestochastic, i.e. it will choose from one of a
number of possible moves it could make from the current point. One of two cases will usually arise. In the
first case, the move operator will be capable of moving from any point to any other point, but will generate
some moves much more often than others. In this case, the move operator effectively induces adistance
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L� G� L� G� L�

Figure 2.3: The diagram shows a search space with a one-dimensional structure along the horizontal axis
and objective function value on the vertical axis. Assuming that the two highest peaks are of equal height,
and that the objective function is to be maximised, this search space has two global optima (G� andG�)
and three local optima (L�� L� andL�). (Technically, global optima are also local optima.)

between each pair of points, which is the likelihood of moving from one to the other. Alternatively, the
move operator may only move from each point to certain other points. In this case, it effectively defines
a connectivity over the space, with each solution being connected to those other solutions than can be
generated by a move from it. It then becomes meaningful to talk about theneighbourhood of a point in
the space, which will either be all the other points to which it is connected (and itself), or all the points
within some distance� of itself. A second kind of optimum can now be introduced, known as alocal
optimum. A local optimum is a point in the search space which is better than (or at least as good as) every
solution in its neighbourhood (figure 2.3). Most search spaces have many more local optima than global
optima.� Finding local optima is often relatively easy, whereas finding global optima is very difficult. In
real-world optimisation, we often settle for the best local optimum that we can find.

2.2 Evolutionary Algorithms

2.2.1 Motivation

Evolutionary algorithms are a class of stochastic search techniques inspired by natural evolution. Crudely,
this inspiration is that, over time, organisms adapt to their environment, becomingfitter. Although this
improving fitness manifests itself in many ways (as animals run faster and increase their intelligence, and
viruses develop ever more effective ways of penetrating their hosts’ defences) the ultimate measure of
evolutionary fitness is simply the success of an organism in passing on its genes to viable offspring—
of reproducing. Darwin famously summarised this guiding principle of evolution as the “survival of the
fittest”. Clearly the mechanisms of natural evolution constantly demonstrate an impressive “problem-
solving” facility, if the problem is defined as producing organisms of increasing fitness. The aim, with
evolutionary algorithms, is to simulate key aspects of natural evolving systems on a computer, and in so
doing to harness their problem-solving ability to own search and optimisation problems.

�Strictly, the local optima are only defined with respect to some particular structure on the space, in this case induced by a par-
ticular move operator, as was explained in the main text.
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Figure 2.4: A simple evolutionary algorithm for evolving good rules.

2.2.2 Outline

Although following very broadly the outline of stochastic search given in section 2.1,evolutionary algo-
rithms modify the general pattern in a number of important ways. First, instead of using a singlecurrent
point, most evolutionary algorithms maintain apopulation of points from the search space. The size of
this population is usually fixed, most often between about 50 and 100,000. The initialisation phase there-
fore consists not of choosing a single starting solution, but rather a set of such solutions. As in the general
case, this choice can either be random or informed.

The second key difference between a general stochastic search algorithm and an evolutionary algorithm
concerns the choice of the next point to test. Instead of basing this choice on a singleparent solution, evo-
lutionary algorithms typically use two parent solutions to determine the next solution generated. Thus, in
addition to aunary move operator, as discussed above, evolutionary algorithms employbinary move op-
erators, known asrecombination orcrossover operators, which take a pair of parent solutions and combine
them in some way to produce a new child solution (or perhaps more than one child). Recombination is the
analogue of sexual reproduction in nature, and the idea is to produce a child which “inherits” some of its
properties from one parent solution, and some from the other. In producing a new solution, the normal ap-
proach is first to pick a pair of parents for recombination, and after recombination to apply a conventional
unary move operator to the child solution they produce before it is evaluated. The unary move operator
is normally called amutation operator in the context of evolutionary algorithms, because it is analogous
to the random genetic changes that occur in natural evolving systems.

It is important to note that in the standard case, both the recombination and the mutation step areundi-
rected, i.e. they do not “try” to produce a child that is better than its parents. Rather it is the process of
selection that models Darwin’s “survival of the fittest”. There are two opportunities to applyselection
pressure in evolutionary algorithms. The first is in the choice of parents, which may be biased towards bet-
ter (“fitter”) members of the population. Alternatively, when children are produced, the choice of which
members of the population they should replace may be biased toward the less good members of the pop-
ulation. Some algorithms use both of these devices. While it is not particularly importantwhere in the
algorithm selection pressure is applied, thelevel of selection pressure is important. If it is too high (be-
cause, for example, only the very best members of the population are allowed to reproduce) the search
will tend to get stuck quickly in local optima. If, on the other hand, it is too low, the search may be un-
duly slow, or may even fail to generate solutions of improving quality. A simple evolutionary algorithm
is illustrated in figure 2.4.
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2.2.3 Representation and Terminology

The choice of representation of solutions can have an important influence on the effectiveness of any
search method, and this is nowhere more true than in evolutionary algorithms. This is perhaps unsurpris-
ing, because in nature the genetic operators—on which the recombination and mutation operators used in
evolutionary algorithms are loosely modelled—operate at a level far removed from the observable char-
acteristics of organisms. Because of the central importance of representation in evolutionary algorithms,
it is worth spending a little time examining the issue, and introducing some terminology borrowed from
biologists.

Physical organisms are known to biologists asphenotypes to distinguish them from their representation in
the genetic code on theirgenome. In the current context, a solution itself (a rule) is aphenotype, whereas
the data structures that we use torepresent this solution form thegenome.� The information content of the
genome is known as thegenotype of the corresponding organism, though distinction between the genome
and the genotype is usually not important.

The reason that the distinction between the solution itself (the phenotype) and its representation (the geno-
type) is important is that the “genetic” move operators, both recombination and mutation, are most com-
monly defined assyntactic operations on the genotype. In a typical case, the genome consists of a number
of variables, calledgenes, each of which takes on a value from a discrete or continuous range.� In the sim-
plest cases, recombination consists of taking some gene values from one parent and the rest from the other,
while mutation involves altering one or a small number of gene values.

Ultimately, the success of any search method depends on the order in which it generates points in the
search space. A good search technique uses information that it gathers during the course of the search
to inform its choice of future points sensibly, usually leading to the discovery of ever better solutions,
whereas a poor one makes less effective use of the information gathered. In the case of an evolutionary
algorithm, the population acts as the memory of the system, containing solutions having co-adapted char-
acteristics. For this reason, it is important when designing move operators for a problem to have regard
not only to thesyntactic changes that they result in at the level of the genotype, but also theactual moves
that they generate in the search space of solutions. In terms of the ideas introduced in section 2.1, good
move operators create appropriate neighbourhoods in the search space, thus making search easier.

2.2.4 Population Structure

In the foregoing discussion, the population has been assumed to be unstructured, in the sense that the like-
lihood of any pair of solutions mating has been assumed to depend at most on their quality. It is becoming
increasingly common, however, to impose a spatialstructure on populations, so that the likelihood of two
solutions mating depends not only on their performance, but also on their locality. The original motiva-
tion for this was partly to facilitate the exploitation of parallel and distributed computing hardware, which
it does. In many cases, however, it appears that population structure actually improves the effectiveness
of search as well, in terms of the number of points visited to achieve a given quality of solution.

There are two principal forms of structured population. In theisland model, the population consists of a
number of distinctislands. An evolutionary algorithm runs on each island without reference to the oth-
ers except that there is occasionalmigration of solutions between islands (figure 2.5). This scheme has a
number of attractions, but its most important benefit is that different characteristics tend to emerge, over
time, on the different islands. When migration occurs, recombination will sometimes have the effect of
combining a characteristic developed on one island with one found on another. In unstructured popula-
tions, it can be more difficult for different characteristics to emerge simultaneously as any small difference
in relative fitness will normally cause one to out-compete the other.

The second main kind of structured population is known as thediffusion model, or thefine-grained pop-
ulation model (figure 2.6). Here, solutions occupy the sites of a grid, and mating is restricted to local,

�The human genome consists of 26chromosomes (parts), but in evolutionary algorithms there is usually only one chromosome
per genome, so terms “genome” and “chromosome” are often used interchangeably.

�These values are known asalleles.
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Figure 2.5: In theisland model a separate evolutionary algorithm runs on each of a number of islands,
and solutions occasionallymigrate between islands, bringing in new genetic material.

overlapping neighbourhoods known asdemes. As in the island model, the restrictions on mating tend to
result in different characteristics evolving on different parts of the grid, but because of the overlapping
nature of the demes, information is able to “diffuse” slowly across the grid. Patches of similar solutions
tend to emerge, and interesting recombination events tend to occur at the boundaries of these patches.

2.2.5 Handling Constraints

In many cases, including the present case, simple syntactic move operators are inadequate because ofcon-
straints on valid solutions, which will tend to be violated by merely cutting and splicing existing solutions.
There are three principal methods for handling constraints in evolutionary algorithms—building more so-
phisticated operators that “understand” (ensure compliance with) the constraints, using repair operators
to “correct” infeasible child solutions and employing penalty functions. Of these, the last is the crudest,
and is normally only adopted when neither of the first two methods can be used.

When repair operators are employed, an interesting decision arises as to whether to use the repaired ver-
sion of the child only for the purposes of computing the objective function (placing the infeasible child in
the population), or to replace the infeasible child with its repaired counterpart. While, on the face of it, it
seems more sensible to place the repaired version of the child in the population, there are some circum-
stances in which this may be unhelpful. Consider the case shown in figure 2.7. Here, a solution is on the
edge of a large infeasible region, while the global optimum is on the “other” side. It may well be that any
likely move from the solution in question towards the global optimum, the new point will be in the infeasi-
ble region, and would be repaired back to the far side from the global optimum. In this case, allowing the
genome to represent an infeasible point, while actually evaluating a repaired counterpart solution, may be
the best strategy. In practice, following a suggestion of Davis & Orvosh (1993), it is often a good idea to
make the choice probabilistically, “reverse transcribing” the repaired phenotype to the genome (say) 5%
of the time.
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Figure 2.6: In thediffusion model, each solution has a unique location on a grid. Mating only occurs within
local neighbourhoods (demes). As different characteristics emerge on different parts of the grid, the over-
lapping nature of demes allows information to “diffuse” across the grid, with “interesting” recombination
happening at boundaries between the different regions.

optimum

current point repair

repair

move
move

Figure 2.7: The shaded region of the search space is infeasible. If the solution is always repaired, it may be
very difficult to traverse the large infeasible region, even though the global optimum is on the “other side”.
In these circumstances, allowing the genome to remain infeasible, while actually evaluating a phenotype
corresponding to a repaired version of it, may be more satisfactory.
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2.2.6 Schools of Evolutionary Computing

There are a number of different “schools” of evolutionary computing. The best known of these call their
methodsgenetic algorithms, and build on work pioneered by John Holland (1975). In their original form,
genetic algorithms tended to be used for combinatorial (discrete) optimisation, and to concentrate on bi-
nary string representations, selection pressure applied through the choice of parents and an emphasis on
recombination as the main search operator. Over time, however, all of these tendencies have been modi-
fied, and many “genetic algorithms” have none of these features.

The second principal school of evolutionary algorithms was developed in Germany by Rechenberg and
Schwefel (Baeck & Schwefel, 1993), and is known as theevolution strategies community. Evolution
strategies have traditionally been applied to continuous numerical optimisation problems, emphasised mu-
tation as the primary search operator, and tended to apply selection pressure through the choice of which
offspring were allowed to survive. They also have a large number of internal control parameters, which
are themselves subject to adaptation during the course of the run. Like genetic algorithms, over time evo-
lution strategies have broadened, though perhaps less so, and the distinctions between the different schools
are now more in their history and traditions than their practices. Nevertheless, the approaches can be dis-
tinguished, and this study has investigated both approaches.

Two further schools modes of evolutionary computing are used.Genetic programming, (Koza, 1992),
and is essentially based on the application of genetic algorithms to LISP parse trees to evolve computer
programming. Finally,Evolutionary programming (Fogelet al., 1966) was originally based on the idea of
evolving finite-state automata to perform tasks, though has evolved to be very similar to evolution strate-
gies.

2.3 RPL2

All the search algorithms implemented for this project were constructed using theReproductive Plan Lan-
guage RPL2 (Surry & Radcliffe, 1994b, 1994a; Radcliffe & Surry, 1994c). RPL2 is an extensible lan-
guage, interpreter and run-time system for the implementation of stochastic search algorithms, with a
special emphasis on evolutionary algorithms such as genetic algorithms. It was developed at Edinburgh
Parallel Computing Centre using a variety funding from SERC, EPSRC, DTI, British Gas and Cray, and
has been further developed by Quadstone Ltd, which now owns RPL2.

For details of RPL2, the reader is referred to the papers cited above, together with papers describing its
application to a range of challenging optimisation problems, including Boydet al. (1994), Radcliffe &
Surry (1994b), Radcliffe & Surry (1994a), Surryet al. (1995) and Hardinget al. (1995). The main features
of RPL2 pertinent to the current project are:

� Automatic Parallelism. RPL2 interpreters and run-time systems exist in both serial and parallel
form, and the RPL2 language contains constructs specifically designed to allow the system to ex-
ploit parallelism. The programming paradigm used to support this is message passing, allowing
efficient execution on distributed-memory platforms. In most cases, extremely efficient execution
on shared-memory platforms is also achieved by parallel implementations of RPL2. RPL2 has been
used efficiently on as many as 256 processors on Cray T3D platforms.

� Support for Arbitrary Representations. RPL2 supports arbitrary representations, rather than being
restricted to simple string-based representations. This is important in the current context as the rule
forms used are not string-like.

� Large library of supplied functions. RPL2 is supplied with a large number of standard functions
which may be used in any reproductive plan (‘program’). These massively reduce the amount of
work required in constructing a new evolutionary algorithm, and in the present case allowed almost
the entire project to be devoted to an exploration of data mining itself, rather than merely coding
up ideas.
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2.4 Database Interfacing

It is clearly helpful for a full data mining system to include the ability to interface to mainstream databases,
for example through SQL. In many cases, the mode of operation of the data miner will be two-phase. The
first phase (which may be likened to the training phase of, for example, neural network models) would
involve hypothesis formulation and refinement, probably using only a sample of the database (see section
2.4.2). After useful patterns have been generated there would typically be a second phase (analogous to the
classification phase of neural and related systems) in which the patterns are tested against the full database
or some other larger database with comparable characteristics, either for verification or for application.
During the first phase, depending partly on the quantity of data being used, it is likely that “training” data
would be extracteden masse and then used without further reference to the database. This is typically the
phase during which most of the computing power is required and most of the work is done. Even in cases
when the entire database is to be used for hypothesis formulation, there are advantages in using extracted
tables stored in an efficient format.

GA-MINER currently works on an extract from the database stored in main or virtual memory. This limits
the size of database which may be effectively handled by the system to around the size of the main mem-
ory available on each processing element used.� However, since the large scale parallelism which is
achievable by genetic algorithms makes them particularly suitable for larger databases, work is presently
underway to integrate GA-MINER into a suite of database interfacing tools developed by Quadstone Ltd.

These tools, designed to run on Symmetric Multi-Processing (SMP) platforms, implement efficient virtual
tables by storing an extract from the database in a column-oriented format within memory-mapped files
across multiple disks. This will allow GA-MINER to access much larger databases more efficiently and
exploit the parallel I/O facilities available on such platforms.

We expect that, at least in the short to medium-term, such extraction and reorganization of data will con-
tinue to be required if large scale data analysis is to be efficient supported (see section 6.5).

2.4.1 The Trend towards Data Warehouses

In the previous section we discussed the use of extracts to obtain the data required for analysis purposes.
Here we have assumed that all the required data actually exists within the database, and is available for
extraction, however this task is in itself far from trivial.

The nature of database systems is changing as a result of fundamentally different business requirements.
Inmon & Osterfelt (1991) identify three phases in the adoption of computers within businesses. In the first
phase, computers were simply used to automate repetitive and time consuming activities, such as payroll
administration, while the second phase saw the introduction of transaction processing systems to auto-
mate further the day-to-day running of businesses. The third and current phase,data pattern processing
involves the large scale pattern search of databases for key insights into the data, essentially a definition
for what is now generally known as data mining.

It is clear to see how these changing business needs have influenced database technology. The original
first-phase computer databases required relatively few updates by today’s standards, perhaps changing
only when new employees joined and old employees left, or when a batch run calculated salaries and
tax returns. Second-phase systems on the other hand, typified by the banks’ use of Automated Teller Ma-
chines (ATMs), required frequent and fast on-line updates and often much larger storage capabilities. The
most recent database systems, known asdata warehouses and generally used for decision support and data
mining, have altered this data access and storage pattern once again.

It is now widely recognised that databases used by organisations to fulfill specific operational needs, can
also be used to provide insight and knowledge that may be used for decision support purposes, particularly
when many such databases are combined together. For example, a supermarket chain may wish to com-

�Performance degrades by a factor of around three when virtual memory is used
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bine electronic point of sale (EPOS) data with a demographic breakdown of each of its store’s catchment
areas, to look for trends in its customer base.

To support such analysis, data warehouses must have the capacity to store vast quantities of data and man-
age this data in an efficient and cost-effective manner. The sheer scale of the data storage requirements
means that a hierarchy of storage mediums is necessary, ranging from fast but expensive memory and data
caches, to slower and moderately priced bulk storage devices for infrequently used historical data. The
data is often wide ranging and collected from a number of disparate sources, usually requiring translation
and compilation into an appropriate format before inclusion in the data warehouse. The system must there-
fore be able to interface with other widely used database systems. It may also require the ability to trace
data back to its original source and time of extraction, perhaps because further analysis is later required
on the same data, or because analysts wish to check the integrity of the original data source after some
interesting patterns have been discovered. This is particularly difficult when data is being continuously
changed and updated. Some systems may also provide improved performanceby running in a “read-only”
mode, removing the overhead of the lock manager.

Clearly, the emphasis of decision support data warehousing systems is distinctly different from that of
systems for on-line transaction processing (OLTP). This has been reflected by the introduction of a new
TCP-D benchmark for decision support (TPC-D, 1994). For these reasons, businesses have generally kept
their decision support data warehouses separate from their OLTP systems, a trend which we expect to
continue, as in the medium term at least, it is unlikely that OLTP systems will be capable of efficiently
satisfying the needs of both on-line updates and decision support-style queries. Furthermore, the current
trend towards “outsourcing” is likely to result in businesses buying data from external sources rather than
collecting it themselves, once again emphasising the need to handle disparate data sources effectively.

2.4.2 The Rôle of Sampling

One of the main problems in mining very large databases is the time cost associated with evaluating the
goodness of a pattern. Since evaluation normally involves scanning over all records in the database, an
obvious way to reduce this time penalty is to use a sample.

Sampling may be applied in a number of ways, perhaps the most common beinguniform random sam-
pling, in which each record in the database has the same probabilityp of being selected as part of the
sample. The inference techniques associated with uniform random sampling are relatively straightfor-
ward and methods for estimating the degree of significance for a finding are widely known (though see
section 6.3 for some cautionary words on their application). Other sampling techniques, such asstratified
random sampling andcluster sampling are also possible, though these are more common during the data
acquisition process rather than during the model building stage.

If applied correctly, sampling can significantly reduce the amount of work required to evaluate patterns,
and will not affect the quality of the evaluation of discovered patterns to a significant degree. Indeed,
sampling may actually result in the construction of a better model for the data, since the use of the full
database can result in over-fitting (Corteset al., 1995).

Despite its potential utility, sampling is now treated with some suspicion by many in the data mining com-
munity, and even more by many business users. We believe that the reason for this is that to date, a push
to reduce the data volumes used for model building has driven sampling much more than a desire for
generalisation ability in the models. This has in many cases led to the use of very small samples, wholly
inadequate for the model building tasks to which they have been applied. This is perhaps inevitable, given
that many of the tools used today are available only on PCs.

We do not argue here that sampling should not be used, merely that it must be used with caution and that
its implications for particular applications are considered in advance.
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2.4.3 The Rôle of Pre-Processing

Pre-processing of data can be defined, perhaps rather imprecisely, as the process of preparing data before
use in an analysis.

Much of the work which may be regarded as pre-processing can be performed by the database or data
warehouse which stores the data, for example, the relational joins, projections and selections needed to
build the required table. Pre-processing may also be performed to reorganise the storage of an extracted
table for more efficient access by the data mining system.

There are a number of other useful and widely applied pre-processing techniques which may be applied to
the data. Summary statistics may be calculated in advance for each field. These may useful as reference
values to compare against when searching for outliers or for changes in a distribution, or they may be used
to assist the search and discovery process.

Derived attributes traditionally play an important rˆole in conventional statistical analysis and can work in
combination with the pattern representation to give more expressive knowledge representation. Derived
attributes are generally introduced to express quantities which it is believed will have a significant effect
on the analysis, but which the method will be unable to introduce on its own. For example, we may add
non-linear transformations of the fields in a database if we have a pattern representation which can express
only linear relationships between two variables.

Unfortunately, choosing appropriate derived attributes can be a black art. A few systems (e.g. Forty-
Niner, Zytkow & Baker, 1991; Zytkow & Zembowicz, 1993) include “equation finders” which attempt
to discover functional relationships between fields, reducing the need for derived attributes. Another al-
ternative is to allow the system to create new derived attributes automatically during the search process.
Both these approaches, of course, are strongly limited by the kinds of dependencies envisaged by the sys-
tems’ creators, and it is hard to see that a strong general methodology for automatic pre-processing can
ever be obtained.

Some methods of analysis require particular pre-processing stages to be performed in order for the algo-
rithm to produce good results. For example, transformations on variables are often used to reduce corre-
lations between fields in regression analysis, since these often result in the regression coefficients having
high standard errors.

Such transformations may also be useful in data mining. For example, if records contain aggregate data
for individuals within particular geographical areas which vary dramatically in population, it may be ap-
propriate to transform the fields to express the figures “per head of population”. This abstracts away from
the strong “more people means higher values” relationship, and is likely to make other patterns easier to
find.

Attribute elimination is often performed to reduce the number of attributes which need be considered by
an analysis or data mining technique, perhaps for the purpose of making the analysis a tractable prob-
lem. Usually the attributes are selected for removal on the basis of lack of “predictive power” for the
particular analysis taking place, usually measured by a correlation coefficient. However, this is difficult
to determine, as an attribute may have no predictive power in isolation, but have significant predictive
power when combined with other attributes. Attribute removal must therefore be applied cautiously, and
perhaps only when the analysis or data mining technique would suffer badly from the inclusion of too
many attributes.

Although data mining systems are performing increasing amounts of data pre-processing automatically,
at the time of writing it remains largely a task requiring significant human input.

2.4.4 Data Provided by Industrial Collaborators

Our industrial collaborators both provideddata of commercial interest which could be used by GA-MINER
for data mining purposes.
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GMAP Ltd. provided UK census data from the 1991 census, together with several databases containing
car sales data from the same year. These databases were then aggregated and combined into a single re-
lational table, from which some redundant attributes were dropped and to which some additional derived
attributes were added.

In more detail, the databases provided were:

� UK census data for 1991. This data consisted of a geo-demographic breakdown of the UK at postal
district level and contained aggregate data associated with both individuals and households.

� Ford car sales data, collected from individual garages.

� Sales data for all manufacturers at a postal district level.

� Geographical locations of all major UK car dealers.

The final pre-processed database consisted of 2257 records, one for each postal district, and 54 attributes,
including demographic information and fields relating to the sales and market share of Ford cars in each
postal district. It was hoped that data mining would provide insight into the factors affecting the sales of
Ford vehicles, and discover patterns relating sales or market share to demographic features of particular
areas. The fields in this database are detailed in full in appendix D.

During performance testing, this data was replicated some 20 times to form a larger database of 51140
records and 58 fields (see section 5.3), to evaluate GA-MINER’s performance on databases on a realistic
size.

Barclays Ltd. provided two customer databases, both of which are of a confidential nature and are there-
fore not discussed in detail in this report. In the first database, which consisted of 8669 records and 62
attributes, the rˆole of data mining was to discover factors relating to which customers would default on
credit repayments. The second and larger database (80 Mbytes) consisting of 50730records and 185 fields,
was a general customer database, within which the data mining task was to discover general trends in cus-
tomer behavior.

Several public domain databases from the machine learning repository at UCI� were also used during the
course of the project, as were a number of large artificially generated test data sets with known properties,
used during refinement of the genetic operators.

�http://www.ics.uci.edu/AI/ML/Machine-Learning.html, or anonymous ftp from ics.uci.edu in directory pub/machine-learning-
databases.
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Chapter 3

Survey of Related Work

3.1 Related Work on Genetic Algorithm-Based Learning

Work on genetic algorithm learning systems has traditionally been grouped into one of two general ap-
proaches, named after the universities in which they originated. ThePitt approach most resembles the
traditional genetic algorithm. Here each entity in the population is a set of rules, representing a complete
solution to the learning problem. Crossover and mutation are applied in the usual way to create new gen-
erations of such populations. TheMichigan approach, however, has generally used a distinctly different
evolutionary mechanism. The population here consists of individual rules, each of which represents a
partial solution to the overall learning task. Only through co-operation with the other rules in the popu-
lation is the overall problem solved. Complex population dynamics and credit-apportionment schemes,
such as Holland’sBucket Brigade (Holland, 1985), are often required to ensure that collections of rules
which work well together are rewarded. Since the GA-MINER system bears most resemblance to the Pitt
approach, we restrict our attention here to other systems of this nature.

LS-1 (Smith, 1980, 1983, 1984) is an early example of a machine learning system using the Pitt approach.
A knowledge base (population) of production rule sets is manipulated by the genetic operators and at any
instant, the best rule set in the knowledge base (as evaluated by a problem specific component of LS-1
called thecritic) is regarded as LS-1’s current hypothesis of the solution to the learning task.

The left hand side of production rules are a combination of state variables reflecting the specifics of the
particular problem domain and a number of internal message variables, stored in LS-1’s working memory.
These are binary encoded and simple pattern matching is used to determine which rules match a particular
set of inputs. The right hand side of production rules consist of a message to be posted in the working
memory, and optionally, a problem specific operator to be applied in reaction to the current state, which
represents the system’s response to the outside world. When no operator is specified, the message posted
by the production rule is for internal communication purposes only. LS-1 therefore acts as a finite state
machine, whose production rules (governing its state transitions and its response to the environment) are
evolved by the genetic algorithm.

Smith uses a revised set of genetic operators which manipulate the representation at different levels of
granularity reflecting the semantics of the representation and shows that theoretical results for genetic
algorithms still hold.

GABIL (DeJonget al., 1993) also uses the Pitt approach for evolving concept descriptions. A concept
description is defined as a collection (disjunction) of possibly overlapping classification rules. Left hand
sides of classification rules consist of conjunctions of attribute/value-sets, while the right hand sides spec-
ify the class to which the rule will assign an example matching the left hand side. Thus the representation
is in disjunct normal form (DNF), but with internal disjunction. Only discrete attributes are handled and
the value sets are encoded in binary.
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The focus of the work is on learning a single concept (or class) descriptions. Here, examples not covered
by any production rule in the evolved concept description are regarded as not belonging to the concept.
The problems specific to multi-concept learning, where more than one class may exist and examples may
be covered by several conflicting production rules, are left as future work.

A modified two-point crossover is used, extended to handle variable length rule sets, together with a stan-
dard mutation operator. The goodness of a concept description is measured as the square of percentage
of examples correctly classified.

COGIN (Greene & Smith, 1993, 1994) addresses multi-class problem domains by introducing competi-
tion for coverage of training examples, encouraging the population to work together to solve the concept
learning task. In this respect it is similar to a Michigan approach; however, its evolutionary mechanism
is distinctly Pitt-like.

Each rule is a conjunction of attribute/value-sets, encoded in binary. Unlike traditional genetic algorithm
implementations, rules are chosen for recombination at random. The newly created rules, together with
the existing population of rules, are then ranked in order of fitness and are inserted one by one in this rank
order into the next generation of the population, provided they cover some example in the training set
which has not already been covered by a previously inserted rule. Any such redundant rules are discarded.
The population size thus changes dynamically according to the number of rules required to cover the entire
set of training examples.

Fitness is based on an entropy measure, modified according to classification accuracy and both single point
and more recently, uniform crossover have been used. Recombination is applied to the left hand sides of
rules only. The right hand side of a rule is assigned to be the majority class found within training examples
covered by the rule.

REGAL (Neri & Giordana, 1995; Giordanaet al., 1994) uses a similarly coverage-based approach for
multi-concept learning. A population of conjunctive descriptions for concepts is maintained, forming a
redundant set of partial solutions and the overall concept induction task is performed by the entire pop-
ulation of rules. Each rule is evolved in its own right as a partial solution to the problem, however, as in
COGIN, a traditional Pitt-like genetic algorithm approach is used to evolve new rules and competition for
coverage is used as a means of encouraging co-operation within the population. This is introduced via a
newUniversal Sufferage selection operator, resulting in a collection of rules which tend to cover different
training examples and work together to provide a complete solution. The system is distributed in nature
and uses first order logic for rule representation. Both two-point and uniform crossover are used, together
with task-specificgeneralising andspecialising operators.

Cui et al. (1993) use a parallel genetic algorithm for the identification of “good” and “bad” customers in a
credit-scoring application. Solutions are evaluated using either a generic classification accuracy measure,
or an application-specific measure of profitability, introduced to reflect the fact that profit is reduced by
a larger amount due to an incorrectly classified bad risk than it is increased due to a correctly classified
good risk. Results were compared with several other classifiers, including Bayes, k-nearest neighbours
and ID3, and while the genetic algorithm was no better in terms of classification accuracy, it outperformed
the other methods on the profitability measure.

3.2 Related Work on Data Mining

There are many tools which fall into the broad category of data mining systems, however they are too
numerous to describe here. Rather, we restrict ourselves to describe just a few from which GA-MINER
has drawn ideas.

The Knowledge Discovery Workbench (KDW) (Piatetsky-Shapiro,1992) is a database explorationsystem
including components for data visualisation, clustering, summarisation and classification. It has a strong
emphasis on the integration of user interaction with automated discovery.

The system incorporates knowledge of the particular domain in three forms, adata dictionary which in-
cludes descriptions of the fields’ respective types and possible values,field-value taxonomies, which group
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field values into classes reflecting features of the domain, andfunctional dependencies, functional rela-
tionships which are known to exist within the database.

Each of the discovery features of the system is implemented using its own specialised algorithm. Classifi-
cation, for example, is performed by constructing a decision tree similar to Quinlan’s ID3 (Quinlan, 1986),
while summarisation is performed by scanning all records which satisfy a user-defined concept, incre-
mentally building a conjunctive rule which describes these records, and evaluating its goodness using a
statistical test.

The visualisation of data is achieved through the use of public domain tools such as gnuplot, which are
integrated into the KDW environment. Extensions of the system to allow discovery of changes are also
discussed.

EXPLORA (Hoschka & Kloesgen, 1991; Kloesgen, 1992, 1994a, 1994b; Gerbhardt, 1994) is an inter-
active statistical analysis tool for discovery in databases. A number ofstatement types (or patterns) are
defined, and users may select the most appropriate for their particular analysis purposes. For example, pat-
terns exist to detect sufficient and necessary conditions for belonging to a user-defined target group and
also to detect shifts in the mean or in the distribution of dependent variables within a particular subset.
The subsets of the database are selected using propositional logic constructs, consisting of conjunctions
of conditional tests on attribute and values. Users may also specify the variables which may be used in
the search and those which will be used as target (dependent) variables and explanatory (independent)
variables.

Evaluation of the goodness of patterns is performed mainly using statistical significance tests, and the
search of the pattern space is performed using a general graph search, combined with a redundancy filter
to ensure that only true and non-redundant statements are generated.

A rule refinement stage is applied to select a moderately sized subset of statements which are sufficiently
different from one another and a variety of means are provided for presenting discovered rules to the user.

Holsheimer & Kersten (1994)present an architecture for database mining consisting of a parallel databases
server and a data mining tool, Data Surveyor. The authors argue that in many cases, data mining on an
entire database is preferable to using a sample, and present a system which efficiently supports the search
for classification rules in large databases.

The left-hand sides of classification rules consist of conjunctions of attribute/value-set conditions, while
the right hand sides specify the assigned class. The quality of each rule is evaluated by considering the
ratio of the number of positive examples covered by the rule to the number of positive and negative ex-
amples covered by the rule.

An iterative search strategy is used in which conjunctions are incrementally added to the current rule. Ini-
tially the left hand side of the rule is a tautology and at each iteration, the quality of all possible extensions
to the rule (i.e. the addition of conjunctions) is evaluated. The bestw of these are then selected for fur-
ther exploration, a greedy beam search strategy, and the process continues until no further improvement in
quality is achieved or until the length of the rule exceeds a user-defined limit. The algorithm has azooming
in behaviour due to conjunctive nature of the extensions, and hence calculating the possible extensions for
a rule requires consideration only of the records presently covered by the rule. This continuous reduction
in the coverage of rules is exploited by the database server to improve the efficiency of the search.

Freitas & Lavington (1995) also consider data mining from an architectural perspective and argue for an
integrated knowledge discovery and database approach. Rather than run the knowledge discovery algo-
rithm on an extract from the database, asnapshot, or if this functionality is not provided by the database
server, a single relation, is created containing the data upon which the mining task will be performed. This
allows the exploitation of database facilities such as indexing and query optimisation for efficient evalu-
ation, and the utilisation of domain knowledge derived from integrity constraints and attribute statistics
contained in the database.

Rules are of the form “if D then C” where D is a conjunction of attribute-value conditions and C is a value
of a goal attribute. Discretisation of values is required, as the data mining task is reduced to the production
of anm � n contingency table. This is supported by aCount by Group database primitive, which can
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be implemented using a standard SQLgroup by query. Results are compared on three architectures and
suggestions are made for a modified version of the primitive, requiring extensions to SQL, to support
increased efficiency.

Forty-niner (Zytkow & Baker, 1991; Zytkow & Zembowicz, 1993) searches for regularities in databases,
that is, a pattern and the range within which it holds. The representation of a range is as a conjunction
of attribute/value-sets, while a pattern is either a function (an equation relating the attributes) or a contin-
gency table. The search algorithm initially concentrates on regularities between attribute pairs in subsets
of the database, and allows user interaction to then focus a more specific (and more costly) search, to refine
the most promising of the discovered regularities.

3.3 The GA-MINER Approach

GA-MINER attempts to bring together research on both genetic algorithms and data mining and as such,
draws on the results and experience of much of the work described above.

We present a system for pattern discovery in databases which searches for patterns along the lines of those
used in EXPLORA and Forty-Niner, but which uses a Pitt-like genetic search method. The ultimate aim
of GA-MINER is to perform unsupervised knowledge discovery, and while the system falls some way
short of this ambitious goal, it does operate with the minimum of user interaction to perform an undirected
pattern search of the database. Facilities are also provided to allow the user to specify particular areas of
interest, should they so desire, or to suggest rules to the system which GA-MINER may then refine into
better rules.

We exploit the parallelism inherent in the GA approach using RPL2 (Radcliffe & Surry, 1994c; Surry
& Radcliffe, 1994b) an interpreted and extensible language for the development of parallel genetic algo-
rithms. We demonstrate that although the system is capable of pattern search on a stand-alone desktop PC,
it is also capable of scalable performance to exploit the parallel resources of powerful supercomputers.
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Chapter 4

Specification of the GA-MINER
System

In this section, we present a specification of GA-MINER in some detail. Section 4.1 presents a general
overview of GA-MINER, considering its integration with RPL2 and outlining its data model and main
features. Subsequent sections consider the component parts of the system in more detail, starting in sec-
tion 4.2 with a description of the genetic algorithm currently used by GA-MINER. Sections 4.4, 4.5, 4.6
and 4.7 describe the patterns and evaluation functions supported by GA-MINER, while section 4.8 de-
scribes the pattern templates which are used to select patterns and influence the scope of the search by
constraining the population to be of a particular form. The operators written for the RPL2 rule library
are specified in section 4.9, while section 4.10 describes the data format used by GA-MINER. Section
4.11 briefly considers how domain knowledge may be incorporated into a genetic algorithm and finally,
in section 4.12, we describe the prototype graphical user interface to the system.

4.1 Overview of GA-MINER

The GA-MINER software is implemented as a new representation and library of operators for RPL2. As
such, it is able to exploit the interpreted environment of RPL2 for fast interactive development and eval-
uation of new genetic data mining techniques, while at the same time utilise the parallelism provided by
RPL2.

During development, RPL2 plans (section 4.1.3) are used to configure the application and set the control
parameters of the genetic operators, whilepattern templates (section 4.8) are used to control the form of
patterns present in the population.

A graphical user interface is provided to hide the developers interface from users, and present discovered
patterns in a visual form.

The architecture is highly amenable to the incorporation of domain-specific, non-genetic local search al-
gorithms, which can exploit available domain knowledge to locally improve patterns found by the genetic
algorithm. Such hybrid algorithms, termedmemetic algorithms (Moscato & Norman, 1992; Radcliffe &
Surry, 1994b), have been shown to be extremely powerful in other application domains, often obtaining
higher quality solutions than either the genetic or local search algorithms could obtain on their own.

4.1.1 Integration of New Operators Into RPL2

The integration of new operators into RPL2 is straightforward. Aninterface header file is written for each
new library (Surry, 1993b), and this contains an entry for each function in the library, specifying the name
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Variables

Quantitative Catagorical

Enumerated Ordinal Hierarchical

Figure 4.1: Types of variable.

Product

Fruit

Bananas Apples Pears

Vegetable

Turnip Carrot

Figure 4.2: A variable hierarchy may contain useful domain knowledge.

which is to be used for the RPL2 operator corresponding to that function. Users then compile a new RPL2
executable, and the compilation process automatically links in the new functions and binds them to the
specified operator names.

If the parallel features of RPL2 are to be made available, two additional functions must be written and
included in the library, namely apack and anunpack function. The pack function is used to flatten the new
genome representation into a sequence of consecutive bytes, in order that it may be transfered between
processes�. The unpack function performs the reverse operation, translating the byte sequence back into
a genome representation. These two functions must be registered in the interface header file as before.

Operators are made available for use within RPL2 plans by including the library name in theuse directive
at the start of the plan. For an example, see section 4.9.1.

All the base functionality of RPL2 remains available within the modified executable.

4.1.2 Data Model

Data is currently read into GA-MINER using theReadData function (see section 4.9.2). GA-MINER
uses the relational model (Ullman, 1988) for data storage and, as is common in machine-learning circles,
this is restricted to a single relational table containing all required data.

Variables (relational database fields) are assumed to be either categorical or quantitative. Categorical vari-
ables may be unordered (enumerated), ordinal (ranked) or hierarchical (see figure 4.1).

The purpose of allowing variable hierarchies or orderings in the underlying model is to allow the expres-
sion of domain knowledge which may be useful in the search. For example, if a rule within a retail sales
database applies to bothbananas andapples, the knowledge thatfruit is a generalisation of these concepts
may be useful in deriving new rules (see figure 4.2).

Variables are labeled as eitherdependent or independent. Independent variables are generally those whose
value is determined by factors outside the database. Dependent variables are those whose value is believed
to be affected by the independent (explanatory) variables in the database.

�A rule specification is a compound structure rather than a simple string



EPCC-AIKMS-GA-MINER-REPORT 1.0 31

The designation of fields as “dependent” or “independent” is really a further expression of domain knowl-
edge which allows the search to ignore certain patterns. For example, in a retail sales database, the weekly
hours of sunshine may be included along with sales figures in the expectation that the weather may effect
sales of certain products. Here, the sales of various items are dependent variables, while the weekly hours
of sunshine is an independent variable. In this context it does not make sense to make the weekly hours of
sunshine a dependent variable, as we do not expect that sales of a particular product will affect the weather.

Data elements within quantitative fields may be integer or real, while data elements with qualitative fields
may be integers or strings.

4.1.3 RPL2 Plans

The genetic algorithm used by GA-MINER is expressed as an RPL2 plan (see appendix A for an example
plan), and is therefore easy to modify. The plan most used during the course of this project is described in
section 4.2 below, however, it is important to note that other algorithms are easy to implement by modi-
fying the plan. Indeed, completely new genetic algorithm schemes, such as the coverage-based schemes
used by REGAL and COGIN are relatively easy to implement by simply integrating any necessary addi-
tional operators and modifying the RPL2 plan as appropriate.

4.2 The Genetic Algorithm

The genetic algorithm used by GA-MINER is defined by its corresponding RPL2 plan, which uses a two-
dimensional fine-grained structured population model, where each genome in the population is permitted
to recombine only with other genomes within a finite local deme as described in section 2.2.4. Such a
population structure helps prolong global diversity within the population, preventing premature conver-
gence on a single pattern, and also allows local niching, which tends to result in exploration of several
areas of the search space within the same population. This matches well with the goal of finding several
patterns within the database, rather than just a single pattern.

The deme for the fine-grained diffusion model is set to a low value, usually 1 or
p
�, giving either four

or eight possible reproductive partners for each population member at any particular generation. A gen-
erational update of the population is used. For each genome in the population, a reproductive partner is
selected from its local deme using tournament selection.

The two genomes are then combined using the crossover operator. The newly created genome and the
original genome are then collected together and tournament selection is used again to select one as the
replacement genome for that location in the structured population.

The algorithm is parallelised using RPL2’sstructfor construct, which performs a simple data decom-
position of the population across processors. This is particularly suitable for a fine-grained population
structure as the interaction between genomes is restricted to a local neighbourhood, and the evaluation of
newly created genomes may be performed completely independently from each other.

The crossover operator is defined at a variety of levels, reflecting the structure of the representation. Within
subset descriptions (see section 4.4.1) crossover at the disjunct clause level is based on uniform crossover,
but enforces positional alignment of componentclauses. Both uniform and single-point crossover are used
at the clause level, while crossover at the term level is again based on uniform crossover. Details of the
crossover functions are presented in section 4.9.5.

Mutation (section 4.9.6) is also defined at a variety of levels, with separate probabilities specified for mu-
tating disjuncts, clauses, terms, attributes, values and ranges.

Clauses, terms and values are added or deleted with specified probabilities and can be regarded as a dis-
tinct operation from standard crossover or mutation (although they are actually implemented as part of the
mutation operator). Again this reflects the nature of the application domain, with these operators either
specialising or generalising a pattern.
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GA-MINER collects sets of patterns or rules during the run of the algorithm for presentation to the user.
The sets are of a user-specified maximum size and are initially empty. After each new generation of pat-
terns has been created, the bestn patterns in the new population (n is a user specified parameter) are con-
sidered for inclusion in the “rule set”. GA-MINER currently uses a simple heuristic for updating the rule
set, based on a strategy of maintaining the rule set at it maximum size and continually replacing either the
lowest fitness rule in the set or the most similar rule in the set (if the similarity is over a threshold) by a
higher fitness rule. The details are given in section 4.9.8.

4.3 Reasons for Abandoning the Hierarchical Genetic Algorithm

The original GA-MINER project proposal suggested the use of a hierarchical genetic algorithm consisting
of two levels; a “low-level” genetic algorithm to evolve individual rules using niched competition and
structured population models, and a higher level genetic algorithm to evolve sets of such rules which give
good coverage of the search space.

However, early in the project it beacume clear that this two level scheme was unnecessary and over-
complex. The concept of a good rule set is, like the concept of a good rule, hightly subjective in nature.
Wheras we require a mathematical evaluation function to estimate the goodness of an individual rule, it
seems unduly complex to require an evaluation function to estimate the goodness of a rule set, since all
that we require from such a set in the initial version of GA-MINER is that each rule is sufficiently different
from the others in the set.

Clearly, a straightforward goal such as this can easily be achieved through the use of simple heuristics,
and at far lower computational expense than could be acheived by a second genetic algorithm. Thus, the
creation of rule sets in GA-MINER is performed using an incremental set update strategy (see functions
RuleSetInit in section 4.9.7 andRuleSetUpdate in section 4.9.8).

4.4 Specification of Rule Representation and Evaluation

In this section we specify the pattern forms supported by GA-MINER, together with their respective eval-
uation functions.

The basis for all supported patterns are thesubset descriptions, which are used to pick out subsets of the
database and form the main heritable units which are manipulated by the genetic algorithm. These are
described in section 4.4.1. The main pattern forms supported by GA-MINER are then described, namely
explicit rule patterns (section 4.5), patterns comparing distributions (section 4.6) and patterns describing
correlations between attributes (section 4.7).

Much of this section, and section 4.8 is reproduced from Flockhart (1995b).

4.4.1 Subset Descriptions

Subsets descriptions are clauses used within the various patterns to pick out subsets of the database. The
subsets are formed by selecting those data records which satisfy the constraints specified in the clause.
Such a data record is said tomatch the clause.

The form of clauses is based ondisjunctive normal form (DNF), with the slight extension to allow value
sets rather than just single values at theTerm level. This effectively adds a further layer of disjunction
at the lowest level. ABackus-Naur form (BNF) (Aho et al., 1986) description of the grammar is shown
below:
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U
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C
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Figure 4.3: Venn diagram illustrating the selection of subsets from the database.

Disjunct Clause ::= Clause [ or Clause ]
Clause ::= Term [ and Term ]
Term ::= Attribute = Value Set

j Attribute in Range

Operators ‘=’ and ‘in’ have highest precedence, followed by ‘and’ and finally ‘or’ which has lowest prece-
dence.

The ‘Attribute = Value Set’ form of term is referred to as avalue term, or attribute-value constraint. The
‘Attribute in Range’ form of term is referred to as arange term or attribute-range constraint. Value terms
are restricted for use with categorical variables, while range terms are used for quantitative variables.

4.5 Explicit Rule Patterns

These patterns are formed from three subsets extracted using subset descriptions which we will callS, C
andP (specificity, condition andprediction respectively) . The action of selecting subsets can be visualised
using a Venn diagram (see figure 4.3). TheS clause is used to restrict the domain of the rule to a particular
subset of records within the full databaseU. Often theS clause will be a tautology, in which case the rule
applies to the entire database. Within this selected subset, we then evaluate the goodness of the rule “if
C then P” (one-way implication) or “C if and only if P” (double implication). In many cases, evaluation
functions may be slightly adjusted to score either of these two rule forms and we therefore consider them
together.

Theaccuracy of a rule is defined as the number of records satisfyingC and P divided by the total number
of records satisfyingC. i.e.

accuracy�
jS � C � P j

�jS � C � P j� jS � C � P j�

Thecoverage of a rule is defined as the number of records satisfyingC and P divided by the total number
of records satisfyingP. i.e.

coverage�
jS � C � P j

�jS � C � P j� jS � C � P j��

The support of a rule is defined as the number of records satisfyingC divided by the total number of
records. i.e.

support�
jS � Cj
jSj
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When rules are presented by GA-MINER, all of these quantities are displayed.

Rule patterns for single implication take the conceptual form:

when S, if C then P.

As noted precisely, a more precise interpretation would be

Within S � P�P jC� � P�P �

Example

when Country = ’UK’,
if Month in f‘November’g and Rainfall � 30
then Sales of Umbrellas � 100.

Accuracy is 82%
Coverage is 55%

Rule patterns for double implication take the form:

when S, C if and only if P,

or more precisely,

Within S � P�P jC� � P�P �andP�CjP � � P�C�

Example

when Country = ’UK’,
Month in f‘December’g and Rainfall � 20
if and only if Sales of Umbrellas � 100.

Accuracy is 77%
Coverage is 65%

4.5.1 Interpreting Contingency Tables as Rules

In general we do not manipulate rule patterns in the form presented above. Rather, the basis for all rule
patterns in GA-MINER is a�� � contingency table containing the number of data records that fall into
each of the four subsetsS � C � P , S � C � P , S � C � P andS � C � P respectively, commonly
known as cell counts (see table 4.1).

Clearly, the table can be interpreted as a rule for either single or double implication, and is presented as
such to users. However, the use of a contingency provides a unified structure for these patterns and also
for other more general patterns.

For example, consider the pattern:

when S, C andP are related.

More precisely, the term “related” can be taken to mean “not statistically independent”. For example,
initially assuming independence ofC andP, we may look for unusually high or low numbers of records
falling into each of the four subsets.

To see how this can be interpreted a rule, consider an example where an unusually high number of data
records fall into theS � C � P subset and an unusually low number fall into theS � C � P subset.
This means that the ruleif C then P is true for an unusually high number of data records. Its accuracy
may not be high, but it is higher than in the expected case.
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S � P P

C jS � C � P j jS � C � P j
C jS � C � P j jS � C � P j

Table 4.1: A�� � contingency table.

Similarly, if an unusually high number of records fall into theS � C � P andS � C � P subsets,
together with an unusually low number of records in theS � C � P andS � C � P subsets, the rule
C if and only if P is seen to apply to a greater extent than expected.

When these rules are presented by GA-MINER, the� � � contingency table is shown together with the
expected cell counts.

Example

when Country = ’UK’,
the subsets satisfyingMonth in f‘March’g and Rainfall � 25
andSales of Umbrellas � 100 are unusually related.

(Expected cell counts in brackets)
S and not P P
not C 70 (40) 40 (60)

C 30 (50) 60 (50)

Or interpreting this as a rule:

when Country = ’UK’,
Month in f‘March’g and Rainfall � 25
if and only if Sales of Umbrellas � 100.

Accuracy is 57%
Expected Accuracy was 20%

Coverage is 40%
Expected Coverage was 30%

Note that we present both the expected accuracy and coverage alongside the actual accuracy and coverage
calculated for the rule.

4.5.2 Evaluation Functions

One may think that accuracy, as defined above may be used as an evaluation function. However, without
including some notion of support or coverage, it is possible that this function will tend to select trivial
knowledge (a rule that applies to one data record will be 100% accurate, but entirely useless). The inclu-
sion of multiplicative factor to encourage largerC subsets addresses this problem to some extent, how-
ever, since the rule “if C then true” is 100% accurate, rules with large subsetsP achieve undeservedly
high fitness. If the right hand sides of rules are fixed however (which in not true in the general case, but
is an important special case) accuracy adjusted by some multiplicative factor (e.g.log jCj may perform
reasonably well.

In general, the accuracy, coverage and support of a rule are useful descriptive notions which are easily
understood, however, they are not generally suitable as evaluation functions in an unmodified form. To
be useful, evaluation functions must take into consideration, either implicitly or explicitly, the degree to
which a rule departs from the expected.

The evaluation functions considered by GA-MINER are described below:
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Rule interest : This evaluation function was suggested by Piatetsky-Shapiro (1991) and is essentially
jS � C � P j � �jS � Cj � jS � P j��jSj.

J-measure : Suggested by Smyth & Goodman (1991), this takes the general form:

J-measure�C� fPjg� �
X
j

jC � Pj j
jSj log

�

jC � Pj j jSj
jCj jPj j

wherefCig andfPjg are partitions ofS. In our case,fCig � fC�Cg andfPjg � fP� Pg.
Information gain : In the general case, whenfCig andfPjg are partitions ofS, the information gain

originally derived by Shannon (see Frawley, 1991) is:

information gain�
X
i�j

jCi � Pj j
jSj log

�

jCi � Pj j jSj
jCij jPj j �

X
i

J-measure�Ci� fPig�

Product moment correlation : C andP are considered as binary variablesc andp respectively, which
take the value 1 if a data record matches and 0 otherwise. The product moment correlation,�, is
then calculated as given in section 4.7.2 (substitutingc andp for A andB respectively).

Chi-square� �� : Given a� � � contingency table, containing the actual countsn��, n��, n�� andn��
of records falling into each of the four subsets, we may calculate the column sumsc� andc�, row
sumsr� andr�, and total number of recordsn respectively as shown:

S � P P

C n�� n�� r� � n�� � n��
C n�� n�� r� � n�� � n��

c� � n�� � n�� c� � n�� � n�� n � n�� � n�� � n�� � n��

Assuming the independence of the two variablesC andP, the expected number of records
in each subsete��, e��, e�� ande�� respectively may be calculated from the product of its
respective row and column probabilities using the multiplicative law of probability. Some
simple arithmetic shows that the expected number of records in each subset is therefore:

eij �
ri � cj

n
� i� j � �� ��

It can be shown that under the assumption of independence ofC andP the�� test statistic,

�� �

�X
i	�

�X
j	�

�nij � eij�
�

eij

follows a�� distribution with a single degree of freedom. Thus, high values of�� provide
evidence that the variablesC andP are not independent.

In a�� � table, the�� simplifies to:

�� �
jSj�P�C � P ��P�C�P�P ���

P�C�P�C�P�P �P�P �
�

jSj�rule interest��

P�C�P�C�P�P �P�P �

Note that the�� statistic depends on the number of records in the contingency table (i.e. the
size of setS) and so cannot be used to directly compare patterns which differ in the magnitude
ofS. In such cases,Cramer’s V coefficient (Zytkow & Zembowicz, 1993) may be used, which
for a�� � contingency table is defined as

V �

s
��

jSj �
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The�� statistic is (up to a constantjSj loge � ) an estimate of the information gain when
P�Pj jCi� � P�Pj�.

Gini index or Twoing value (Breimanet al., 1984) : These two measures are in fact equal to a constant
factor for a�� � contingency table and are hence included together.

twoing value�
�

�
gini index �

�jC � P j jSj � jCj jP j��
jSj�jCj �jSj � jCj�

For a�� � table, the twoing value is empirically a good approximation to the information gain.

4.6 Patterns Comparing Distributions

These patterns look for a difference in the distribution of a variable within two subsets. Two compar-
isons are supported; in both cases the pattern consists of a quantitative variable,A, together with a BNF
description of two subsets,S andC. The variableA is often referred to as ahypothesis variable, since
pattern instances are essentially hypothesis aboutA.

4.6.1 Mean Comparison

This pattern takes the form:

The mean ofA whenS and C
is significantly different from the mean ofA whenS.
i.e. j��C � S �� ��S �j � �.

Example

The mean ofSales of Umbrellas
whenCountry = ’UK’ and Month in f‘March’g and Rainfall � 25
is significantly different from the mean ofSales of Umbrellas
whenCountry = ’UK’.

4.6.2 Evaluation Function

Student’s t-test statistic : The most obvious evaluation function for the goodness of this pattern is Stu-
dent’s t-test (Mendenhall & Beaver, 1994), a widely used statistical test which may be used to com-
pare two population means.

If 	x� and	x� are the sample means ofA in subsetsS andS � C respectively,n� � jSj, n� �
jS � Cj, ands is a pooled estimator of the standard deviation ofA, it can be shown that under the
assumption that	x� and	x� are equal, the test statistic t

t �
�	x� � 	x��

s
q

�

n�
� �

n�

follows Student’s t-distribution withn� � n� � � degrees of freedom.

Here, the pooled estimator of the standard deviation ofA is calculated by

s �

s
�n� � ��s�

�
� �n� � ��s�

�

�n� � �� � �n� � ��
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wheres� ands� are the sample standard deviations ofA in S andS � C respectively.

Thus, values oft far from zero provide evidence that our original hypothesis (the mean ofA is
the same in both subsets) is false. Again, a significance level can be determined for this finding,
however GA-MINER makes use only of the absolute value of the t statistic to evaluate the relative
goodness of these patterns.

This test assumes that the underlying distribution ofA is normal. When this can not be guaranteed,
the more general location comparison pattern is more appropriate (see section 4.6.3).

4.6.3 Location Comparison

This pattern takes the form:

The distribution ofA whenS and C
is significantly shifted from the distribution ofA whenS.

Example

The distribution ofSales of Umbrellas
whenCountry = ’UK’ and Month in f‘March’g and Rainfall � 25
is significantly shifted from the distribution ofSales of Umbrellas
whenCountry = ’UK’.

4.6.4 Evaluation Function

Mann-Whitney z statistic : The Mann-Whitney U-test (Mendenhall & Beaver, 1994), which is equiv-
alent to Wilcoxen rank sum test (Gibbons, 1985), is a non-parametric statistical test used to check
for a shift in location of a distribution. It is based on rank orderings of the samples and being a non-
parametric method, makes no assumptions about the underlying distribution of the variableA. We
use the large sample formulation which is valid when the sizes of the subsets are both greater than
10 (Mendenhall & Beaver, 1994).

The data records in the two subsets are first jointly ranked based on the value of variableA, assigning
1 to the smallest observation, 2 to the second smallest, etc. Ties in the orderingare handled by taking
the average of the ranks which would have been assigned to the records had they been arbitrarily
ordered, and assigning this average rank to each of the tied records.

Let T� andT� be the sum of the ranks in subsetsS andS � C respectively. We then calculateU ,
which is the smaller of

U� � n�n� �
n��n� � ��

�
� T�

and

U� � n�n� �
n��n� � ��

�
� T��

Finally we calculate the test statisticz:

z � U � �n�n����

r
n�n��n� � n� � ��

��

Under the assumption that the distribution ofA is the same in the two subsets, it can be shown thatz
follows az distribution, therefore, the further the value ofz from zero, the greater the evidence that
the two population distributions are shifted in location. Once again, GA-MINER does not calculate
a significance level, but uses thez statistic directly as a measure of the goodness of the pattern.
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4.7 Correlation Patterns

These patterns search for a correlation between pairs of variables that perhaps only hold within certain
subsets of the database. Two correlation patterns are supported. In both cases the pattern consists of two
quantitative hypothesis variables,A andB, along with a BNF description of a subsetS.

4.7.1 Linear Correlation

This pattern has the general form:

when S, the variablesA andB are linearly correlated

and expresses a linear relationship between two variables.

Example

when Country = ’UK’ and Month in f‘October’g,
the variablesRainfall andSales of Umbrellas are linearly correlated.

4.7.2 Evaluation Function

Product moment correlation coefficient� � : The product moment correlation coefficient is defined as

� �
Cov�A�B�p

V ar�A�V ar�B�

whereCov�A�B� is the covariance ofA andB andV ar�A�, V ar�B� are the variances ofA and
B respectively.

Values of� near�� indicate a linear relationship, hence the absolute value of� may be used as an
evaluation function to indicate linear relationships.

� � support : The product moment correlation multiplied by the support to encourage larger subsets to
be formed.

t-statistic for no linear correlation : It can be shown that under the assumption of no linear correlation
betweenA andB, the statistic

t �
�
p
n� �p
�� ��

follows a t-distributionwithn�� degrees of freedom. Therefore, larger values oft provide evidence
of linear correlation and we may use this as an evaluation function.

4.7.3 Rank Correlation (Monotonicity)

This pattern has the general form:

when S, the variablesA andB are monotonically correlated

and expresses a monotonic relationship between two variables.

Example

when Country = ’UK’ and Month in f‘October’, ‘November’g,
the variablesRainfall andSales of Umbrellas are monotonically correlated.
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4.7.4 Evaluation Function

Spearman rank correlation coefficient : The Spearman rank correlation coefficient is essentially the
product moment correlation coefficient between two sets of rank. We use a simplification of the
formula which is applicable if the number of ties in rank are small compared to the number of data
records,n in S. Hence, ifai andbi are the values ofA andB in theith data record, we define the
Spearman rank correlation coefficient as

rs � �� 


n�n� � ��

nX
i	�

d�i

where
di � ai � bi

rs � support : The Spearman rank correlation multiplied by the support to encourage larger subsets to
be formed.

t-statistic : as defined previously in section 4.7.2, but withrs replacing�.

4.8 Pattern Templates

GA-MINER supports several pattern forms. Clearly, a mechanism is required for selecting which of the
patterns should be used in the search. It is also useful to allow certain features of the pattern to be restricted,
thus guiding the search in the direction desired by the user.

For example, in anExplicit Rule Pattern, it may be useful to fix theS subset description to narrow the
domain of the search to people living in Scotland, rather than using the entire database which perhaps
covers the entire UK. Alternatively, in a retail sales database, we may wish to find only rules concerning
the sales of apples, and wish therefore to restrict theP subset description to permit only the variableSales
of Apples to appear.

For this reason, GA-MINER employspattern templates. A pattern template can be regarded as an initial
genome upon which all other genomes in the population are based. The component parts of the template
genome are marked as eitherinitialised or fixed. Fixed parts of the template genome are inherited by
every genome in the population and remain fixed throughout (i.e. they are not modified by crossover
or mutation). Initialised parts of the template genome are used to initialise all newly created genomes,
however, these may be modified by the genetic operators. The pattern template also specifies the the set
of variables from which each of the subset descriptions may be formed, and the maximum number of
permitted clauses, terms and values which may appear in each of the subset descriptions.

The language used to describe the pattern template is described in the subsequent sections and an example
pattern template description is given in appendix B.

4.8.1 General Form

A pattern template description consists of ause directive (see section 4.8.2), followed by optionalvariable
specifiers (see section 4.8.3) and an optionaldependent variables specifier (see section 4.8.4), followed
by ablock statement for each subset description (see section 4.8.5).

4.8.2 Use Directive

Theuse directive specifies the pattern to use in the search, and has the form:

use (Rule j Mean j Median j LinCorr j RankCorr ) pattern;
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The pattern specifiers indicate the following patterns:

Pattern Specifier Pattern
Rule Explicit Rule Pattern
Mean Mean Comparison Pattern

Median Location Comparison Pattern
LinCorr Linear Correlation Pattern

RankCorr Rank Correlation Pattern

4.8.3 Variable Specifiers

These optional specifiers allow users to initialise or fix any of the hypothesis variables used in patterns.

The basic form of the specifier is:

(fix j init) (A j B) = Variable Name

whereVariable Name is the name of the desired variable in double quotes, andA andB correspond to the
variablesA andB in the patterns described in Flockhart (1995b).

When theinit version of the statement is used, all randomly generated patterns (see section 4.9.3) are
initialised with the specified hypothesis variable set toVariable Name. Thefix version of the statement
specifies that this variable should remain fixed throughout the search, and not be modified by crossover
or mutation (see sections 4.9.5 and 4.9.6).

For example, in a Linear Correlation pattern, the specifier:

fix B = “Sales of Bananas”;

initialises and fixes variableB to beSales of Bananas throughout the search.

4.8.4 Dependent Variables Specifier

The dependent variables specifier is an optional statement which changes the default specification of vari-
ables asdependent or independent The form of the statement is:

dependent Variable List;

whereVariable List is as described in section 4.8.9. Each variable in the variable list is set to be a depen-
dent variable, while all variables not in the list are set to be independent variables.

4.8.5 Block Statement

The block statement groups together the statements which define the template for subset descriptions. The
form of the statement is:

begin ( (spec j cond j pred ) ) Statement List end ( (spec j cond j pred ) )

The spec, cond andpred subset specifiers indicate theS, C andP subsets respectively, used in Flock-
hart (1995b). Blocks may not be nested and the subset specifier used in anend statement must match that
used in the last unmatchedbegin statement.

TheStatement List may consist of optional statements to set the maximum number of clauses, terms and
values for that subset description (section 4.8.6), an optional statement to define the variables that may
be used in that subset description (section 4.8.7), and a description of the template for clauses, terms and
values (section 4.8.8).
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4.8.6 Setting the Maximum Number of Clauses, Terms and Values

This statement has the form:

(MaxClauses j MaxTerms j MaxValues) = Integer;

TheMaxClauses, MaxTerms andMaxValues specifiers are used to indicate the maximum number of
clauses, maximum number of terms and maximum number of values respectively, which may be used
in current subset description (i.e. the subset description specified by the currentbegin andend block
statements).

Each of these statements is optional. If no statement to set the maximum is included, a default value is
used.

4.8.7 Variable Set Specifier

This statement has the form:

select variables from Variable List;

and specifies that only variables in theVariable List may be used within the current subset description.
Variables List’s are specified as described in section 4.8.9.

4.8.8 Subset Description Specifier

Subset description specifiers allow the user to initialise or fix the clauses, terms and values within a subset
description. The basic form of these descriptions is shown below:

Subset Description Specifier := ( Disjunct Clause Description ) [ : fixed ]
Disjunct Clause Description := ( Clause Description ) [ : fixed ] [ or Disjunct Clause Description]

j true
Clause Description := ( Term Description ) [ : fixed ] [ and Clause Description ]
Term Description := (fix j init) Variable Name = Rhs Description
Rhs Description := (fix j init) Value

j (fix j init) Numeric .. (fix j init) Numeric
Value := Integer j Quoted String
Numeric := Integer j Real

The optionalfixed directive appearing after aDisjunct Clause Description fixes the number of clauses
to the number of clauses appearing in theDisjunct Clause Description (i.e. the addition or deletion of
clauses is prevented). The special case of an entirely empty disjunct clause may be specified using the
’ true’ keyword. This is only useful when thefixed option is also selected, in which case the disjunct
clause is fixed as a tautology.

The optionalfixed directive appearing after a inClause Description fixes the number of terms to the num-
ber of terms appearing in theClause Description and also prevents the deletion of that clause. The optional
fixed directive appearing after aTerm Description prevents the deletion of the term.

The init or fix directives before theVariable Name, Value andNumeric fields allows the initialisation or
fixing of variables, values and numerics respectively.

Example:

Consider the example subset description shown below:

(
(
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( fix ”Sex” = fix ”M” ) : fixed
and ( fix ”Age” = init 0 .. init 25 ) : fixed

) : fixed
or
(

( fix ”Age” = init 45 .. init 70 ) : fixed
)

) : fixed

Here, the subset description is appended with afixed directive, indicating that the subsets must contain
exactly two clauses. The first clause itself is appendedwith afixed directive, indicating that it must contain
two terms, and may not be deleted. The first term description within this clause is fixed and all components
of the first term description are fixed, indicating that the term may not be modified in any way. The second
term description is also fixed, indicating it may not be deleted, and its variable is also fixed. However, the
range constants are only initialised, so they may be modified by crossover and mutation. Thus the first
clause picks out records which haveSex = “M” andAge lying within some range, initially [0..25].

The second clause is not appended with afixed directive, indicating that it may have additional terms in-
cluded by theRandomGenome function (section 4.9.3) and may also have terms added or deleted. How-
ever, the term specified in the description may not be deleted (since it is appended with afixed directive).
Its variable component is fixed and so must not be modified, however, its range components are merely
initialised so may be changed through mutation and crossover. Thus the second clause initially picks out
records which haveAge lying within the range [45..70], and also satisfy any other terms which are added
when a new random genome is generated.

4.8.9 Variable List Descriptions

Variables lists are specified using any of the following forms:

� Explicit Variable List

Variable Name [ , Variable Name ];

Here the (quoted) variable names are simply given in a comma-separated list.

� Derived List

all [ except Explicit Variable List ];
all dependent [ except Explicit Variable List ];
all independent [ except Explicit Variable List ];

Here the variable list is derived from an existing known variable list, by excluding the variables
named in theExplicit Variable List. Theall , all dependent andall independent specifiers in-
dicate that the new variable list is to be derived from all variables, all dependent variables, or all
independent variables respectively. The current setting of dependent and independent variables is
used, which may have been changed from the default using thedependent variable specifier (section
4.8.4).

For example, the variable list specifier:

all dependent except “Sales of Bananas”, “Sales of Apples”;

indicates that the variable list should contain all dependent variables exceptSales of Bananas and
Sales of Apples.
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4.9 Specification of RPL2 Rule Library Operators

RPL2 plans written for data mining use both standard RPL2 operators and a number of operators specific
to data mining, which are implemented in the RPL2 Rule Library. These include data access operators,
operators for initial random pattern generation, genetic operators to manipulate the pattern representations,
evaluation functions and operators to create and update sets of patterns. This section, much of which is
reproduced from Flockhart (1995a), describes the operators included in the Rule library. These operators
are summarised in the table below, together with the relevant section number to which readers should refer
for more detailed descriptions.

Function Purpose Returns No. of Arguments Section
ReadData Read data and template descriptionvoid 2 4.9.2
RandomGenome Generate a new random genome genome 0 4.9.3
EvalRule Evaluate the Rule genome void 2 4.9.4
Cross Crossover two Rule genomes genome 4 4.9.5
Mutate Mutate a Rule genome void 11 4.9.6
RuleSetInit Initialise the rule set void 1 4.9.7
RuleSetUpdate Add a new genome to the rule set void 4 4.9.8
PrintGenome Print a Rule genome void 1 4.9.9
RuleSetPrint Print the rules in the rule set void 0 4.9.10

4.9.1 Initialisation

Before proceeding to describe the operators in more detail, we first briefly consider how the operators are
used within an RPL2 plan. The functions in the Rule library are made available within a plan by including
the Rule library in the parameter list of an RPL2use statement (Surry, 1993b). For example,

use StdInst, Rule;

specifies that both the standard library and Rule library are to be used.

An example RPL2 plan is shown in appendix A. In the extract below, we consider the use of the RPL2 Rule
library operators to initialise a two dimensional fine-grained population structure of genomes and display
the best one. For clarity, line numbers have been added and variable declarations and initialisations have
been omitted.

Example

(1) ReadData(<database file>, <template file>);
(2) RuleSetInit(ruleSetSize);
(3)
(4) structfor [*,*]
(5) Randomize(seed);
(6) g := RandomGenome();
(7) EvalRule(g, evalFn);
(8) endstructfor
(9)
(10) gBest := ReduceRawBest(g,bMaxIsBest);
(11) PrintGenome(gBest);

TheReadData statement (section 4.9.2) on line 1 must be the first Rule library function called, as this
both reads the data into the system, performs normalisationand initialises the pattern template. TheRuleSetInit
statement on line 2 then sets the size of the rule set to beruleSetSize and initialises it to be empty.

Thestructfor/endstructfor statements on lines 4 and 8 delimit the block of statements (from
lines 5 to 7 inclusive) which may be executed for each population element in parallel (Surry, 1993b). The
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RPL2 standard library function,Randomize, is first used to initialise RPL2’s random number genera-
tor. The Rule library functionRandomGenome is then called to generate a new random genome, and
theEvalRule function is used to evaluate this genome using the specified evaluation function (section
4.9.4).

TheReduceRawBest function from RPL2’s standard operator library then selects the best genome from
the population, and finally the Rule library’sPrintGenome function is used to display this rule to the
user.

4.9.2 Function ReadData

void ReadData(
string sName Base Name of the data and configuration files.
string sTemplate Name of the template description file.
)

Synopsis: Reads data from the file¡sName¿.dat, using configuration information from the file¡sName¿.cfg.
Also reads a pattern template description from the file¡sTemplate¿. Quantitative data values are nor-
malised internally to have a mean of zero and a standard deviation of one, however, the original data values
are used when rules are presented to the user.

4.9.3 Function RandomGenome

genome RandomGenome()

Synopsis: Generates a new genome, based on the pattern template, but with additional randomly gener-
ated parts where permitted.

Hypothesis variables are generated randomly from the set of permitted variables, unless such variables
are initialised or fixed by the pattern template. TheS, C andP subset descriptions are generated using as
described in section 4.9.3.1.

4.9.3.1 Random Subset Description Generation

Any clauses appearing in the subset description of the pattern template are included in the randomly gen-
erated disjunct clause. These clauses may be modified as described in section 4.9.3.2.

In addition, a random number between the number of clauses already included from the pattern template
and the maximum number of clauses permitted is generated. This number of additional clauses are newly
generated using random clause generation (section 4.9.3.2) and included in the new disjunct clause.

4.9.3.2 Random Clause Generation

If the clause to be generated is to be based on a clause from the pattern template, then all terms appearing in
the clause from the template are included in the randomly generated clause. These terms may be modified
as described in section 4.9.3.3.

In addition, a random number between the number of terms already included from the pattern template
and the maximum number of terms permitted is generated. This number of additional terms are generated
using random term generation (section 4.9.3.3) and included in the new clause.
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4.9.3.3 Random Term Generation

If the term to be generated is to be based on a term from the pattern template then the variable and values
or range specified in the pattern template are used in the new term. For value terms, any values appearing
in the template are included, together with a randomly selected number of additional values (up to the
maximum number permitted).

Otherwise, if the term is to be newly generated, a variable is first selected at random from the set of per-
mitted variables and the type of the selected variable determines whether a value or range term is then
used. For value terms, a random number of values are selected (up to the maximum number permitted)
and are included in the term. For range terms, the minimum and maximum range constants are generated
as follows:

One range constant is selected from the range [0,1] using a uniform random number generator. A second
constant is then generated by adding the first constant to an offset value (modulo 1.0), which is randomly
generated from a normal distribution with parameters� and	. The resulting two constants, which lie in
the range [0,1], are then scaled to lie in the appropriate range for the current variable. Finally, the minimum
and maximum of the two scaled constants are assigned to be the minimum and maximum range constants
respectively.

4.9.4 Function EvalRule

void EvalRule(
genome g Genome which is to be evaluated
int evalFn Integer specifying which evaluation function to use
)

Synopsis: Evaluates the given genomeg using the evaluation function specified by theevalFn param-
eter. For some patterns, theevalFn parameter is not used, as only a single evaluation function exists.
The evaluation function selected by theevalFn parameter for each pattern type is given below. These
evaluation functions are described fully in Flockhart (1995b).

Pattern Type evalFn Evaluation Function
Explicit Rule Patterns 1 Rule interest

2 J-measure
3 Information gain
7 Product moment correlation
8 Chi-square
9 Gini index or Twoing value

Linear Correlation Pattern 1 Pearson product moment correlation coefficient,�
2 � � support
3 t-statistic for no linear correlation

Rank Correlation Pattern 1 Spearman rank correlation coefficient,rs
2 rs � support
3 t-statistic for no rank correlation

Mean Comparison Pattern — T-test statistic
Location Shift Pattern — Mann-Whitney U test statistic

This function sets the RPL2 genome fitness (Surry, 1993a) according to the result of the applied function.

Before an evaluation takes place, the pattern is pruned as described in section 4.9.4.1.

The evaluation function keeps track of the number of records in the database which match each term in a
pattern, and stores this information along with the term description. Any terms which were uniquely false
for some record are also marked.
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4.9.4.1 Pruning Patterns

Pruning patterns is performed in order to simplify the subset descriptions, to remove any contradictions
contained within them and to ensure the representation constraints required by the genetic operators (i.e.
a maximum of one term for each variable appearing in a clause) continue to hold throughout the search.

Pattern pruning of disjunct clauses is described in section 4.9.4.2.

4.9.4.2 Pruning Disjunct Clauses

Each component clause in the disjunct clause is first pruned as described in section 4.9.4.3. Any com-
ponent clauses which contain no terms are then removed one at a time by moving the last clause in the
clause list to overwrite the clause to be deleted. During recombination, a clause is recombined with the
clause which shares the same position in other subset description’s list of clauses, so this method is least
disruptive to the limited alignment which exists.

4.9.4.3 Pruning Clauses

Each component term within the clause is first pruned as described in section 4.9.4.4.

Any value term containing no values is then deleted. Unlike in section 4.9.4.2, the particular method used
for deletion need not be specified, since the crossover operator aligns terms according to the variable they
contain.

If some of the terms in the clause were never uniquely false at the last evaluation (see section 4.9.4) one
of them is selected randomly and removed. Furthermore, terms which are close to being uniquely false
are considered uniquely false with some probability.

Finally, multiple terms concerning a single variable are merged into a single term. If this leads to a con-
tradiction, then all terms are removed from the clause.

4.9.4.4 Pruning Terms

Range terms are not pruned further. Value terms have any duplicate values removed.

4.9.5 Function Cross

genomeCross(
genome gA First parent genome to be used in crossover
genome gB Second parent genome to be used in crossover
real rBias Bias given to one of the parents during crossover

(takes values in the range [0,1]).
real rPUCross Probability of using uniform crossover of clauses

(as opposed to single-point crossover).
)

Synopsis: Perform a recombination of the two parent genomesgA andgB respectively. Two forms of
crossover are supported, based on the usual single-point crossover and uniform crossover operators. Be-
cause of the variable length representation used for subset descriptions, the operators used are somewhat
different from the conventional single-point and uniform crossover. Hypothesis variables are recombined
as described in section 4.9.5.1. Each of the subset descriptions are recombined as described in section
4.9.5.2.

Returns: A new genome which is the recombination of the two parent genomes.
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4.9.5.1 Hypothesis Variable Crossover

In patterns which contain two hypothesis variablesA andB (i.e. Linear Correlation and Rank Correla-
tion), the child’sA andB attributes are selected (independently of each other) from the first parent with
probabilityrBias and from the second parent with probability (1–rBias).

4.9.5.2 Subset Description Crossover

Each clause in the first parent is crossed with the clause in the corresponding position in the second par-
ent. For each clause, we use uniform clause crossover (section 4.9.5.3) with probabilityrPUCross and
single-point crossover (section 4.9.5.4) with probability (1–rPUCross).

If the number if clauses in the two parents is different, the clauses which do not have a partner are each
included in the child disjunct clause with probabilityrBias in the case of clauses from the first parent
and (1–rBias) in the case of clause from the second parent, unless the clause is marked as fixed, in which
case it is included with a probability of 1.

Example

Consider the disjunct clausesA andB below:

A : Clause A1 or Clause A2 or Clause A3 or Clause A4
B : Clause B1 or Clause B2

Disjunct clause crossover selects clausesA� andB� for crossover and uses uniform crossover or single-
point crossover with the specified probabilities. ClausesA� andB� are then selected for crossover, and
again uniform or single-point crossover is used according to the specified probabilities. ClausesA� and
A� have no partner in disjunct clauseB, so these clauses are independently included in the child with
probabilityrBias.

4.9.5.3 Uniform Clause Crossover

Uniform clause crossover first performs an “alignment” of terms between the two parent clauses in order
that terms concerning the same variable will be crossed with each other. Note that each clause can contain
a maximum of one term concerning any particular variable, a condition which is enforced during clause
pruning (see section 4.9.4.3).

Then for each aligned pair of terms, term crossover (section 4.9.5.5) is used to produce a new term for the
child clause.

Terms without a partner are included in their entirety in the child clause with probabilityrBias in the
case of terms from the first parent, and probability (1–rBias) in the case of terms from the second parent.
Terms marked as fixed are handled specially, and are always included in the child.

Example

Consider the clausesA andB below:

A : Age = 20 .. 30
B : Sex = M and Age = 0 .. 25

The alignment of the terms according to variable gives:

A : Age = 20 .. 30
B : Sex = M and Age = 0 .. 25

The two terms concerningAge are crossed using the term crossover function, while the term concerning
Sex is included in the child with probability (1–rBias).
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4.9.5.4 Single-Point Clause Crossover

Single-point clause crossover first performs an alignment of terms between the two parent clauses in order
that terms concerning the same variable are aligned. Again, clauses may contain a maximum of one term
concerning any particular variable, enforced by clause pruning (see section 4.9.4.3).

A crossover point is then selected, and terms to the left of this point in the first parent and to the right of
this point in the second parent are included in the child, provided the maximum number of terms is not
exceeded in which case terms from the first parent are given priority. An exception occurs with terms
marked as fixed, which are always included in the child clause.

Example

A : Age = 20 .. 30 and Height = 1.5 .. 2.0
B : Sex = M and Age = 0 .. 25

The alignment of the terms according to variable gives:

A : Age = 20 .. 30 and Height = 1.5 .. 2.0
B : Sex = M and Age = 0 .. 25

Selecting a crossover point between theSex andAge variables, the childC then takes terms to the left of
the crossover point in clauseA, and terms to the right of the crossover point in clauseB, giving:

C : Age = 0 .. 25

4.9.5.5 Term Crossover

Term crossover is used to combine two terms concerning the same variable. Crossover ofvalue andrange
terms is handled differently.

For range terms, the minimum and maximum range constants are selected independently from the parents,
using the constant from the first parent with probabilityrBias and the constant from the second parent
with probability (1 -rBias). If the resulting range is not valid (i.e. the maximum of the range is less
then the minimum) it will be repaired later by the term pruning (section 4.9.4.4).

For value terms, all values common to both parents are included in the child. Values unique to one parent
are included with probabilityrBias in the case of values unique to the first parent and probability (1 -
rBias) in the case of values unique to the second parent, provided the maximum number of permitted
values is not exceeded, in which case values from the first parent are given priority.

Note that the term crossover propagates all values and range constants marked as fixed.

4.9.6 Function Mutate

void Mutate(
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genome g genome which is to be mutated.
real rPAddDelCls probability of adding or deleting a clause.
real rPAddDelTerm probability of adding or deleting a term.
real rPMutHypAttr probability of mutating a hypothesis attribute.
real rPMutTerm probability of selecting a term for mutation.
real rPMutateAttr conditional probability of mutating a variable in a term,

given that a term has been selected for mutation.
real rPMutValue conditional probability of mutating a value in a term,

given that a term has been selected for mutation.
real rPChangeConst conditional probability of mutating a range constant in a term,

given that a term has been selected for mutation.
real rConstHalfRange half range of the interval used for creep mutation.
int nConstSteps number of steps into which the half range should be equally divided.
int nMaxConstCreep maximum number of steps permitted

by a single creep mutation of a range constant.
)

Synopsis Mutates the genomeg. Hypothesis variables are mutated as described in section 4.9.6.1. Subsets
descriptions are mutated as described in section 4.9.6.2.

4.9.6.1 Hypothesis Variable Mutation

For patterns containinghypothesis variables, each hypothesis variable is independentlymutated with prob-
ability rPMutHypAttr, unless the variable is marked as fixed, in which case mutation is prevented.

Mutation replaces the hypothesis variable with another variable randomly selected from the variable set.

4.9.6.2 Subset Description Mutation

Each component clause is first mutated using clause mutation (section 4.9.6.3). A clause is then added
or deleted with probabilityrPAddDelCls (clause addition and deletion are equally likely — each has
a probability of 0.5).

Clauses are selected for deletion at random. If a fixed clause is selected, its deletion is prevented and
another clause is not selected.

For clause addition, the clause is added provided the maximum number of clauses is not exceeded. The
new clause is generated at random as described in section 4.9.3.2.

4.9.6.3 Clause Mutation

Each component term is first mutated using term mutation (section 4.9.6.4). A term is then added or
deleted with probabilityrPAddDelTerm (once again, term addition and deletion are equally likely, each
having a probability of 0.5).

Terms are selected for deletion at random, and if the selected term is fixed, its deletion is prevented and
another term is not selected. For term addition, the term is added provided the maximum number of terms
is not exceeded. The new term is generated at random as described in section 4.9.3.3.

4.9.6.4 Term Mutation

A term is mutated with probabilityrPMutTerm. Given that a term has been selected for mutation, the
variable within a term is mutated with probabilityrPMutateAttr, though variables marked as fixed
are not mutated. When a variable is selected for mutation, it is replaced by a randomly selected variable
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from the variable set. Since the type of this variable may be different from the original, the entire term is
re-generated at random as described in section 4.9.3.3.

If the term variable is not selected for mutation, the value or range part of the term is considered for mu-
tation.

For value terms, one of the values is selected at random and is mutated to a randomly selected value from
the set of possible valid values for the current variable. Any duplicate values introduced will be removed
during term pruning (section 4.9.4.4). Values marked as fixed are not mutated.

For range terms, each range constant is mutated with probabilityrPChangeConst. When a range con-
stant is selected for mutation, a number of creep mutation steps is chosen at random (up to a maximum
of nMaxConstCreep), and the constant is incremented or decremented (with equal probability) by the
creep mutation interval for that number of steps. Range constants marked as fixed are not mutated.

4.9.7 Function RuleSetInit

void RuleSetInit(
int size specifies the maximum size of the rule set
)

Synopsis: Initialises the rule set to be empty and fixes the maximum size to besize.

4.9.8 Function RuleSetUpdate

void RuleSetUpdate(
genome g genome to consider for inclusion in the rule set.
real rSim value of the similarity threshold.
bool bMaxIsBest true if trying to maximise fitness,false otherwise.
int nSim indicates the similarity function to use.
)

Synopsis: Considers the genomeg for inclusion in the rule set. In general, GA-MINER does not search
for a single good pattern within a data set, rather it attempts to find several, diverse, good patterns. GA-
MINER collects patterns together in apattern set, which is updated as new and better patterns are discov-
ered.

In order to avoid the pattern set becoming full of extremely similar patterns, the inclusion or otherwise of
a new pattern in the set must be a function of both the goodness and similarity of the pattern relative to
those already in the set.

As a simple heuristic for collecting good and diverse patterns, GA-MINER uses a similarity measure to
determine the closeness of patterns to each other. When considering a new pattern for inclusion in the set,
we firstly determine the most similar pattern already in the set. If the similarity is over the threshold level,
rSim, and the new pattern has better fitness, then it replaces the old pattern in the set. If the most similar
pattern is below the threshold level,rSim, then the new pattern replaces the worst fitness pattern in the
set, provided it has a higher fitness.

The similarity measure presently used is based on a simple Euclidean distance function, modified to allow
range terms. Although such functions are known to have limitations in high-dimensional space, we have
found such a function adequate for producing sets of sufficiently different rules.

4.9.9 Function PrintGenome

void PrintGenome(
genome g genome to display.
)
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Synopsis: Displays a pattern to the user.

4.9.10 Function RuleSetPrint

void RuleSetPrint()

Synopsis: Displays the contents of the rule set.

4.9.11 Other Required Functions

As with all RPL2 libraries, functions to implement thepack, unpack, andfree operations (Surry, 1993a)
must be written. The pack function is used on parallel hardware to convert the user-defined genome to a
flat sequence of bytes so that it can be passed from one processor to another by the framework, while the
unpack function performs the reverse translation. The free function is used to release memory which was
allocated for a new genome, in order that the RPL2 framework can provide automatic garbage collection.

The functional specification of these functions is given in Surry (1993a).

4.10 Data Format

GA-MINER uses the relational data model with data stored in a single fully de-normalised table (Flock-
hart, 1995b).

Data is presented to GA-MINER in ASCII format, one record per line, with fields separated by a comma.
Fields may contain integers, reals or character strings.

Associated with each data file is a configuration file, which specifies the names of the variables in the data
set, their type and underlying storage-type, together with an indication of whether they aredependent
or independent variables (Flockhart, 1995b). In the absence of further restrictions imposed by pattern
templates, this indicator variable is used to eliminate certain meaningless patterns from the search.

The first two lines of the configuration file contain the number of records and number of fields in the
database respectively. Then for each field, the variable name, type, storage-type and indicator variable
appears on a separate line. A BNF description of the possible entries is shown below:

Variable Name ::= Character String
Type ::= numeric j enum j ordinal j hierarchical
Storage Type ::= int j dbl j str
Indicator ::= ind j dep

The values of theType specifier are described more fully in Flockhart (1995b). TheStorage Type values
int, dbl andstr are used to indicate integers, reals and strings respectively, while theIndicator values
ind anddep indicate independent and dependent variables respectively.

Numeric data is normalised internally to have a mean of� and standard deviation of�. However, the
original data values are used when patterns are presented to the user.

4.11 Incorporating Domain Knowledge

Genetic algorithms are often characterised as a “weak” search method, in the sense that they are broadly
applicable and make relatively few strong assumptions about the problem they tackle. Occasionally they
are incorrectly classified as “blind” search methods, or “black box optimisers (Goldberg, 1989).
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In fact, both of these characterisations are rather misleading, as a series of papers (Radcliffe, 1992, 1994;
Wolpert & Macready, 1995; Radcliffe & Surry (1995)) have shown. It would be more accurate to say that
genetic algorithms traditionally capture knowledge (or assumptions) about the problem as hand implicitly
rather than explicitly, through the choice of representation and genetic move operators.

Explicit mechanisms for “strengthening” a genetic algorithm include non-randominitialisation of the pop-
ulation (Ray, 1992, 1994), incorporation of extra (“non-genetic”) local move operators and “hybridisa-
tion” with domain-specific heuristics (Davis, 1991). We have been unable in the time available to fully ex-
plore these methods of incorporating domain knowledge into GA-MINER. However, we believe that such
explicit mechanisms, and in particular the use of local move operators, hold much promise for genetic-
based data mining systems, and consider this as essential future work (section 7.2).

4.12 The Prototype Graphical User Interface

Sufficient time was available towards the end of the research period to construct a prototype graphical
user interface for GA-MINER and to integrate this with the RPL2 visualisation software.

A screen shot of the GA-MINER interface and the RPL2 visualiser is shown in figure 4.4. The pattern
template window (top) allows simple editing of the pattern template. Presently, users may select the vari-
ables which are permitted to appear on the left and right hand sides of rules and the maximum number
of clauses, terms and values which may appear in rules. It is planned to extend the interface to allow
manipulation of individual terms and values as time allows.

The RPL2 controller window (bottom right) shows the RPL2 plan which is presently running, and in many
ways acts like a debugger, allowing breakpoints to be set in the plan and visualisation instructions to be
placed on particular lines. Presently, users may not change the value of RPL2 plan variables, for example
the mutation rate, during a run of the algorithm, however extensions are planned which will allow such
interaction.

The visualisation window (lower left) shows the population of genomes (rules) in a fine-grained popu-
lation structure. Rules are currently represented in this window by a three dimensional plot of their re-
spective contingency tables, though alternative visualisation routines may be added with relative ease,
and each rule’s height above the baseplane is proportional to its fitness. Individual rules may be selected
from this window and examined in more detail a further window (not shown), which displays the rules in
textual form.
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Figure 4.4: Screen shot of the Rule library GUI and RPL2 visualiser
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Chapter 5

Results

Two factors complicate presentation of results from the GA-MINER project. The first, which was dis-
cussed at some length in section 1.4, is that our measures of rule quality are all surrogates for our actual
objective, which is to find genuinely “interesting” rules. For this reason, showing graphs or statistical
summaries of the objective function value as a function of time and patterns searched is of little value. (In
any case, they look much as would be expected). For this reason, we find it more illuminating to focus on
particular rules found by the system. In this section, a few such rules are presented in detail, illustrating
some of the more useful rule types. Further examples are given in appendix E.

The second complication arises because of the commercial sensitivity of the data provided by Barclays.
For this reason, rules concerning their data can only be shown in disguised form. Although some exam-
ples are included for completeness in appendix E, these are less than illuminating. However, Barclays
is developing an ever-stronger interest in work on data mining and has been conducting a study which
includes input from the GA-MINER research (see appendix C).

5.1 Rules and their Interpretation

In this section we examine some of the rules and patterns discovered in the data provided by GMAP Ltd.,
and consider their respective interpretation. Explicit rule patterns are first considered in section 5.1.1 fol-
lowed by distribution shift patterns in section 5.1.2. No strong correlation patterns were found in the
GMAP data, hence we do not show any examples of this pattern form.

5.1.1 Explicit Rule Patterns

Many rule patterns of varying strength were found within the GMAP data, however we restrict ourselves
to show just two examples which are representative of the kinds of patterns discovered. In general, the
largest number of rules appeared to be concerned with segment D sales and market share, within which
Ford’s representative vehicle is the Ford Escort, however patterns concerning other market segments were
also commonplace.
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Rule pattern 1
if Proportion of households with 1 child� 0.12

(Approximate percentiles 36% - 100%)
(true: 1618 false: 939 unique false: 272)

and
Number of Ford Dealers� 0
(Approximate percentiles 62% - 100%)
(true: 936 false: 1621 unique false: 809)

and
Proportion of households with 3+ carsin range 0.01 .. 0.07
(Approximate percentiles 4% - 86%)
(true: 2038 false: 519 unique false: 108)

then
Ford market share segment F (Sierra)in range 0.06 .. 0.75
(Approximate percentiles 30% - 100%)
(true: 1770 false: 787 unique false: 787)

Left hand side matches 19% of the database
Right hand side matches 69% of the database

Expected Actual
Accuracy: 69% 93%
Coverage: 20% 27%

An example of such a pattern found by GA-MINER is shown above (rule 1). The true and false count
for each clause show the number of times that clause is true and false respectively, while the unique false
count shows the number of times the clause is false when all the others are true (see section 6.2). This
gives some indication of the relative importance of the terms.

This rule states that in postal districts where there is at least one Ford dealer and the proportion of house-
holds with 1 child is relatively high (that is in the top 64% of the distribution) and the proportion of house-
holds with 3 or more cars is neither very high nor very low, there is 93% probability that the postal district
has a Ford market share of segment F (Sierra) in the top 70%. This compares to an expected probability
of 69%, under the assumption of no relationship between the left and right hand sides of the rule.

The genetic algorithm which found this rule used a����� fine-grained structured population model with
the J-measure as an evaluation function. The fitness of the rule (0.0512818) compares to an initial mean
population fitness of –0.0001256, with standard deviation of 0.0020194. Rules of similar quality were
normally found within 100–150 generations, taking approximately 5 minutes wall clock time on an SGI
Indy workstation using the 2557 record data set.
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Rule pattern 2
if Proportion of households with 1 child� 0.12

(Approximate percentiles 54% - 100%)
(true: 1169 false: 1388 unique false: 239)

and
Proportion of households — Council� 0.23
(Approximate percentiles 70% - 100%)
(true: 732 false: 1825 unique false: 676)

then
Ford market share segment D (Escort)� 0.19
(Approximate percentiles 44% - 100%)
(true: 1394 false: 1163 unique false: 1163)

Left hand side matches 19% of the database
Right hand side matches 56% of the database

Expected Actual
Accuracy: 55% 82%
Coverage: 19% 29%

Rule 2 above suggests that postal districts with a high proportion of council housing (top 30% of the dis-
tribution) and a high proportion of households with one child (top 46% of the distribution) are 84% likely
to have a relatively high Ford market share of segment D (Escort) (in the top 66% of all postal districts).

Once again, a����� fine-grained population structure was used, together with the J-measure evaluation
function. The rule fitness is 0.047255, which compares to an initial mean population fitness similar to that
given in the description of rule 1.

It is important to note that these rules do not imply causality. So for instance, we may not conclude that
Ford market share of segment D is high in a postal districtbecause there are a high number of council
households and a high proportion of households with 1 child. There may be other factors not included
in the database which are the cause of all of these effects. To establish causality is extremely difficult,
requiring controlled statistical experiments designed to take into consideration all other possible causes�.
Clearly such experiments can not be performed on a routine basis to evaluate each rule discovered by a
data mining system. In practice therefore, we must attempt to use the rule in conjunction with common
sense, perhaps evaluating other empirical evidence which may support the rule.

In cases where the rule seems counter-intuitive, or indicates a surprising relationship, it is perhaps best
to engage in further investigation of the result. However, it should be recognised that discovery of unex-
pected rules is one of the main advantages of an automated data mining system.

�Consider, for example, the efforts over many years to prove that smoking causes cancer.
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Figure 5.1: Distribution Shift Pattern

5.1.2 Distribution Shift Patterns

Distribution shift patterns can in many ways be used to provide similar knowledge to that imparted by
explicit rule patterns.

Pattern 3 is another real example of a distribution shift pattern found in the data provided by GMAP.

Distribution shift pattern 3
The distribution of “Ford market share of segment D (Escort)” when

Proportion of households — Council� 0.20
(Approximate percentiles 62% - 10%)
(true: 929 false: 1628 unique false: 123)

and
Proportion of households with 2 children� 0.11
(Approximate percentiles 26% - 100%)
(true: 1854 false: 703 unique false: 233)

and
Proportion of unemployed in population� 0.04
(Approximate percentiles 52% - 100%)
(true: 1183 false: 1374 unique false: 48)

and
Proportion of households with 0 cars� 0.31
(Approximate percentiles 60% - 100%)
(true: 1015 false: 1542 unique false: 89)

has median 0.28 and is significantly shifted from the
distribution in the database as a whole which has median value 0.20.

The rule indicates that the subset of 408 records selected from the original database of 2557 records by the
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conjunction of the terms shown, generally have a higher Ford market share in segment D (represented by
Ford Escorts). The terms themselves suggest that Ford market share in this segment is higher in postal dis-
tricts which have a high proportions of council houses, relatively high unemployment, a high proportion
of households with no car and relatively few households with 2 children. Figure 5.1 shows the distribu-
tion of Ford Market share of segment D (Escort) in both the database as a whole (dark shading) and the
selected subset (light shading). One can see from this figure that the selected subset has both a higher
mean and median value for market share, and also excludes a large number of records for which market
share was near zero.

One can see how the knowledge contained in this pattern, or at least similar knowledge, might have been
represented as a rule pattern, with a right hand side selecting the high end of the segment D market share
distribution. Indeed, in many cases, similar rules emerged from both explicit rule and distribution shift
patterns, linking particular features of the data to unexpectedly high or low sales or market share.

As a final example of distribution shift pattern, consider rule 4 which states simply that sales of Sierra per
head population are higher in postal districts which contain at least one Ford dealer.

Distribution shift pattern 4
The distribution of “Sales Sierra per head population” when

Number of Ford Dealers� 0
(Approximate percentiles 62% - 100%)
(true: 936 false: 1621 unique false: 1621)

has median 0.00036 and is significantly shifted from the
distribution in the database as a whole which has median 0.00026.

5.2 Results on Classification Problems

GA-MINER is not specifically designed for classification problems but rather as a more general pattern
search tool. We found it useful, however, to use GA-MINER for classification purposes during the pro-
cess of refining the genetic operators, as we believe that successful classification is a prerequisite for a
successful general data mining tool. This is not to say that a general tool such as GA-MINER should out-
perform more specialised classification methods, but they must at least give results which are comparable
in quality.

GA-MINER may be used for classification by constraining the right hand side of rules to a single term
involving the designated class variable, giving rules of the form “if C then Class� ci”. Of course, to
form a true classification system, a firing mechanism is required to apply the rules to the target data. Also,
in the absence of population mechanisms such as those used in COGIN and REGAL (see section 3) to
encourage the population to develop co-operatively to solve the overall classification task, we are likely
to develop a set of rules which do not fully cover the database or the possible classes, that is, there would
be some records which do not match any of the classification rules and some classes for which there are no
rules. Although it is relatively easy to add such mechanisms to GA-MINER in the form of new RPL2 Rule
library operators, this was seen a diversion from our main purpose, which was to aid us in the refinement
of the genetic operators. We chose instead to evolve rules for each classci separately, thus ensuring a rule
existed for each class, and to apply those rules using a simple firing mechanism which selected the most
accurate matching rule.

As an example of a classification problem which was considered, we present some results obtained on
the soya bean dataset, available from the machine learning repository at UCI, where the task is to identify
soya bean diseases. The training data consists of some 307 records and 35 attributes. However, there is
some controversy over the last 17 records in the database, which it is argued, do not provide large enough
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samples of their respective classes to construct a sensible model. We therefore eliminated records in these
classes from both the training and test data.

The genetic algorithm used a��� �� fine-grained population model, and was run for 100 generations on
each class.

Two example classification rules are reproduced below:

if leaf-mild in f1g
(true: 10 false: 280 unique false: 280)

then
disease = powdery-mildew
(true: 10 false: 280 unique false: 280)

Left hand side matches 3% of the database
Right hand side matches 3% of the database

Expected Actual
Accuracy: 3% 100%
Coverage: 3% 100%

if fruit-podsin f3,
 missing � value � g
(true: 50 false: 240 unique false: 223)

and
leavesin f1g
(true: 263 false: 27 unique false: 10)

then
disease = phytophthora-rot
(true: 40 false: 250 unique false: 250)

Left hand side matches 14% of the database
Right hand side matches 14% of the database

Expected Actual
Accuracy: 14% 100%
Coverage: 14% 100%

While GA-MINER did not outperform specialist classification systems on the soy-bean data, our results
of around 80–90% accuracy were at least comparable to those reported in the UCI repository of around
95%.
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51140 records, 58 fields, 25 Mbytes of data
Population size 400, 100 generations

Number of Mean runtime Speedup
Processors (minutes)

1 507 —
2 269 1.88
4 135 3.75
8 77 6.58

Table 5.1: Performance of GA-MINER on the Challenge XL.
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Figure 5.2: Speedup on the Challenge XL

5.3 System Performance and Scalability

In order to determine the scalability of the GA-MINER application as more processors are made available,
we undertook some performance tests on an eight processor Silicon Graphics Challenge XL (representing
SMP platforms) and a Cray T3D (representing MPP platforms).

The database used for the Challenge XL consisted of 51140 records and 58 fields, amounting to some 25
Mbytes of data. The population consisted of 400 members in a fine-grained structure of dimension�����
and was parallelised using a regular domain decomposition. The tests were performed in competition with
other users, so some adverse effects may have been experienced. These do not appear to have seriously
affected results however, as the variance in runtimes was low over some 7 runs.

The speedup graph for 100 generations of the algorithm on 1, 2, 4 and 8 processors respectively is shown
in figure 5.2. We did not perform any optimisation to the code, since the main aim of the exercise was
to determine scalability, so runtimes are somewhat higher than might be expected in a final optimised
version of the code. It can be seen from these graphs that the scaling behaviour is relatively good, with 8
processors achieving a 6.58 times speedup and the tail-off being relatively slow.

On the Cray T3D it was unfortunately not possible to run this same large job because of a system admin-
istration policy which limits to one hour, the time allocated to jobs using a small number of processors.
However, we did run several tests on the smaller GMAP database of 2557 records, using a fine-grained
population structure of dimension��� �� and��� �� respectively. These results are shown in table 5.2
and the speedup shown in figure 5.3. Once again, we see that good speedup is achieved up to around eight
nodes, and that further speedup is achieved on 16 and 32 nodes respectively, particularly as the popula-
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2557 records, 58 fields
Population size 100, 20 generations
Number of Runtime Speedup
Processors (seconds)

1 1570 —
2 790 1.99
4 430 3.65
8 210 7.48
16 180 8.72
32 150 10.47

2557 records, 58 fields
Population size 400, 20 generations
Number of Runtime Speedup
Processors (seconds)

1 6050 —
2 3210 1.88
4 1730 3.50
8 740 7.20
16 490 12.35
32 330 18.33

Table 5.2: Performance of GA-MINER on the Cray T3D.
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Figure 5.3: Speedup on the Cray T3D
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tion size is increased since this will result in an increase in the ratio of computation with respect to the
overheads of I/O and inter-process communication.

The evaluation of a pattern against the database is by far the largest processing stage in the algorithm.
This involves a full pass over the database, gathering statistics and applying the conditions in each subset
description to each record to determine its inclusion or otherwise in a particular set. Upon completion of
this pass, the chosen evaluation function is called to compute the goodness of the pattern.

The runtime could be reduced by using lazy evaluation of the subset descriptions, returningfalse as
soon as any term in a conjunction evaluates tofalse and similarly returningtrue as soon as any term
in a disjunction evaluates totrue. However, this would come at the expense of the statistics which are
presently gathered for each clause in a rule and which are used by the pruning mechanism (see section 6.2).

The runtime could also be reduced by using a sample of the database, however as we mentioned in section
2.4.2, sampling can miss patterns which apply to only a small number of records, and a particular sam-
ple may not be representative of the database as a whole. The first of these problems is really inherent in
the use of sampling, however, the second problem can be overcome to some degree by using a different
sample upon each evaluation. This results in a noisy fitness function, that is, if a particular pattern were
evaluated several times, it would appear to have varying fitness. However, one positive effect is that pat-
terns which appear to be good in only a single freak sample are less likely to survive through successive
generations. The final selected set of patterns can be evaluated against the whole database upon comple-
tion of the algorithm to determine their true goodness.
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Chapter 6

Discussion

6.1 Evaluation Functions

In this section, we discuss the various evaluation functions which have been implemented in GA-MINER,
and consider their relative merits in scoring patterns.

All of the evaluation functions are based entirely on mathematical properties of the patterns, such as gen-
erality, accuracy, coverage and statistical significance and do not include any qualitative measures such
as rule “comprehensibility”. Rather we have chosen to introduce these other factors of interest into the
algorithm separately. For example, rule simplicity is encouraged by a pruning mechanism which removes
redundant or near redundant terms (see section 6.2).

Despite this limitation to quantitative measures, the evaluation function remains of vital importance to
the algorithm. It is important to obtain some level of familiarity with the kinds of rules which may be
produced by different evaluation functions, in order that an appropriate one may be selected for the task
in hand.

6.1.1 Comparison with Evaluation Functions in Decision Trees

The evaluation functions used for explicit rules in GA-MINER are all functions ofjCj, jP j, jC � P j and
jC � P j respectively, that is, the number of records falling into each of the four partitions of the database
induced by the subset descriptionsC andP . If we regardP as a target population to be modeled using
a decision-tree (Quinlan, 1986, 1993; Breimanet al., 1984), andC as defining a proposed split of the
database into two subsets, then the evaluation functions used in GA-MINER can also be used in decision-
tree applications to determine the goodness of the proposed split.

Decision trees can be interpreted as a set of rules which partitions the database into mutually disjoint sub-
sets. One rule exists for each leaf node, and it is formed as the conjunction of the conditions which must be
met as the tree is traversed along the unique path from the root to that leaf node. It is interesting, therefore,
to consider the effects of evaluation functions in decision tree methods with their effects in GA-MINER.

Simple decision tree methods often produce the same or similar decision trees no matter what evaluation
function is used to determine the utility of a particular split (Breimanet al., 1984, Murthy & Salzberg, 1995).
This is because the construction of the tree is both incremental and greedy (so the best split at each node
is always used) and many evaluation functions will give identical results for the best split. If the decision
trees generated by various split functions are near identical, then the rule sets formed will also be nearly
identical.

As the complexity of the decision tree increases, perhaps by allowing non-binary splits or by permitting
splits to be defined by a function over several attributes, the possibilities for differences between the trees
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generated by different split functions increase, though perhaps not by as much as one might expect, since
the split resulting in the maximum value of the respective functions remains the only relevant factor.

In the GA-MINER approach, rules are formed in a more immediate and less systematic way than in de-
cision tree approaches, or for that matter, in any other deterministic rule building approach. That is, rules
are not incrementally generated one term at a time. Rather, they may initially be randomly generated and
are then modified through relatively disruptive crossover and mutation operators. This means that many
rules are evaluated which would never even have been generated by more deterministic methods, resulting
in a more extensive, albeit less directed search of the space.

Although this more widespread search can not be attributed directly to the evaluation function, it is clear
that the evaluation function plays a more important rˆole than for decision trees, since in GA-MINER, the
whole range of function values are relevant to the algorithm and the complex population dynamics will
lead to more unpredictable results.

6.1.2 Evaluation Functions for Explicit Rules

GA-MINER provides several evaluation functions for explicit rule patterns, the details of which are de-
scribed in section 4.5. Here we attempt to draw some comparisons and general conclusions on the relative
merits of these functions.

It is important to note that rank-based selection and replacement mechanisms are employed throughout
GA-MINER, so only the rank ordering of rules is important.

In general, we found that it was not possible to conclude that any of the evaluation functions produced
better rules than the others. Indeed, many of the evaluation functions were found to be similar in their
rank ordering.

6.1.2.1 Similarity of the Evaluation Measures

We performed a number of experiments which exhaustively considered all possible contingency tables
which could be formed from a set ofN data records�. Essentially this involved generating all possible
contingency tables which satisfied the following constraints.

1. � 	 jCj 	 N

2. � 	 jP j 	 N

3. jC � P j � jCj� jP j �N

4. jC � P j 	 min�jCj� jP j�
Each table was then evaluated using the various evaluation functions and the results were compared on
scatter plots. The results strongly suggest that for a�� � table, the rank ordering of many of the evaluation
functions is similar.

In particular, information content, the twoing value and�� (with or without Yates correction) were all
strongly correlated, and had high rank agreement.

This group of evaluation functions were also strongly correlated with the absolute value of rule interest
and with the absolute value of the product moment correlation evaluation function. These two functions
are uni-directional in the sense that they do not score rules of the form “if C then P ” highly. However,
they do assign to such rules a negative fitness equal in magnitude to that which would be accredited ifP
andP were interchanged. Thus the absolute value of these functions can be used to detect any association
betweenC andP

�In our experiments, N=50.
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Figure 6.1: Scatter plot of twoing value against�� and Yates��

Figure 6.2: Scatter plot of information gain againstC andP

The linear and rank correlations between these evaluation functions were all high (in the region of 0.95).
However these figures do not present the whole picture. A scatter plot of the various measures is more
revealing of the subtle relationships between the functions. For example, figure 6.1 shows the relationship
between the twoing value,�� and Yates�� evaluation functions. The points in the lower right hand corner
which are scored highly by�� but rather less well by twoing value, correspond to those contingency tables
which contain a number of records close to zero in any of their entries. It is widely known that the�� tends
to break down for such small quantities. However it is interesting to note that the�� with Yates correction
improves the agreement to some extent.

The�� generally tends to assign higher fitness to large subsetsC andP , which result in relatively small
deviations from the expected cell counts. This is because statistical significance depends critically on the
sample size (Elder & Pregibon, 1995) and even these small deviations attain high statistical significance.
As a result, clauses in rules generated by the�� tend to be relatively short in length, giving simpler rules
than some other measures without the need for pruning. This is likely to be a side-effect of the tendency to
select large subsets, which more easily achieved when the the number of terms is small. On the negative
side, the rules generated by�� can often be over-general.

The symmetries of the various measures are also revealing. The information gain, twoing value, and ab-
solute value of rule interest are all symmetric inC andP and are all very similar (see for example, infor-
mation gain plotted againstC andP in figure 6.2). These indicate that subsetsC andP selecting approx-
imately half of the records in the database have the potential to achieve the maximum fitness.

The�� is also symmetric inC andP (see figure 6.3), but it differs from the previous evaluation functions
in that subsets of all sizes have the potential to achieve maximum fitness. Thus, the�� does not differen-
tiate between contingency tables with sayjCj � jP j � jC � P j � � andjCj � jP j � jC � P j � ��.
The absolute value of linear correlation also has a similarly shaped scatter plot to the�� and shares this
property. Indeed,�� and the absolute value of linear correlation have perfect rank correlation and for our
purposes are therefore equivalent. Note also that the�� with Yates correction modifies the symmetries to
look more like that for information gain.
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Figure 6.3: Scatter plot of�� and Yates�� againstC andP

Figure 6.4: Scatter plot of J-measure againstC andP

The J-Measure is perhaps the most different of the evaluation functions examined. J-Measure is not sym-
metric injCj andjC j and is bi-modal when plotted againstP (see figure 6.4). In general, J-measure tends
to slightly favourC subsets of a size slightly less then half of the total number of records. Similarly,P
subsets of size slightly less than or slightly greater than half of the total number of records are favoured.
So for example, in a database of 50 records, a rule withjCj � jP j � jC � P j � � will score slightly
better than a rule withjCj � jP j � jC � P j � ��.

6.1.3 Evaluation Functions to Detect Shifts in a Distribution

Detection of differences in the distribution of a variable between particular subsets of a database can pro-
vide useful knowledge. For example, if the variablesales is generally higher within a particular subset
selected by the clauseprice 
 ����, then one might suspect that the lower price is having a positive ef-
fect on sales. Clearly, the concept “generally higher” is not the only assertion which could be useful. The
terms “generally lower” or even just “different” could also be useful in different circumstances.

To make such statements more mathematically concrete, we must first decide upon what we are actually
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going to compare, and within which subsets (or populations).

One option is to compare the mean value of a selected variable within two populations. Student’s t-test has
been traditionally used as a test for comparing two means (see section 4.6). However, this test assumes
that the distributions being compared are normal, and although it is relatively robust for small deviations
away from this assumption, some of the subsets generated by GA-MINER will significantly depart from
this assumption.

The central limit theorem tells us that when the subsets are large, the mean value within each will be
approximately normally distributed regardless of the underlying distribution, allowing the use of a simpler
test statistic. This method is used in GA-MINER together with a lower threshold on the size of subsets
used, preventing inaccurate results for small population sizes.

In general we would expect comparison of means to suffer from a lack of robustness, that is, outliers in
a distribution may seriously skew the calculation of the mean, perhaps giving misleading results. In our
experiments, we did find some evidence that skewing was indeed occurring. However, many of the pat-
terns discovered were still regarded as useful and the evaluation function was not irretrievable affected by
this problem.

In cases where the mean comparison is badly by outliers, an alternative is to use a non-parametric test
statistic based on the rank ordering of a variable. These are generally more robust, since the actual values
of the variable are not important, tempering the effect of severe outliers. One such test, which is imple-
mented in GA-MINER, is the Wilcoxen-Mann-Whitney test (4.6.3) which compares the median value in
two populations. In our experience, we did find evidence that this statistic was more robust that a mean
comparison, and in general it produced slightly better results. However, it did take longer to evaluate each
solution, given the need to perform a sort to rank the records in order.

Yet another alternative is the Kolmogorov-Smirnov test. Unlike mean and median comparisons, this test
is not location-based. Rather it is a more general distribution comparison, whose test statistic is the maxi-
mum difference between the cumulative distributions of the two populations. So for example, a symmetric
bimodal distribution about 0, which will not show a mean or median shift when compared with a normal
distribution about 0, will be detected by the Kolmogorov-Smirnov test. However, in general, the power of
this test is weaker than the others when distributions are close to normal and unimodal, and in most cases,
detecting a general difference in two distributions is perhaps less useful and more difficult to interpret than
detecting a shift. For these reasons, the Kolmogorov-Smirnov test statistic has not been implemented in
GA-MINER.

There are several options regarding the subsets within which variables may be compared. One possibility
is to compare the distribution of the variable in a selected subset with its distribution over the database as
a whole (i.e. a comparison of the distribution within setsS andS � C respectively). In this case, records
in the selected subsetS � C are counted as members of both populations. A second alternative is to
compare the distribution of the variable in the selected subset with its distribution over records not in the
subset (i.e. a comparison of the distribution within setsS � C andS � C respectively). Either of these
two options seems reasonable, though for the distribution patterns in GA-MINER, the first alternative is
followed.

6.1.4 Evaluation Functions for Correlation Patterns

GA-MINER includes patterns to detect both linear and rank correlations between a pair of variables within
a subset of the database.

Linear correlation attempts to fit a liney � �x � � to the data, wherey is a dependent variable,x is an
explanatory variable and� and� are constants. Perhaps the simplest evaluation function for linear cor-
relation is the product moment correlation coefficient (see section 4.7) which gives a value ranging from
�� (perfect negative linear correlation) through� (no linear correlation) to 1 (perfect linear correlation).

However, this evaluation function tends to be badly affected by outliers, takes no consideration of the
statistical significance of the discovered correlation and includes no encouragement to find larger subsets.
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In practice we found that this measure tended to pick out small subsets of variables, often containing an
outlier which resulted in an artificially high fitness.

The evaluation function may be modified a multiplicative factorP�C� to encourage larger subsets. We
did find that this helped to some degree, but the selection of the multiplicative factor was crucial to control
the balance the between subset size and correlations accepted as reasonable.

Another alternative is to use a statistical significance measure to evaluate the evidence against the slope
of the best fit line being zero, which would be the case if there were no linear association between the two
selected variables. Such a t-statistic for this purpose is given in section 4.7. This measure also increases
with the subset size, providing an incentive to find larger subsets. However, once again, we often found
that large samples (i.e. large subsetsC) tended to give high significance to slight correlations.

The Spearman rank correlation coefficient between two variables is a measure of the degree of mono-
tonicity between the variables, taking values between�� (y increases or says the same asx decreases),
through� (no monotonicity) to 1 (y increase or stays the same asx increases). Note that two perfectly
linearly correlated variables will also show perfect monotonicity or inverse monotonicity. This is not sur-
prising, since the Spearman rank correlation coefficient is just the product moment correlation between
the rank ordering of the variables, but since it does not use the explicit values for each variable it is more
robust against outliers.

The evaluation functions used for rank correlation closely mirrored those used for linear correlation. In
general the rank correlation fitness functions showed similar tendencies to their corresponding linear cor-
relation counterparts.

Our results with the correlation patterns on real world databases were in general disappointing. However,
it may be that these databases simply did not contain relationships of this form, as we were repeatedly able
to find planted correlations between variables within subsets in artificially generated datasets. Whether or
not such patterns are typical in the real world requires further investigation.

6.2 Pruning of Rules

Rather than include the notion of rule simplicity in the evaluation function, GA-MINER uses a runtime
pruning mechanism to encourage rules with fewer terms. The pruning mechanism is also used to remove
redundancy in the rule representations.

When rules are evaluated, a count of the number of data records satisfying each term is maintained, to-
gether with a count of the number of times a single term alone evaluated false and hence caused the entire
clause to evaluate false (that is, the number of times the term wasuniquely false).

If a term was uniquely false zero times, then it is essentially redundant, as it was never the unique cause
of a failure in the overall condition. Such terms may be pruned without detrimental affect to the evalu-
ated fitness, provided only a single such term exists in a clause. In such cases, we chose to remove these
redundant clauses with a probability of one.

If more than one uniquely false term appears in a clause, then only one of them may be removed imme-
diately, since deletion of this term invalidates all the evaluation statistics gathered. In cases where more
than one redundant term appears in a clause, we chose to select one for removal at random.

Near redundant clauses (that is, clauses which were close to being uniquely false) are pruned with a prob-
ability based on how close the uniquely false count was to zero.

A runtime pruning mechanism does have associated dangers, since it will remove genetic material from
the population and reduce diversity. However, the alternative, which is to allow possibly very complex
rules to form within the population and perform a post-pruning process, also has disadvantages. For ex-
ample, in this case, there may be much “excess baggage” in a rule, with many overlapping and redundant
terms, making it unclear which of these terms is contributing to the overall goodness of the rule.
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The runtime pruning mechanism employed adds a slight pressure for shorter, simpler rules, while still
attempting to prolong the life of useful genetic material in the population. Clearly, post-pruning may still
be applied if thought necessary.

6.3 Assigning Significance Levels to Patterns

In GA-MINER, we have refrained from assigning an explicit level of significance to patterns and have
instead used the respective test statistics as a measure of the relative goodness of patterns. This is because
although hypothesis tests, such as the t-test and chi-square test are widely used to assign significance levels
to patterns in data, such significance levels are only valid if the assumptions of the tests have been met.
Whereas in controlled statistical experiments it is usually possible to ensure that this is the case (at least
to a reasonable degree) in data mining we invariably find that test assumptions are violated.

For example, consider perhaps the most general assumption of hypothesis tests, which is that only a single
test was performed on the data. In data mining hundreds or even thousands of hypothesis tests may be
repeatedly performed on the data during the search. Significance levels obtained therefore overestimate
the true significance of the discovered patterns. It has been noted that Bonferonni adjustments may be
made to take into consideration the number of tests performed (Piatetsky-Shapiroet al., 1993), however,
the patterns being tested are often highly correlated, so the assumptions of this adjustment method are also
violated, resulting in the true significance level of patterns being badly underestimated.

Jensen (1991) has suggested the use of randomisation testing to obtain significance levels. Jensen’s appli-
cation domain requires that a set of candidate classification rules be compared to determine whether any
of them are better than the current best known solution. The candidate solutions are repeatedly evaluated
on randomised data which is carefully constructed to maintain the classification accuracy of the current
best known rule, but results in different records being mis-classifying. For each randomised data set, the
best classification accuracy obtained by any of the candidate rules is recorded and is used to construct a
distribution of best scores. The score of the best competitor on the true data is then compared to this dis-
tribution, and the percentage of the distribution falling below this level is an estimate of the probability
that the best candidate solution is better than current best known rule on the test data.

6.4 Genetic Algorithms as a Data Mining Search Tool

In the light of our experiences during the development of GA-MINER, it is worthwhile considering both
the merits and disadvantages of a genetic-based data mining system.

Perhaps the greatest strength of the GA-approach is its ability to find patterns in very large search spaces
with little or no required background knowledge. The nature of genetic algorithms is such that the areas
of the pattern space which are subject to the most intensive search will be those which appear to match the
actual data. In this respect, the genetic algorithm is self configuring. The way in which patterns are formed
through crossover and mutation also makes it possible to search a larger number of complex patterns than
may normally be the case, since many greedy and heuristic methods must restrict the search to a limited
number of terms or clauses in order to make the problem tractable. Genetic techniques appear therefore
to be particularly suitable for databases containing many fields, where the number of possible patterns is
large and other methods would require heavy pruning which could be detrimental to their effectiveness.

Genetic algorithms also appear well suited to undirected data mining, given their limited need for user
direction and user interaction. The genetic algorithm process is stochastic in nature and therefore several
runs of the same algorithm using a different seed for the random number generator can generate com-
pletely different rules.� This can often be advantageous, as subsequent runs of the algorithm offer the

�The random number generator included in RPL2 will generate the same sequence of numbers on all platforms, given the same
initial seed. This usefully allows all results to be reproduced when necessary, provided all other parameters to the algorithm are
restored to their original values.
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possibility of discovering new patterns. So for example, a genetic-based data mining tool could be used
to search unsupervised through a large database every night during quiet load times.

Genetic-based methods have also been demonstrated to be highly congruous to parallel implementation,
providing a scalable system which can exploit the power of multiprocessing machines. A further advan-
tage of genetic algorithms, and indeed of many of the heuristic approaches, over some other techniques
such as neural networks, is that the patterns produced are directly comprehensible and understandable.
This has clear advantages in terms of the usability of the system and improves the ease with which pat-
terns may be interpreted.

Pattern templates were found to be extremely useful for the more directed data mining applications, guid-
ing the system towards patterns of the desired form. Scrutability of patterns is again important here, as
users must be able to describe the form of pattern which is required. An extension of these templates to
allow further constraints to be placed on patterns, and to allow some degree of fuzzyness and departure
from the template would be extremely useful.

There are still some aspects of the genetic algorithm method which we regard as problematic. Although
the introduction of domain knowledge in the form of local search can be extremely productive, it is com-
putationally expensive to re-evaluate each newly modified solution on the entire database. Clearly, the
scalability of the system will not be badly affected by local search, however the wall clock time which an
application takes to run on a single processor will inevitably increase substantially. Methods to reduce this
overhead, such as the use of sampling when evaluating the modified patterns, suffer some drawbacks such
as reduced accuracy or noisy fitness functions as discussed in section 5.3. A useful compromise would
be to stop short of applying the local search algorithm repeatedly until a local optima was reached, and
rather terminate the local search after making some limited but useful improvement to the solution.

A second problem with the genetic algorithm approach is that although repeated runs have the potential
to produce different solutions, we have no way at present of forcing it to produceonly new and previously
undiscovered solutions. Ideally, we require some form of knowledge base which “remembers” those areas
of the search space which have previously been well explored and which can be eliminated from consid-
eration until other possibilities have been exhausted. It is as yet unclear how such a mechanism could be
implemented efficiently.

6.5 Architectural Insights

Our experience throughout the GA-MINER project has been that data access, and more specifically the
process of determining the number of records contained in a particular set (essentially a database selection
operation) is the most expensive part of data mining and as such forms the biggest performance limitation
on scalable data mining applications.

Provided data mining systems are content to use relatively small samples of data in the analysis process
such that all data will fit within main memory, then data access will be relatively fast. In this case, I/O
forms a more or less constant overhead, one read being required to bring the data into the memory from
which all subsequent accesses are made. In this case, it is clear that the scalability of the application as a
whole will be determined mainly by the scalability of its computational phase. In this respect, the form of
parallelism most natural to genetic algorithms, that is, distribution of the population across nodes, works
very well on both SMP and MPP platforms. In particular, the ability of MPP systems to scale well to
hundreds of nodes for such compute-intensive applications makes them ideal in this scenario.

However, it is becoming increasingly apparent that commercial data mining systems will require to access
volumes of data far in excess of available main memory. On an MPP system, one option is to parallelise
the evaluation of every rule and to divide the data across processors. In this case, the inherent parallelism
in genetic algorithms is not exploited. However, parallelisation is still clearly possible and is still likely
to achieve relatively good performance, since I/O remains a constant overhead and inter-process commu-
nication is relatively light.
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However, even the aggregate memory of all nodes on an MPP system are unlikely to be sufficient for some
commercial databases. Thus, for large scale data mining systems, data access is likely to increasingly
become a process ofdisk access.

This has some serious implications for data mining systems. Firstly, given the necessary and repeated
access to the disk, it seems prudent to concentrate efforts on making disk access as efficient as possible.
As the nature of the required access is highly specific, leaving the data in a general purpose database,
accessed through SQL, is unlikely to give as good performance as storing the data directly on disk in
whatever form is regarded as most efficient and directly accessing the data from this medium — unless
of course the database supports such facilities internally, which we feel will increasingly be the case in
future.

A question then arises as to the most appropriate architecture on which to run such a data mining applica-
tion. Until very recently, MPP platforms were primarily developed for and used by the scientific commu-
nity, for highly compute-intensive applications in which I/O played a relatively minor part. Perhaps as a
result, I/O handling on MPP platforms is still relatively immature. Many such platforms, perform all I/O
through the host machine, forming a bottleneck on data transfer between the host and parallel nodes and
placing severe limitations on the scalability of I/O intensive applications. An alternative is to attach disks
directly to several nodes and allow each processor direct access to this distributed file system. However,
parallel file systems on MPP platforms are still uncommon, are relatively new technology, and have yet
to prove themselves in a commercial environment.

On the other hand SMP platforms have traditionally been more commercially focussed. Their use in the
commercial database market is widespread, and this has lead to a greater emphasis on fast disk access. File
management is significantly simpler, requiring only that the data be moved or copied to a logical volume
which has been spread across several physical disks. In addition, the ability of SMP platforms to utilise
memory-mapped files offers substantial performance benefits. Efficient paging algorithms are available
and data may be brought into memory in blocks, a form of pre-fetching which enables data to be made
available in memory before it is accessed, and which allows the cache to be fully exploited.

Of course the amount of data which can be addressed by a single process is limited by the size of a system’s
address bus. MPP systems should therefore be able to address more data than an SMP system, since on
the former each process can independently address its own data, while on the latter all threads share the
same address space. However, the advent of 64-bit address buses substantially lowers the practical impact
of this problem.

In the short to medium term we believe that SMP platforms are the most suitable architecture for large-
scale parallel data mining, at least until the technology required for fast and efficient disk access and for
integrated file management on MPP platforms is substantially more mature. In the longer term, effective
parallel I/O systems will undoubtedly develop on MPP systems. It remains to be seen whether these ad-
vances will sufficiently outpace the development of SMP technology to usurp SMP’s current leading rˆole
in the database market.
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Chapter 7

Exploitation and Future Work

7.1 Commercial Exploitation of GA-MINER results

Quadstone Ltd is an independent software and consulting company staffed by former employees of the
Edinburgh Parallel Computing Centre at the University of Edinburgh. The fundamental architectural and
analytical discoveries from the GA-MINER project will be crucial to the second wave of functionality
within Quadstone’s Decisionhouse software — initially a suite of software applications for visualisation,
interrogation and analysis of data in data warehouses. The project has also generated base input on data
mining for the industrial partners GMAP and Barclays Bank. In particular, Barclays realise the vital im-
portance of making full use of the masses of data that they hold on their customers. Barclays will be early
adopters of Decisionhouse software, and are at the forefront of advanced commercial analysis of large
volumes of data. Results from the GA-MINER project have enabled Quadstone to provide Barclays with
substantial technical input to two internal reports — one on High Performance Computing and the other
on Data Visualisation and Data Mining technology (see appendix C).

The worldwide data warehouse market is already substantial, and is predicted to grow rapidly in the near
future. Some claims put the market worth at $5billion annually by 1997. Quadstone is already targeting
all UK organisations with over one million customers, as these are the ideal first users for Decisionhouse.
Initial exploration of the US and European markets is also underway, and Quadstone will gain much assis-
tance in these areas from two recently agreed partnership alliances with Tandem Computers and Oracle.

Within two years Quadstone should have made the successful transition from leading academic expertise
in parallel and high performance computing applications, to business success in the early supply of com-
mercial high performance computing software. This transition is made possible as the business world is
now starting to make real operational use of parallel data machines. The GA-MINER project has been
instrumental in establishing Quadstone’s position. It will also provide key technological insights to keep
Quadstone in a leading position within the data warehouse marketplace.

7.2 Future Work

There are many aspects of GA-MINER which we believe can benefit from future research. In this section
we consider briefly some of the work which we believe would be helpful to the development of genetic
algorithm data mining tools and to GA-MINER in particular.

7.2.1 Domain Knowledge

GA-MINER’s use of domain knowledge concerning the database undergoing analysis is currently limited.
Indeed, only a basic description of the type of each of the database fields is used. Although other domain
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knowledge is included in the form of the chosen representation, the genetic operators and the evaluation
function, this knowledge is relatively weak and is not specific to particular databases. On the contrary, it
is concerned with the more general application domain of rule and pattern discovery.

In fact, it is one of the principle advantages of genetic algorithms that they may still function well, even
when virtually no domain knowledge is available. However, genetic algorithms are no panacea and when
domain knowledge is available, improved results can almost certainly be achieved by its utlisation.

There are several ways in which this can be achieved, including non-random initialisation of the popula-
tion (Ray, 1992, 1994), which is already used by GA-MINER for hypothesis testing and refinement, incor-
poration of extra (“non-genetic”) local move operators and “hybridisation” with domain-specific heuris-
tics (Davis, 1991). We believe that hybridisation and local move operators hold particularly good promise,
as our experience has shown it to be useful in other application domains (Radcliffe & Surry, 1994b).

Such extensions are likely to involve the inclusion of a rule- or pattern-refiner whose purpose is to locally
improve a given rule or pattern by local search, possibly incorporating concept hierarchies (Piatetsky-
Shapiro, 1992) and heuristics based on statistical properties of the database. The rule-refiner would be
applied to children newly generated by crossover and mutation, or at least to a subset of these. Quadstone
Ltd. is in fact in the process of developing such an automated rule-refiner.

7.2.2 Pattern Templates

During the course of this research, pattern templates have been found to be extremely useful in adapting
GA-MINER to particular tasks or applications. Our experience suggests that such templates could play
a useful rôle more generally in data mining systems. Indeed templates have been used successfully to
guide the search for interesting association rules in large collections of discovered rules (Klemettinenet
al., 1994).

Some research is still required to determine which features of patterns should be configurable through
templates, and on how such constraints should be specified. It may be, for example, that a pattern template
can be generated to some extent “behind the scenes”, being derived automatically from a user’s query
expressed in a more user-friendly language.

Current experience suggests that extensions to allow a degree of fuzzyness in patterns would be helpful,
as presently patterns must conform strictly to the given template. Of course, all such extensions will re-
quire thought as to how the constraints expressed in the template can be efficiently implemented by the
genetic operators or otherwise. It may also be prudent to provide templates which describe the form of
non-interesting rules (Klemettinenet al., 1994), as a means of guiding the discovery process away from
known or uninteresting rules.

7.2.3 Rule Interest Measures

More work is required on the process of evaluating and selecting interesting rules. Most of GA-MINER’s
current evaluation functions rely too heavily on statistical significance measures. Other rule interest mea-
sures, such as simplicity, could be directly incorporated into evaluation functions. Alternatively, the trade-
offs between multiple goodness criteria could be handled using the notion of Pareto-optimality (Fonseca
& Fleming, 1993, 1994; Surryet al., 1995).

The present use of a runtime pruning mechanism to encourage rule simplicity requires further investiga-
tion to determine whether it may be improved. Furthermore, although the simple distance measures and
heuristics used to gather a subset of the generated rules have been effective for the designated task, more
sophisticated rule interest measures are likely to require that this scheme be modified.

Finally, GA-MINER does not yet consider subjective measures of rule interest, which are likely to become
of increasing importance as data mining systems become more sophisticated. Research into such measures
and consideration of how they may be integrated with GA-MINER will be necessary if it is to be used by
non-technical users.
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7.2.4 User-Interaction and Presentation of Rules

The whole question user-interaction and rule presentation forms a subject in itself and it has not been
possible during the course of this research to fully explore this area. It is clear that data mining systems can
benefit greatly from general research into bothHuman Computer Interaction (HCI) and data visualisation.
However, requiring particular consideration from the GA-MINER perspective are the questions of how
users specify pattern templates, or more generally, how users specify areas of interests to the system. Of
course, the display of rules and patterns in a clear, concise and illuminating way is also of vital importance,
and this could benefit from collaborative research with visualisation experts.
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Appendix A

Example RPL2 Plan

plan(Miner)

use Rule, StdInst, Debug;

structure [10:fine, 10:fine] deme Euclidean(1.0);

gstack [*,*] gs;
genome [*,*] g, gKid, gMum, gDad;

genome gBest;
genome gNext;
gstack gsAll;

bool bMaxIsBest;
bool bUseRawFitness;
bool bFuzzyVal;
bool bFuzzyMin;
bool bFuzzyMax;

int i;
int j;
int k;
int nGen;
int iCand;
int nCand;

int nPercentiles;

int evalFn;
int count;
int nS;

int nMinSizeTT;
int nMinSizeFF;

real rBias;
real rPUCross;
real rPdClsCross;
real rAccBias;

real rPAddDelCls;
real rPAddDelTerm;
real rPMutTerm;
real rPMutAttr;
real rPMutValue;
real rPMutConst;
real rConstHalfRange;
int nConstSteps;
int nMaxConstCreep;

real rPMutHypAttr;
real rPMutFuzzMin;
real rPMutFuzzMax;
real rFuzzHalfRange;
int nFuzzSteps;
int nMaxFuzzCreep;
real rPMutValueFuzz;
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real rBeta;

real rSim;

int stmtSetSize;

nMinSizeTT := 1;
nMinSizeFF := 1;

evalFn := 11; %J-measure

rBias := 0.5; % bias for xover

nPercentiles := 50; % Number of percentiles to calculate

rPUCross := 0.5; % P of using uniform crossover
rPdClsCross := 0.1;
rAccBias := 0.5;

rPAddDelCls := 0.10; % P of adding or deleting a clause
rPAddDelTerm := 0.01; % P of adding or deleting a term
rPMutHypAttr := 0.1; % P of mutating a hypothesis attribute
rPMutTerm := 0.10; % P of mutating a term in the rule

rPMutAttr := 0.0; % P of changing each of two field attrs
rPMutConst := 1.0; % P of creeping each const in rule
nMaxConstCreep := 150; % max # of creep steps for consts
rPMutFuzzMin := 0.05;
rPMutFuzzMax := 0.05;
rPMutValue := 0.5; % P of mutating a value in a value cst
rPMutValueFuzz := 0.8; % P of mutating the fuzzyness of a value

rConstHalfRange := 0.11; % half range of normalised constants
nConstSteps := 20; % number of discrete steps in the half range

rBeta := 20;

bFuzzyVal := FALSE;
bFuzzyMin := FALSE;
bFuzzyMax := FALSE;

rFuzzHalfRange := 0.1;
nFuzzSteps := 10;
nMaxFuzzCreep := 50;

bMaxIsBest := TRUE;
bUseRawFitness := TRUE;
nGen := 300;
nCand := 1;

stmtSetSize := 5;
rSim := 0.45;

SetParams(rAccBias, nMinSizeTT, nMinSizeFF, nPercentiles, bFuzzyVal,
bFuzzyMin, bFuzzyMax, rPMutFuzzMin, rPMutFuzzMax, rFuzzHalfRange,
nFuzzSteps, nMaxFuzzCreep, rPMutValueFuzz);

ReadData("/home/ga-miner/data/gmap/census91BDFH", "censusSet.template");

RuleSetInit(stmtSetSize);

for iCand := 1 to nCand

%=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=#

structfor [*,*]
i := 234351 * iCand;
Randomize(i);
g := RandomGenome();
EvalRule(g, evalFn, rBeta);

endstructfor

gBest := ReduceRawBest(g,bMaxIsBest);
PrintGenome(gBest);

Empty(gsAll);
Collect(g, gsAll);
StatsPrint(0,0,gsAll,"stdout");

count := 0;
for i := 1 to nGen

structfor [*,*]
Empty(gs);
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DemeCollect(gs, g);

gMum := SelectRawTournament(gs, bMaxIsBest, 2, 0.6, TRUE);

gKid := Cross(gMum, g, rBias, rPUCross, rPdClsCross);

Mutate(gKid, rPAddDelCls, rPAddDelTerm, rPMutHypAttr,
rPMutTerm, rPMutAttr, rPMutValue, rPMutConst,
rConstHalfRange, nConstSteps, nMaxConstCreep);

EvalRule(gKid, evalFn, rBeta);

Empty(gs);
Push(g,gs);
Push(gKid,gs);
g := SelectRawTournament(gs,bMaxIsBest, 2, 0.8, FALSE);

endstructfor

Empty(gsAll);
Collect(g, gsAll);

gBest := ReduceRawBest(g,bMaxIsBest);
for j := 1 to 100

gNext := SelectNth(gsAll, j);
RuleSetUpdate(gNext, rSim, bMaxIsBest, bUseRawFitness);

endfor

PrintString("************* Current Statement set");
RuleSetPrint();

PrintString("************* Best in population");
PrintGenome(gBest);

PrintString("***********************************");

StatsPrint(i,1,gsAll,"stdout");

endfor

%=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=#

endfor

endplan

run



EPCC-AIKMS-GA-MINER-REPORT 1.0 79

Appendix B

Example Pattern Template Description

use Rule pattern;

dependent "Sales Fiesta per head population",
"Sales Sierra per head population",
"Sales Granada per head population",
"Sales Escort per head population",
"Ford market share (Fiesta)",
"Ford market share (Escort)",
"Ford market share (Sierra)",
"Ford market share (Granada)";

begin(spec)

MaxClauses = 1;
MaxTerms = 6;
MaxValues = 5;

select variables from all independent except "Postal district",
"XCoord", "YCoord";

(true):fixed;

end(spec);

begin(cond)

MaxClauses = 1;
MaxTerms = 6;
MaxValues = 5;

select variables from all independent except "Postal district",
"XCoord", "YCoord";

(true);

end(cond);

begin(pred)

MaxClauses = 1;
MaxTerms = 1;
MaxValues = 1;

(
(

(fix "Ford market share (Fiesta)"
= fix 0.2 .. fix 100.0) :fixed

):fixed
):fixed;

end(pred);
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Appendix C

Data Mining at Barclays

Barclays is continuing to exploit results from GA-MINER and other research, and is presently conducting
a study into data mining. A letter from Phil Brown of Barclays, outlining some preliminary results from
this study is included below.

Dear Nick,

Thank you for providing input to our study into:

� the current status of data mining technology and its likely evolutions over the next 2-3
years,

� the current and planned data mining activity within Barclays, and

� the obstacles to the Bank’s exploitation of the technology.

As you know, this study has taken input from a number of external sources such as yourselves
and from most of the business areas with either a current or planned data mining activity. Our
report is not yet completed but I thought that some of the provisional findings are particularly
relevant to the AIKMS GA-MINER project:

Discovered relationships must be understandable One of the aims of data mining is the
creation of new understandingof implicit relationships within data — to do this requires
that the problem owner / analyst can understand the rule / relationship and that contri-
bution made by the various factors. This builds confidence that the rule is plausible and
not the result of ‘spurious correlation’

A number of commercially available data mining tools already address this point.

Both top-down and bottom-up initiatives are required There is a need for data mining to
allow

� relationships / proposed hypotheses to be automatically derived from data bottom-
up,

� relationships / hypothesis proposed by the user to be tested, and

� a mixed initiative, where the users’ tighten, relax or replace specific elements of a
discovered relationship and let the computer search once again.

It is reputed that a few US tools address this point — I cannot say that we have seen it
mentioned in the information we have gathered.

The types of ‘discoverable’ relationships are limited Current data mining tools are some-
what restricted in the variety of patterns/relationships they can discover especially in the
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undirected type of data mining. This seems to arise from them all using essentially the
same set of proven algorithms — all of which have sound theoretical grounding. In con-
trast, the concept of using genetic algorithms and ‘relationship templates’ such as the
‘median shift’ seem to be a far more heuristic approach based less on mathematics and
more on the sorts of patterns that analysts ‘look’ for by manual inspection.

As far as we have seem, no vendors currently seem to be offering this capability.

Phil Brown
GIST
Barclays
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Appendix D

Data provided by GMAP

Field Name Description
POSTDIST Postal district
XCOORD Grid reference (X) of postal district
YCOORD Grid reference (Y) of postal district
TOTPOPM Proportion of males
TOTPOPF Proportion of females
POP04 Proportion of the population aged 0-4
POP515 Proportion of the population aged 5-15
POP1624 Proportion of the population aged 16-24
POP2544 Proportion of the population aged 25-44
POP45RT Proportion of the population aged 45-64
POPRTPLUS Proportion of the population aged 65 and over
SEGA Proportion of households with head in Social Class A (Professional occupations)
SEGB Proportion of households with head in Social Class B (Managerial occupations)
SEGAB Proportion of households with head in Social Class A or B
SEGC1 Proportion of households with head in Social Class C1 (Clerical occupations)
SEGC2 Proportion of households with head in Social Class C2 (Skilled manual occupations)
SEGD Proportion of households with head in Social Class D (Semi-skilled occupations)
SEGE Proportion of households with head in Social Class E (Unskilled occupations)
SEGDE Proportion of households with head in Social Class D or E
ECON ACT Economically active heads per household
OWNER OCC Proportion of households - owner-occupied
COUNCIL Proportion of households - council-rented
PRIV RENT Proportion of households - private rented
DETACH Proportion of households - detached
SEMID Proportion of households - semi-detached
TERRAC Proportion of households - terraced
FLAT Proportion of households - flats
OTHER RESI Proportion of households - other permanent
NPERM Proportion of households - non-permanent
CAR0 Proportion of households lacking a car
CAR1 Proportion of households with one car
CAR2 Proportion of households with two cars
CAR3 Proportion of households with three or more cars
CHILD0 Proportion of households with no children aged 0-15
CHILD1 Proportion of households with one child
CHILD2 Proportion of households with two children
CHILD3 Proportion of households with three or more children
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WHITE Proportion of the population - ethnic class ’white’
NEW COMMON Proportion of the population - ’New Commonwealth’
OTHER PERS Proportion of the population - others
STUDENTS Proportion of Students
UNEMPLOYED Proportion of Unemployed
QHDEG Proportion of the population with higher education qualifications
QDEG Proportion of the population with degrees
FDIST Distance to nearest Ford dealer (from center of postal district)
ODIST Distance to nearest non-Ford dealer (from center of postal district)
NFORD Number of Ford dealers in postal district
NOTHER Number of non-Ford dealers in postal district
BSALES Ford Sales in segment B (Fiesta)
DSALES Ford Sales in segment D (Escort)
FSALES Ford Sales in segment F (Sierra)
HSALES Ford Sales in segment H (Granada)
BSHARE Ford market share in segment B (Fiesta)
DSHARE Ford market share in segment D (Escort)
FSHARE Ford market share in segment F (Sierra)
HSHARE Ford market share in segment H (Granada)
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Appendix E

Example Patterns Found by
GA-MINER

E.1 Patterns found in the GMAP Data

if Proportion of population aged 5-15� 0.12
(Approximate percentiles 22% - 100%)
(true: 1980 false: 577 unique false: 120)

and
Proportion of households with 0 cars� 0.33
(Approximate percentiles 64% - 100%)
(true: 889 false: 1668 unique false: 313)

and
Prop. head household in socio-economic group A or B	 0.21
(Approximate percentiles 0% - 46%)
(true: 1148 false: 1409 unique false: 78)

then
Ford market share segment D (Escort)� 0.23
(Approximate percentiles 58% - 100%)
(true: 1043 false: 1514 unique false: 1514)

Left hand side matches 23% of the database
Right hand side matches 41% of the database

Expected Actual
Accuracy: 41% 71%
Coverage: 23% 39%



EPCC-AIKMS-GA-MINER-REPORT 1.0 85

if Distance to nearest Ford dealer� 12968
(Approximate percentiles 92% - 100%)
(true: 202 false: 2355 unique false: 2355)

then
Ford market share segment F (Sierra)� 0.0009
(Approximate percentiles 12% - 100%)
(true: 2204 false: 353 unique false: 353)

Left hand side matches 8% of the database
Right hand side matches 88% of the database

Expected Actual
Accuracy: 86% 38%
Coverage: 8% 3%

if Number of Ford Dealers 0
(Approximate percentiles 62% - 100%)
(true: 936 false: 1621 unique false: 1621)

then
Ford market share segment B (Fiesta)� 0.20
(Approximate percentiles 40% - 100%)
(true: 1386 false: 1171 unique false: 1171)

Left hand side matches 38% of the database
Right hand side matches 60% of the database

Expected Actual
Accuracy: 54% 68%
Coverage: 37% 46%
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if Proportion of households with 0 cars� 0.33
(Approximate percentiles 64% - 100%)
(true: 867 false: 1690 unique false: 383)

and
Proportion of households with 2 children� 0.11
(Approximate percentiles 22% - 100%)
(true: 1939 false: 618 unique false: 304)

and
Proportion of unemployed in population� 0.036
(Approximate percentiles 48% - 100%)
(true: 1316 false: 1241 unique false: 34)

then
Ford market share segment D (Escort)� 0.23
(Approximate percentiles 58% - 100%)
(true: 1012 false: 1545 unique false: 1147)

and
Ford market share segment F (Sierra)� 0.03
(Approximate percentiles 18% - 100%)
(true: 2073 false: 484 unique false: 86)

Left hand side matches 20% of the database
Right hand side matches 36% of the database

Expected Actual
Accuracy: 36% 69%
Coverage: 20% 38%

if Number of Ford Dealers� 0
(Approximate percentiles 62% - 100%)
(true: 936 false: 1621 unique false: 1621)

then
Ford market share segment B (Fiesta)� 0.12
(Approximate percentiles 16% - 100%)
(true: 2113 false: 444 unique false: 31)

and
Ford market share segment F (Sierra)� 0.02
(Approximate percentiles 14% - 100%)
(true: 2156 false: 401 unique false: 131)

and
Ford market share segment D (Escort)� 0.11
(Approximate percentiles 14% - 100%)
(true: 2146 false: 411 unique false: 98)

and
Sales Fiesta per head population� 0.0007
(Approximate percentiles 26% - 100%)
(true: 1876 false: 681 unique false: 256)

Left hand side matches 37% of the database
Right hand side matches 59% of the database

Expected Actual
Accuracy: 59% 82%
Coverage: 37% 50%
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The distribution of “Sales Granada per head population” when
Prop. head household in socio-economic group B� 0.20
(Approximate percentiles 56% - 100%)
(true: 1091 false: 1466 unique false: 86)

and
Proportion of population aged 5-15	 0.15
(Approximate percentiles 0% - 88%)
(true: 2248 false: 309 unique false: 56)

and
Prop. head household in socio-economic group A� 0.05
(Approximate percentiles 72% - 100%)
(true: 710 false: 1847 unique false: 435)

has median 0.00004 and is significantly shifted from the
distribution in the database as a whole which has median value 0.

The distribution of “Sales Fiesta per head population” when
Proportion of households — Semi-Detached� 0.35
(Approximate percentiles 70% - 100%)
(true: 744 false: 1813 unique false: 620)

and
Prop. head household in socio-economic group B� 0.22
(Approximate percentiles 66% - 100%)
(true: 814 false: 1743 unique false: 550)

has median 0.0013 and is significantly shifted from the
distribution in the database as a whole which has median value 0.0010.

The distribution of “Ford market share segment B (Fiesta)” when
Prop. head household in socio-economic group C2� 0.19
(Approximate percentiles 78% - 100%)
(true: 525 false: 2032 unique false: 1508)

and
Prop. head household in socio-economic group C1� 0.05
(Approximate percentiles 20% - 100%)
(true: 2038 false: 519 unique false: 90)

and
Proportion of households with 1 car	 0.50
(Approximate percentiles 0% - 90%)
(true: 2295 false: 262 unique false: 36)

has median 0.25 and is significantly shifted from the
distribution in the database as a whole which has median value 0.21.
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E.2 Patterns found in Barclays Credit Data

if field28inf 02, 01g
(true: 1022 false: 711 unique false: 3)

and
field50inf 01g
(true: 189 false: 1544 unique false: 174)

and
field4 inf 03, 06g
(true: 247 false: 1486 unique false: 79)

or
field5 inf 02g
(true: 103 false: 1630 unique false: 213)

and
field4 inf 03 , 06g
(true: 247 false: 1486 unique false: 69)

then
class = 1
(true: 294 false: 1439 unique false: 1439)

Left hand side matches 4% of the database
Right hand side matches 17% of the database

Expected Actual
Accuracy: 17% 62%
Coverage: 4% 13%

if field4 inf 02 , 03 , 06 , 04g
(true: 773 false: 960 unique false: 312)

and
field60inf 02g
(true: 594 false: 1139 unique false: 491)

then
class = 1
(true: 294 false: 1439 unique false: 1439)

Left hand side matches 16% of the database
Right hand side matches 17% of the database

Expected Actual
Accuracy: 17% 42%
Coverage: 16% 40%
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if field49inf 01g
(true: 1474 false: 259 unique false: 179)

and
field60inf 01g
(true: 1139 false: 594 unique false: 514)

then
class = 0
(true: 1439 false: 294 unique false: 294)

Left hand side matches 55% of the database
Right hand side matches 83% of the database

Expected Actual
Accuracy: 83% 90%
Coverage: 55% 60%

if field19inf 05 , 06g
(true: 936 false: 797 unique false: 797)

then
class = 0
(true: 1439 false: 294 unique false: 294)

Left hand side matches 54% of the database
Right hand side matches 83% of the database

Expected Actual
Accuracy: 83% 90%
Coverage: 54% 59%
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