
GA–SSD–ARC–NLM for Parametric Image

Registration

Felix Calderon, Leonardo Romero, and Juan Flores

Universidad Michoacana de San Nicolás de Hidalgo
División de Estudios de Posgrado. Facultad de Ingenieŕıa Eléctrica
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Abstract. We present the GA–SSD–ARC–NLM, a new robust para-
metric image registration technique based on the non–parametric image
registration SSD–ARC algorithm. This new algorithm minimizes a new
cost function quite different to the original non-parametric SSD-ARC,
which explicitly models outlier punishments, using a combination of a
genetic algorithm and the Newton–Levenberg–Marquardt method. The
performance of the new method was compared against two robust regis-
tration techniques: the Lorentzian Estimator and the RANSAC method.
Experimental tests using gray level images with outliers (noise) were done
using the three algorithms. The goal was to find an affine transformation
to match two images; the new method improves the other methods when
noisy images are used.

1 Introduction

The parametric image registration problem [1] consists of finding a parameter set
which allows us to match an origin image with a target image. Many algorithms
try to minimize the Sum of Squared Differences (SSD) between the origin and
target images. Successful SSD applications, including the classical Least Squared
method (LS), are presented in [2,3,4]. Nevertheless the SSD based algorithms
have poor performances in cases of noisy images and outliers. In particular,
the problem with LS is that outliers have a huge weight in the cost function
(and gradient vector) and pull the solution towards them; robust methods try
to exclude outliers in some way.

Two well known robust methods in the computer vision literature are the
Lorentzian Estimator (LE) and the the Random Sample Consensus method
(RANSAC). Some authors, instead of using SSD, use the Lorenzian estimator
[5] in cases of noisy images, getting good results. The RANSAC method is a sto-
chastic technique which presents good results with outliers, and its application
for image mosaics is presented in [6].

Another robust method is called, Sum of Squared Difference with Adaptive
Rest Condition (SSD–ARC), which models outliers rejection inside the SSD cost
function. An SSD-ARC application for non-parametric image registration was
presented in [7] and another application for non-parametric camera calibration
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is found in [8]. In both articles, the non-parametric SSD–ARC cost function
is minimized using a coarse to fine strategy (scale space) and the Richarson
Iteration [9].

This paper describes a new robust method named GA–SSD–ARC–NLM that
combines the explicit outlier rejection idea from non-parametric SSD–ARC [7]
into a new cost function with a searching process in two stages. The first stage
is done with a Genetic Algorithm (GA) and the goal is to find an approximate
solution inside a bounded parameter space. The second stage refines the solution,
reached by GA, using the Newton–Levenberg–Marquardt (NLM) method [9].

An experimental comparison among GA–SSD–ARC–NLM, RANSAC and LE
show the robustness pf GA–SSD–ARC–NLM in cases of noisy images.

2 Registration Using an Affine Transformation

The Affine Transformation (AT) [10,11] allows us to compute, at the same time,
translation, rotation, scaling, and sharing of images. An AT uses a six-parameter
vector Θ, and maps a pixel at position ri (with integer coordinates [xi, yi]) to a
new position r̂i (with real coordinates [x̂i, ŷi]) given by

r̂i(Θ) =
[

x̂i

ŷi

]

=
[

xi yi 1 0 0 0
0 0 0 xi yi 1

]

Θ = M(ri)Θ (1)

where M(ri) is the matrix of coordinates and Θ = [θ0...θ5] is the parameter
vector.

The image registration problem, try to find the Θ which match an origin or
source image I1 on a target image I2. However in practical cases both images
are corrupted by noise and the problem is to find the best AT to match a
transformation of I1 into I2. A very well known method to evaluate the match
quality is to compute the Sum of Squared Differences (SSD) between the source
and target images, pixel by pixel, as in Equation (2).

E (Θ) =
N

∑

i=1

[I1(r̂i (Θ)) − I2(ri)]
2 =

N
∑

i=1

ei (Θ)2 (2)

with a difference vector image ei given by

ei (Θ) = I1(r̂i (Θ)) − I2(ri) (3)

where I(ri) is the gray level value of pixel ri in image I. Using this error mea-
surement, SSD, the registration image task consists of finding Θ∗ that makes E
reaches a minimum value (Θ∗ is the minimizer of Equation (2)). This method
is named Least Squared (LS) and some strategies to minimize Equation (2) are
presented in [9].

Using the ρ-function, defined by Hampel in [12], the SSD can be defined by
Equation (4) with ρLS(ei) = e2i .

ELS (θ) =
N

∑

i=1

ρLS(ei (θ)) (4)
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The influence function is defined by Hampel in [12], as the derivative of the
ρ-function and it helps to see the contribution of the errors to the right solution
(see [12]). In the LS case, the influence function is given by (5)

ψLS (ei) = 2ei (5)

A robust function presented in [5], is the Lorentzian Estimator (LE), which has
a ρ-function and influence function given by Equation (6) and (7)

ρLE(ei) = log
(

1 +
e2i
2σ2

)

(6)

ψLE(ei) =
2ei

2σ2 + e2i
(7)

note, the term 1
2σ2+e2

i
in (7), reduces the error contribution on the gradient

vector and it is not present in Equation (5). This fact explains why LS is noto-
rious sensitive to outliers. Another new function with similar performance is the
parametric SSD–ARC function which is described in the following section.

2.1 Parametric SSD-ARC

The Sum of SquaredDifferences with Adaptive RestCondition for non–parametric
Image Registration was presented, by Calderon in [7], as the minimization of a
quadratic energy function ̂ESSD−ARC with a term lihi to reduce huge error con-
tribution given by Equation (8)

̂ESSD−ARC (V, l) =
N

∑

i=1

(ei (Vi) − lihi)2 + μ

N
∑

i=1

l2i +
τμ

4

N
∑

i=1

|∇Vi|2 (8)

where hi is an error dependent function, li ∈ [0, 1] is an outlier indicator func-
tion under the control of parameter μ, Vi is the displacement vector for each
image pixel, and the last term is a homogeneity constrain with regularization
parameter τ .

In our case, assuming an AT, hi = ei(Θ), and annulling the homogeneity
constraint, a particular parametric SDD-ARC function can be obtained as

̂ESSD−ARC (Θ, l) =
N

∑

i=1

e2i (Θ)(1 − li)2 + μ
N

∑

i=1

l2i (9)

For this parametric SDD–ARC function, the term (1 − li)2 allows us to discard
outliers. The second term in Equation (9) restricts the number of outliers by
means of μ. The minimizer l∗i for Equation (9) can be computed by solving
∂ �ESSD−ARC(Θ,l)

∂li
= 0, so the solution for l∗i is given by Equation (10). We refer to

l∗i as the outlier field.

l∗i =
e2i (Θ)

μ+ e2i (Θ)
(10)
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Replacing the value of l∗i in Equation (9), we have a new parametric SSD–ARC
function ESSD−ARC (Θ) given by Equation (11), which has an unimodal ρ–
function and an influence function given by Equations (12) and (13) respectively.

ESSD−ARC (Θ) =
N

∑

i=1

μe2i (Θ)
μ+ e2i (Θ)

(11)

ρSSD−ARC (ei) =
μe2i
μ+ e2i

(12)

ψSSD−ARC (ei) =
2μ2ei

(μ+ e2i )
2 (13)

Note, the parametric SSD-ARC influence function exhibits a behavior similar
to the Lorentzian Estimator influence function. In both functions, large differ-
ences give derivatives values near to zero, as can see in Equations (13) and (7)
respectively. The parametric SSD–ARC influence function has a maximum value
located at ê =

√

μ/3 and values greater than 2ê will have a derivative value near
to zero. Nevertheless, there is not a gradient-based algorithm capable to reach
the minimum, if the initial value gives an error greater than 2ê. For this reason,
a minimization method in two steps for the parametric SSD–ARC error function
is proposed.

3 Algorithm GA–SSD–ARC–NLM

We propose to begin with a stochastic-based search, as Genetic Algorithm,
and then to refine the results using a gradient-based algorithm, the Newton
Levenberg–Marquardt (NLM). The following names are used in order to distin-
guish between the ways to minimize the parametric SSD–ARC Equation. If only
the NLM algorithm is used, the minimization process is named SSD–ARC–NLM
(see Algorithm 2.); if we use GA, the minimization procedure will be named GA–
SSD–ARC (see Algorithm 1.), and when we use a combination, performing first
GA and then NLM, the process will be called GA–SSD–ARC–NLM. A similar
convention is used with LE.

3.1 GA–SSD–ARC

Haupt and Haupt in [13], describe the steps to minimize a continuous parameter
function cost using GA. In our case, the parametric SSD–ARC given by (11)
is optimized and the six vector parameter Θ will be the chromosome for each
individual and the jth parameter is randomly computed by

θj = (θmax
j − θmin

j ) ∗ α+ θmin
j (14)

where θmax
j and θmin

j are the upper and lower bounds and α is a random number
in [0, 1].
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Algorithm 1. GA-SSD-ARC
Given μ, I1(ri), I2(ri) and Npop then
1. Compute a initial population

- For k = 1 to Npop

Randomly compute Θ(k) using Equation (14),

For each Θ(k) compute I1(�ri(Θ
(k))) and ei(Θ

(k)), by Equation(3)

Compute the error ESSD−ARC(Θ(k)) using Equation (11)

- Select the half population with least ESSD−ARC(Θ(k)); Npop ← Npop/2.0
2. Matting.

- Randomly select couples over the best population half given more

matting probability those elements with least ESSD−ARC(Θ(k))
3. Reproduce

- Replace the worst population half by the offsprings created by Equation (15)

- and then, compute the Error ESSD−ARC(Θ(off)) (Equation (11)) for each offspring.
4. Mutation

- Randomly select the k − th population member and the j − th
parameter, and replace it by a new parameter computed by Equation (14)

- Never mutate the best population member.
5. Repeat steps 2, 3 and 4 until the population do not reach convergence.

6. For the best population member Θ(0), compute ei(Θ
(0)) using Equation (3),

and then, the outliers field li by Equation (10)

At each generation, a fitness-based selection process indicates which individ-
uals from the population will mate and reproduce, yielding new offsprings. Once
we have selected two individuals Θ(f), and Θ(m) for mating, cross-over is accom-
plished according to the following formulae

θ
(k)
j = θ

(m)
j − β(θ(m)

j − θ
(f)
j ) (15)

θ
(k+1)
j = θ

(f)
j + β(θ(m)

j − θ
(f)
j )

where β is a random number between zero and one, and θ
(k)
j denotes the j −

th parameter of the vector parameter Θ(k). Newly born offsprings (Θ(k) and
Θ(k+1)) are incorporated to the population replacing the worst elements and
their fitness is computed by Equation (11). The final GA-SSD-ARC is presented
in the Algorithm 1.

3.2 SSD–ARC–NLM

Equation (16) gives the iterative steps to find the minimum value using the
Newton Levenberg–Marquardt NLM [9], and the strategy for computing λ(k) is
given by Algorithm 2.

Θ(k+1) = Θ(k) −
[

H
(

Θ(k)
)

+ λ(k)I
]−1

∇E
(

Θ(k)
)

(16)
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Algorithm 2. SSD–ARC–NLM
Given the μ, I1(ri), I2(ri), λ(0) and Θ(0) then:

1. Set k = 0 and compute E(Θ(0)) by Equation (11)
2. Do

Compute H(Θ(k)) and ∇(Θ(k)) by Equations (17) and (18)
Do

Update H(Θ(k))← H(Θ(k)) + λ(k)I

Compute Θ(k+1) by Equation (16) and ESSD−ARC(Θ(k+1)) by Equation (11),

If (ESSD−ARC(Θ(k+1) > ESSD−ARC(Θ(k)) λ(k+1)=10λ(k) else λ(k+1) = λ(k)

While ((ESSD−ARC(Θ(k+1)) > ESSD−ARC(Θ(k))) and (λ(k+1) < λmax)

If (λ(k) > λmin) then λ(k) ← λ(k)/10

If (ESSD−ARC(Θ(k+1) > ESSD−ARC(Θ(k))) then Θ(k+1) = Θ(k)

Set k ← k + 1

While ((ESSD−ARC(Θ(k)) < ESSD−ARC(Θ(k−1)))
3. For the final Θ∗, compute ei(Θ

∗) using Equation (3), and then li by Equation (10)

where ∇E (Θ) is the gradient vector and H (Θ) is the Hessian matriz at each
iteration and they are computed by Equations (17) and (18)

∇E (Θ) = 2
N−1
∑

i=0

J(r̂i (Θ))
μe2i
μ+ e2i

(17)

H (Θ) = 2
N−1
∑

i=0

JT (r̂i (Θ))J(r̂i (Θ))
2μ2

(

μ− 3e2i
)

(μ+ e2i )
3 (18)

J(r̂i (Θ)) =
[

A−T∇In(ri)
]T
M(ri)

where J(r̂i (Θ)) is the Jacobian matrix,M(ri) is defined by Equation(1), In(ri) =

I1(r̂i (Θ)) and A =
(

θ0 θ1
θ3 θ4

)

.

4 Experiments

We compare GA–SSD–ARC–NLM, LE and RANSAC methods using pairs of
synthetic and real images. For LE, a minimization scheme similar to GA–SSD–
ARC–NLM (using GA and NLM) is used in order to give similar minimization
conditions (only replacing ESSD−ARC by ELE in Algorithms 1. and 2.). Since in
experiments with pairs of synthetic images, we know the right parameter vector
̂Θ, so the Euclidean distance |ΔΘ| between the known parameter vector ̂Θ and
the estimated parameter vector Θ, is used as a proximity measure.

4.1 Experiments with Synthetic Images

In synthetic experiments, the NLM uses the vector Θ = [1, 0, 0, 0, 1, 0]T as the
initial value, and the stop criterion was 1e − 5 or 1000 iterations. For GA, a
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population of 3000 individuals and 100 generations were used. In order to accel-
erate the convergence procedure, in some cases the error function was evaluated
only on 20% of the image pixels, all these parameters were handpicked in order
to have a good performance. The GA search boundaries, for each of the affine
transformation parameters, are {0.5, 1.5}, {−0.5, 0.5}, {−10, 10}, {−0.5, 0.5},
{0.5, 1.5}, {−10, 10}. The parameters μ for parametric SSD–ARC and σ for LE
were 20 and 25 respectively, in order to give the better performance for both
algorithms, and they are the same in all experiments.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 1. Experiments with synthetic images. Origin images (a, b, c and d), target images
(e, f, g and h), and resulting images using GN–SSD–ARC–NLM (i,j,k and l)

In the first experiment, an affine transformation given by ̂Θ = [0.9396, -0.3420,
3.0000, 0.3420, 0.9396, 3.0000] is applied to the Lena image (Figure 1(a)) and
the target images is shown in Figure 1(e). In the second experiment, in contrast
with the previous one, 20% of the image pixels were set to black color (zero
value) in order to simulate a regular outlier field. Using the same AT as the
experiment one, the target image is shown in Figure 1(f). In the third experiment
the complement of a circular-shaped outlier field and an affine transformation,
given by ̂Θ = [1.3, 0, 0, 0, 1.3, 0] are applied to the Cameramen Image (Figure
1(c)), yielding the picture in Figure 1(g). In the fourth experiment we use the
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Baboon image (Figure 1(d)), an affine transformation given by ̂Θ =[0.7, 0.3, 0,
0.3, 0.7, 0] and a random outlier field are applied to the baboon image, the target
image is shown in Figure 1(h).

The results for LS, SSD–ARC–NLM, GA-SSD-ARC, GA–SSD–ARC–NLM,
LE–NLM, GA–LE, GA–LE–NLM and RANSAC are presented in Table 1. These
results show that GA–SSD–ARC–NLM outperforms the other methods, specially
in the cameraman and Baboon images. The final images computed by GA–SSD–
ARC–NLM in the four experiments are presented in Figures 1(i), 1(j), 1(k) and
1(l). Note the transformed origin images are very close to target images. You
can note the bad performance for the same parametric SSD–ARC function when
this is minimized using only NLM.

Table 1. Comparative results for parametric SSD-ARC, LE and RANSAC for synthetic
experiments

Lena Lena Cameraman Babbon

Algorithm |ΔΘ| |ΔΘ| |ΔΘ| |ΔΘ|
LS 0.00010 51.4019 10.0451 1.3056

SSD-ARC-NLM 7.04200 4.2710 8.1507 12.5695

GA-SSD-ARC 0.96880 2.8368 1.3841 1.0910

GA-SSD-ARC-NLM 0.00010 0.0431 0.0002 0.0000

LE-NLM 19.60010 262.6573 19.6643 0.0006

GA–LE 0.42630 0.5471 6.7396 0.1371

GA-LE-NLM 0.00014 0.2089 6.3691 0.0006

RANSAC 0.12590 0.5376 0.4082 94.0000

4.2 Experiment with Real Images

This experiment use the origin and target images shown in Figure 2. These im-
ages show some differences that can be modelled using an affine transformation.
Additionally, the target image has a boy in front of the car (which does not ap-
pear in the origin image), in order to introduce more complexity in the outliers,
and the camera was rotated. The goal is to obtain the boy image as part of the
outlier field and the affine transformation introduced by the camera rotation.

The transformation computed by GA–SSD–ARC–NLM was Θ = [0.9700,
-0.2280, 42.7323, 0.2413, 0.9768, -20.6006 ] and by RANSAC was Θ = [0.9166,
-0.2473, 47.1152, 0.2151, 0.9249, -15.3065]. In this case there are differences be-
tween the parameter vectors computed by both algorithms but these values do
not allow us to conclude which one is the best or produces the nearest image to
the target image. Using Equation (10), the outlier field can be computed and its
image is presented in Figure 2(c), note in this image the contour of the boy in
front of the car. Figure 2(d) shows the resulting image computed by GA–SSD–
ARC–NLM. Finally the Figures 2(e) and 2(f) give a clear idea of the accuracy
of both AF computed. In both Figures the absolute value of the difference be-
tween the target image and the computed image by GA–SSD–ARC–NLM and
RANSAC were computed; dark areas correspond to low difference. Note the
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(a) Origin (b) Target (c) Outlier computed by
GA–SSD–ARC–NLM

(d) Final Image com-
puting by GA–SSD–
ARC–NLM

(e) Difference between
GA–SSD–ARC–NLM
and target images

(f) Difference between
RANSAC and target im-
ages

Fig. 2. Car park image registration

quality for the AT computed by GA–SSD–ARC–NLM, shown in Figure 2(e),
most static objects like the car or walls are almost perfectly matched; only the
boy, and the leaves of trees do not match. In the RANSAC difference image
(Figure 2(f)) even the car is not fully matched.

5 Conclusions

In this paper, we presented GA–SSD–ARC–NLM, an algorithm for parametric
image registration, based on the non–parametric SSD–ARC algorithm. The Ob-
jective function is minimized in two steps, using GA at the beginning and then
the NLM to refine the solution found by GA. The final algorithm improved the
solution using only GA or using only NLM and it is robust when the images
are corrupted by noise. A comparison of GA–SSD–ARC–NLM with other im-
age registration algorithms, such as RANSAC and LE, was presented in order
to provide experimental proof of the robustness of GA–SSD–ARC–NLM. We
tested GA–SSD–ARC–NLM using different kinds of images and outlier fields. In
all these tests, GA–SSD–ARC–NLM improved the results of the RANSAC and
LE methods. Our method is similar to GA–LE–NLM but it is less sensitive to
the particular parameter σ, and it is easier to find better solutions. Additionally
the GA–SSD–ARC–NLM provides an explicit way to compute the outliers and
does not need an extra image processing.

With synthetic images, we tested the robustness of GA–SSD–ARC–NLM and
presented how the two minimization steps improved the solution using only NLM
for the parametric SSD–ARC function. In case of real images, the comparison
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was done using only the final parameter vector, computed by GA–SSD–ARC–
NLM and RANSAC.

Furthermore, GA–SSD–ARC-NLM has the advantage of computing the out-
liers with accuracy even in case of a random outlier field (as shown in the experi-
ments). In contrast with RANSAC, GA–SSD–ARC–NLM computes the outliers
for the whole image using a simple Equation. This outlier Equation is implicit
on the parametric SSD–ARC function and the outlier field is computed when
the algorithm converges.
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