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The performance of Global Positioning System and Inertial Navigation System (GPS/INS)

integrated navigation is reduced when GPS is blocked. This paper proposes an algorithm to

overcome the condition where GPS is unavailable. Together with a parameter-optimised

Genetic Algorithm (GA), a Support Vector Regression (SVR) algorithm is used to construct

the mapping function between the specific force, angular rate increments of INS measure-

ments and the increments of the GPS position. During GPS outages, the real-time pseudo-

GPS position is predicted with the mapping function, and the corresponding covariance

matrix is estimated by an improved adaptive filtering algorithm. A GPS/INS integration

scheme is demonstrated where the vehicle travels along a straight line and around a curve,

with respect to both low-speed-stable and high-speed-unstable navigation platforms. The

results show that the proposed algorithm provides a better performance when GPS is

unavailable.
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1. INTRODUCTION. The Global Positioning System (GPS) and Inertial

Navigation Systems (INS) have been widely used for navigation. Since GPS satellite

signals are subjected to external environmental disturbance, signal blockage is fre-

quently experienced in urban environments, while INS errors accumulate quickly

with time. To provide continuous and reliable navigation solutions, the two systems

are usually employed together for their complementary characteristics. The degra-

dation of GPS/INS navigation performance is unavoidable when GPS signals are de-

graded in some areas, such as forests and canyons. Special approaches should be
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developed to overcome this problem, such as GPS integration with additional sensors,

e.g., odometers, magnetometers, broadband communication networks (cellular GSM,

etc.) or receiver elevation knowledge obtained from a digital terrain model (Danezis

and Gikas, 2013; Farrell, 2008; Van Diggelen, 2009).

Artificial intelligence and machine learning can also be used to overcome this

problem by taking INS data as the input and the difference from the GPS position

as the output. A multi-sensor system integration approach was introduced to fuse

data from an INS and GPS hardware-utilising wavelet multi-resolution analysis and

Artificial Neural Networks (ANN) (Chiang et al., 2003; Noureldin et al., 2004). A

multi-layer neural network was trained to map the vehicle dynamics corresponding

to Kalman Filter (KF) states, which can be used to correct INS measurements when

GPS measurements are unavailable (Wang et al., 2006). An artificial intelligence-

based segmented forward predictor was proposed to update the position and velocity

architecture by utilising radial basis function neural networks for the purpose of pro-

viding metre-level positioning solutions during GPS outages (Semeniuk and

Noureldin, 2006). An auxiliary fuzzy-based model was presented for predicting the

KF positioning error states during GPS signal outages (Abdel-Hamid et al., 2007).

GPS/INS navigation solutions were calculated intelligently using the ANN based on

updating the INS in a Kalman filter structure. To overcome the limitations of multi-

layer feed-forward neural networks and KF-based schemes, a constructive neural

network was proposed to improve positioning accuracy by 55% during GPS signal

outages (El-Sheimy et al., 2008; Huang and Chiang, 2008). However, with neural net-

works it is difficult to avoid the problems of a local optimal solution, determining the

topological structure and the “curse of dimensionality”.

The Support Vector Regression (SVR) algorithm is a new regression technology

based on the Vapnik-Chervonenkis (VC) dimension theory of statistical learning and

the structural risk minimisation principle (Vapnik, 2000). The input is transformed

into a high-dimension characteristic space through a nonlinear transformation,

and the optimum linearity regression function is sought. The SVR avoids over-

fitting by choosing a specific hyperplane among the feature spaces and overcomes

the major problems faced by typical neural networks, such as local minima, over-

fitting or over-training, etc. (Frangos et al., 2010), allowing for a much more hands-

off training process that is easily deployable and scalable. Xu et al. (2010) established

the regression model between the INS output data and the GPS position difference

based on the least squares support vector machine, and the results show that the

least squares support vector machine is superior to the neural network algorithm.

However, the method of acquiring the optimal parameters for SVR model training

was not provided.

In this paper, the pseudo-GPS position-aided GPS/INS navigation is presented

during GPS outages. With the optimal parameters from genetic algorithms, the

SVR algorithm is used to train a regression model between the specific force and

angular rate increments of the INS measurements as input and the increments of

GPS position as output. The pseudo-GPS position is calculated with the regression

model. An improved adaptive filtering algorithm is then designed to estimate the

covariance matrix of the pseudo-GPS position in real-time. Finally, the pseudo-

position-aided navigation solution is given. The structure of this paper is as follows:

Section 2 briefly introduces the theory and model of GPS position-aided INS and
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INS mechanisation equations, Section 3 presents the Genetic Algorithm-Support

Vector Regression (GA-SVR) model and its training parameters as well as an optimi-

sation method based on GA. The calculation of the pseudo-position and covariance

estimation scheme based on improved adaptive filtering are given in Section 4.

Section 5 shows testing results of the pseudo-position-aided low-cost INS scheme,

and the conclusions are given in Section 6.

2. CONVENTIONAL GPS/INS INTEGRATED NAVIGATION. A Loosely

Coupled (LC) Extended Kalman Filtering (EKF) (Falco et al., 2012; Faruqi and

Turner, 2000) is applied for GPS/INS integration, with the states as follows:

X¼½δrN; δrE; δrD; δvN; δvE; δvD; δfRo; δfPi; δfHa;∇bx;∇by;∇bz;

∇fx;∇fy;∇fz; εbx; εby; εbz; εfx; εfy; εfz; δlN; δlE; δlD; δgN; δgE; δgD�
T

ð1Þ

where δrN, δrE, δrD are the position errors, δvN, δvE, δvD are the velocity errors, δϕRo,

δϕPi, δϕHa are the attitude errors, ∇bx, ∇by, ∇bz are the accelerometer biases, ∇fx, ∇fy,

∇fz are the accelerometer scale factor errors, εbx, εby, εbz are the gyro drifts, εfx, εfy,

εfz are the gyro scale factor errors δlN, δlE, δlD represent the GPS antenna to INS

lever arm measurement errors and δgN, δgE, δgD denote the gravity uncertainty errors.

For the GPS/INS integrated navigation system, the discrete-time form of the

dynamic model is given as:

X k ¼ Φk;k�1X k�1 þ wk ð2Þ

where xk and xk–1 are the state vector at epoch k and k–1, respectively,Φk,k–1 is the state

transition matrix from epoch k–1 to k, and wk is the dynamic process noise. The dif-

ference in position between GPS measurements and INS measurements in the

North-East-Down (NED) frame is regarded as measurements, and the observation

equation can be written as:

Zk¼ HkX kþrk ð3Þ

where zk denotes the difference between INS position and GPS position at epoch

rk,Hk= [I3×3, 03 × 24] is the observation matrix, and rk represents the measurement noise.

We assume wk and rk satisfy the following conditions:

EðwkÞ ¼ 0;Eðwkw
T
j Þ ¼ Qkδk;j

EðrkÞ ¼ 0;Eðrkr
T
j Þ ¼ Rkδk;j

Eðwkr
T
j Þ ¼ 0

8

>

<

>

:

ð4Þ

where δk,j is the Kronecker δ-function, Qk is the variance-covariance matrices of states,

and Rk is the variance-covariance matrices of measurements. The discrete-time

Kalman filter is then given by the following equations.

Prediction stage:

X̂ k;k�1 ¼ Φk;k�1X̂ k�1 ð5Þ

Pk;k�1 ¼ Φk;k�1Pk�1Φ
T
k;k�1þQk�1 ð6Þ
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Update stage:

Kk¼ Pk;k�1H
T
k HkPk;k�1H

T
k þ Rk

� ��1
ð7Þ

X̂ k¼ X̂ k;k�1 þ Kk Zk�HkX̂ k;k�1

� �

ð8Þ

Pk ¼ I � KkHk½ �Pk;k�1 ð9Þ

where X̂ k;k�1 is the a priori state estimate, Pk,k–1 is the a priori estimate variance-covari-

ance, Kk is the Kalman matrix, X̂ k is the a posteriori state, and Pk is the a posteriori

estimate variance-covariance (Bar-Shalom et al., 2001; Chiang et al., 2012; Gikas

et al., 1995; Parnian and Golnaraghi, 2010).

3. SVR MODELTRAINING BASED ON GA. When the vehicle moves steadily

without significantly drastic changes, there is a relatively high correlation between the

increments of the GPS position and the specific force and angular rate increments of

the INS measurements (Wang et al., 2006; Xu et al., 2010). The SVR model of corre-

lation is trained based on the GA in this paper, with the specific force and angular rate

increments of the INS measurements as the input X and the corresponding increments

of the GPS position as the output Yof the SVR. The GA is used to search the optimal

parameters of the SVR before training. A detailed block diagram of the algorithm is

shown in Figure 1.

3.1. Principle of Support Vector Regression. The SVR algorithm seeks the

relationship between the input and output for a training set of data (xi, yi), i = 1,2,…,

l, xi ϵR
n,yi ϵR, where xi is the ith input and yi is the corresponding output. The SVR

model for nonlinear function estimation has the following representation in the

feature space:

f ðxÞ¼ω
TφðxÞþb ð10Þ

where the term ɷ is the weight vector. The nonlinear function φ(x) maps the input x

space to a higher dimensional feature space. The term b is the bias term.

Figure 1. GA-SVR Model training.
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It is assumed that ε is the maximum residual between output y and the theoretical

value of f(x), so

�ε< y� f ðxÞ<ε ð11Þ

To obtain the optimum value εmin among ε

min
ω;b

ε

s:t:� ε< y� f ðxÞ< ε; i ¼ 1; 2; :::; l
ð12Þ

with slack variable ξð�Þ ¼ ðξ1; ξ
�
1; :::; ξl; ξ

�
l Þ � 0 and penalty parameter C added to

Equation (12), the calculation of ω and b can be altered to the optimisation problem

as Equation (13) (Gunn, 1998):

min
ω∈Rn;b∈R;ξð�Þ∈R2l

τðω; ξð�ÞÞ ¼
1

2
jjωjj2 þ

C

l

X

l

i¼1

ξi þ ξ�i
� �

ð13Þ

To solve the optimisation problem above, the Lagrangian function is constructed:

L ω; b; ξ; αð Þ ¼
1

2
ωj jj j2þ

C

l

X

l

i¼1

ξi þ ξ�i
� �

�
X

l

i¼1

ηiξi þ η�i ξ
�
i

� �

�
P

l

i¼1

αi εþ yi � ω xð Þ � bð Þ �
P

l

i¼1

α�i ε� yi þ ω xð Þ þ bð Þ

ð14Þ

where α
(*) are the Lagrange multipliers αð�Þ ¼ α1; α

�
1; . . . ; αl; α

�
l

� �T
� 0. According to

the Wolfe duality theory (Wolfe, 1961), the conditions for optimality are given by:

∂L

∂ω
¼ ω�

X

l

i¼1

α�i � αi
� �

xi ¼ 0

∂L

∂b
¼

X

l

i¼1

αi � α�i
� �

¼ 0

∂L

∂ξi
¼

C

l
� αi � ηi ¼ 0

∂L

∂ξ�i
¼

C

l
� α�i � η�i ¼ 0

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð15Þ

Substituting Equation (15) into Equation (14), Equation (13) can then be expressed as

Equation (16):

min
αð�Þ∈R2l

1

2

X

l

i; j¼ 1

α�i � αi
� �

α�j � αj

� �

φTðxiÞφðxjÞ þ ε
X

l

i¼1

α�i þ αi
� �

�
X

l

i¼1

yi α
�
i � αi

� �

s:t:
X

l

i¼1

α�i � αi
� �

¼ 0; 0 � α�i ; αi �
C

l
; i ¼ 1; 2 . . . ; l

ð16Þ

Equation (16) belongs to the convex quadratic programming problem, and the feasible

region is empty, meaning that the optimal solution of �α ¼ �α1; �α
�
1; . . . ; �αl; �α

�
l

� �T
in
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Equation (16) is solved. ω and b can be calculated as follows (Berk, 2008; Joachims,

2002; Williams, 2011):

ω ¼
X

l

i¼1

�α�i � �αi
� �

φðxiÞ

b ¼ yi � ωφðxiÞ � ε; 0< �α�i < C

b ¼ yi � ωφðxiÞ þ ε; 0< �αi < C

�

ð17Þ

As a result, the SVR model for nonlinear function estimation becomes:

f xð Þ ¼
X

l

i¼1

�α�i � �αi
� �

K xi; xð Þ þ b ð18Þ

where K(xi, x) = φ
T( xi) φ( xj) is a positive definite kernel matrix. Note that the Radial

Basis Function (RBF) has an advantage in processing linearly inseparable data, and

therefore the RBF kernel (K(xi, xj) = exp(−γ||xi− xj||
2)) is chosen as the kernel func-

tion. The γ is the kernel width: small and kernel width may cause over-fitting, and a

large kernel width may cause under-fitting (Chang et al., 2005). A small penalty par-

ameter (C) leads to over-fitting and a large one brings about under-fitting (Alpaydin,

2004). The performance of SVR with Gaussian RBF kernel is sensitive to the kernel

width (γ) and penalty parameter (C). Several methods can be used to obtain the

optimal γ and C, e.g., bootstrapping, VC bounds statistical learning theory, and infer-

ence or Bayesian learning methods (Cristianini and Ricci, 2008; Kecman, 2005).

Genetic algorithms are developed in this paper, shown in the next section.

3.2. Parameter optimisation based on genetic algorithms. Genetic algorithms are

a family of computational models inspired by evolution. These algorithms encode a

potential solution to a specific problem on a simple chromosome-like data structure,

and they apply recombination operators to these structures in a way that preserves

critical information (Goldberg and Holland, 1988). With respect to ϒ, C of SVR,

the solutions of the parameter optimisation problem can be expressed as follows.

Step 1: Encoding. Note that there is only one change between two adjacent numbers

and the grey code is developed in this paper. The relationship between binary code B

and grey code G is:

Bn�1 ¼ Gn�1

Gi ¼ Giþ1 ⊕ Gi; i ¼ 0; 1; 2; . . . ; n� 2

�

ð19Þ

where ⊕ represents the XOR operator.

Step 2: Initialisation. Set the range of parameters 0≤ϒ≤ 1000, 0 <C≤ 500, 20

chromosomes of each parameter γ, C are generated randomly and the maximal

genetic generation is 200.

Step 3: Fitness calculation of the individual. The fitness function is the basis of the

optimisation to evaluate the quality of the individual. The Root Mean Square (RMS)

of the SVR-trained residual is calculated based on K-fold cross-validation with the 20

chromosomes. Descending through the chromosomes according to the RMS, the

fitness of each chromosome is then shown in Equation (20):

FitnV Posð Þ ¼ 2� spþ 2 × ðsp� 1Þ ×
Pos� 1

N � 1
ð20Þ
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where sp is the assigned press difference, Pos is the position of the chromosomes and N

is the population size. FitnVϵ[1, 2].

Step 4: Genetic operators.

Selection: The population of the next generation is formed by means of a probabil-

istic reproduction process. Individuals with a higher fitness usually have a greater

chance for the next generation. The selected probability Psi of the ith chromosome

xi is shown in Equation (21).

Psi ¼ fi

.

XN

j¼1
fj ð21Þ

whereN denotes the size of the population and fi the fitness function of chromosome xi.

Crossover: Crossing over tends to enable the evolutionary process to move toward

promising regions of the search space. The next generation is formed between two

selected individuals, called parents, by exchanging parts of their strings. Single-point

crossover is developed with the probability of 0·7 in this paper as seen in Figure 2.

Mutation: Mutation is used to search for additional problem space and to avoid the

local convergence of GA. For each bit in the population in this paper, ‘mutate’ changes

the bit value with a low probability of 0·05.

Step 5: End the GA procedure, and output the optimal chromosome if the genetic

generation reaches the maximum value, else, go to step 3.

4. PSEUDO-GPS POSITION-AIDED INS NAVIGATION. When GPS signals

are available, the LC strategy, including an EKF, is adopted to combine the GPS

and INS values to estimate navigation solutions. The INS errors in 24 states estimated

by EKF correct the INS model in real-time. Simultaneously, the regression model is

trained based on the GA-SVR, which maps the increments of the GPS position

with the specific force and angular rate increments of the INS measurements. If the

GPS signals are unavailable, the pseudo-GPS position can be estimated based on

the trained model and the specific force and angular rate increments of the INS mea-

surements. An improved adaptive filtering is designed to estimate the covariance

matrix of the pseudo-GPS positions in real time. The INS errors estimated by

improved adaptive filtering correct the INS model. The pseudo-GPS position-aided

navigation solutions are then calculated as shown in Figure 3.

4.1. Pseudo-GPS position calculation. Assume that ti is the epoch before GPS

becomes unavailable, Pi is the corresponding position of the GPS. Δt is the sampling

interval of the GPS measurements. At the next epoch ti+ 1 (ti+ 1= ti + Δt), the GPS po-

sition incrementsΔPj canbederivedusing the trainedGA-SVRmodel, specific force incre-

ments ∫
tiþ1

ti
f bibdt and angular rate increments ∫

tiþ1

ti
ω
b
ibdt (according to Equation (18)).

Figure 2. Single-point crossover.
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The pseudo-GPS position at epoch ti+1 can then be obtained as:

Pj ¼ Pi þ ΔPj ð22Þ

After n intervals, the final pseudo-GPS position at epoch tk (tk= ti+ nΔt) is obtained as:

Pk ¼ Pi þ
X

n

t¼1

ΔPt ð23Þ

4.2. Improved adaptive filtering. The EKF is disabled due to the absence of the

covariance matrix of the pseudo-GPS position from the GA-SVR algorithm. In this

paper, an improved adaptive filtering algorithm is proposed by combining Sage-

Husa Adaptive Filtering (SHAF) with robust filtering. The SHAF can estimate the

covariance matrix in real time according to the innovation to improve the estimation

accuracy (Ding et al., 2007). The predicted pseudo-GPS positions inevitably contain

big errors/biases, so that a robust algorithm which can detect and solve the errors is

needed, such as the equivalent weight method (Yuanxi, 1994) or Receiver

Autonomous Integrity Monitoring (RAIM) (Hewitson and Wang, 2007, 2010).

. Sage-Husa adaptive filtering

The innovation sequence is defined as Equation (24):

vk ¼ Zk �HkX̂k;k�1 ð24Þ

The predicted error covariance matrix from the innovation sequence is:

Eðvkv
T
k Þ ¼ HkPk;k�1Hk þ Rk ð25Þ

There is clearly a relationship in Equation (25) to estimate Rk. However, it requires a

limited number (called ‘estimation window size’) of innovation samples to calculate

E(vkvk
T). Considering the number of pseudo-measurements, we use both a priori knowl-

edge Rk−1 and innovation vkvk
T to estimate the covariance matrix Rk as follows

Figure 3. GA-SVR-Based Pseudo-Position-aided INS Navigation algorithm.
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(Lu et al., 2007; Sage and Husa, 1969):

Rk ¼ 1� dkð ÞRk�1 þ dkðvkv
T
k �HkPk;k�1H

T
k Þ ð26Þ

where dk ¼
1� e

1� ek
; 0< e< 1, e is the forgetting factor.

dk ¼
1� e

1� ek
; 0< e< 1 ð27Þ

. Robust filtering

The residual sequence is defined as:

εk ¼ Zk �HkX̂k ð28Þ

Then the mean square error factor σ̂
0
is calculated with the median method as:

σ̂
0
¼ med

i
fj

ffiffiffiffiffi

Pi

p

εijg=0:6745 ð29Þ

where εi is the ith element of the residual sequence with the weightPi. The standardised

residual si of εi as:

si ¼ j
ffiffiffiffiffi

Pi

p

εij=σ̂0
ð30Þ

Robust factors γi based on IGGIII weight function (Yuanxi, 1994) are constructed as:

γi ¼

1; si � k0

k0

si
×

k1 � si

k1 � k0


 �2

; k0 < si � k1

10�30; si > k1

8

>

>

>

<

>

>

>

:

ð31Þ

where k0, k1 are threshold value and k0= 1.0 ~ 1.5, k1 = 2.5 ~ 8.0.

If si≤ k0,we think that the ith pseudo-GPS position has no error; if k0 < si≤ k1, we

think that the ith pseudo-GPS position has small error; and if si > k1, we think that the

ith pseudo-GPS position has big error. To reduce the impact of the big errors/biases to

the navigation solutions, the covariance matrix of pseudo-GPS positions is amplified

with robust factors as follows:

R̂i ¼ R̂i=γi ð32Þ

5. TEST RESULTS. Two sets of Leica 1200 Base and Rover GPS Systems and

SPAN-CPT INS units are used. Firstly initial alignment is done with the supporting

software of SPAN-CPT, and then the raw IMU data from SPAN-CPT and GPS

data from Leica are collected to validate the proposed algorithm in this paper. The

sensor specifications of the SPAN-CPT are listed in Table 1.

If GPS signals are available, the loosely coupled strategy is adopted to calculate the

navigation solutions of the GPS/INS integrated system based on EKF. Figure 4a

shows the position errors of the GPS/INS navigation solution for the latitude, longi-

tude and height when GPS signals are available. The lever arm between GPS

antenna phase centre and IMU navigation centre directly affects the output position
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in a GPS/INS integrated system. According to the algorithm (Geng et al., 2011; Tang

et al., 2009), Figure 4b shows the estimated lever arm, the red line represents true

values.

The feasibility of the algorithm is verified using three tests. The data were recorded

for post processing. Test 1 moved along a straight line with respect to a low-speed-

stable navigation platform, Test 2 moved along a straight line with respect to a

high-speed-unstable navigation platform, and Test 3 moved along a curve.

Trajectories of these three tests can be seen in Figure 5.

Test 1: 4100 seconds of RTK-GPS (1 Hz) and IMU (100 Hz) data were collected

when the vehicle moved at a speed of 20 km/h. Navigation solutions between the

1580th and 1700th seconds are provided with the proposed algorithm, assuming

that the GPS signal was unavailable during that time. With a similar motion state,

101 groups of data from the 1380th to 1480th seconds were chosen as the GA-SVR

training samples. The data from 1481st to 1579th seconds were not used because the

vehicle was forced to stop at a crossroad.

Test 2: 2100 seconds of RTK-GPS (1 Hz) and IMU (100 Hz) data were measured at

a speed of 70 km/h. Navigation solutions between the 561st and 800th seconds were

solved with the algorithm, assuming that the GPS signal was unavailable during

that time. With a similar motion state, 201 groups of data from the 360th to the

560th seconds were chosen as the GA-SVR training samples.

Test 3: A set of data was selected when the vehicle moved along a curve at a speed of

20 km/h. Navigation solutions between the 943rd and 1023rd seconds are provided

Table 1. INS technical specifications.

Gyro Accelerometer

Range ±375°/s ±10 g

Bias 20°/hr 50 mg

Bias Stability ±1°/hr ±0·75 mg

Scale Factor 1500 ppm 4000 ppm

Random Walk 0·0667°/√hr 60 μg/√Hz

Figure 4. (a) Navigation solution errors (Left). (b) Lever arm estimation (Right).
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with the proposed algorithm, assuming that the GPS signal was unavailable during

that time. With a similar motion state, 81 groups of data from the 313rd to the

393rd seconds were chosen as the GA-SVR training samples.

5.1. GPS position increments based on the GA-SVR. Figure 6 shows the training

data of the three tests. Note that the specific force and angular rate increments of the

INS measurements are multiplied by the sample interval 0·01 s. In Test 1 and Test 2,

the roll and pitch of the angular rate are no more than 0·005 radians in magnitude,

and the heading is no more than 0·02 radians, which illustrates that the direction of

movement of the test vehicle remains stable. The specific force increments in Test 1

appear smoother than those in Test 2, and the result for the change of the GPS position

increments in Test 1 is more stable than that for Test 2. From the increments of

heading, latitude and longitude, it is obvious that Test 3 passed through a curve.

Figure 5. Trajectories for trained and predicted data. (a) Test 1 (Left). (b) Test 2 (Middle). (c) Test 3

(Right).

Figure 6. GA-SVR training data of three tests.
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Figure 7 shows the process of seeking the optimal parameters γ and C in an SVR

based on genetic algorithms. The iteration-stopping criterion is defined as a difference

between two adjacent fitness levels of less than 0·001. The iterations in latitude, longi-

tude, and height are: 57, 35, and 9, respectively, in Test 1; 193, 130, and 2, respectively,

in Test 2; 13, 32, and 2, respectively, in Test 3. A faster convergence rate is achieved in

the height direction for tests, and the slowest convergence rate arises in the latitude in

Test 2, where the changes in the GPS position increments are the largest. The optimal

parameters γ and C can be seen in Table 2.

Based on SVR theory, the sample data are trained to construct regression models

with the optimal parameters γ and C in the SVR determined by genetic algorithms.

Figure 8 shows the results and deviations of trained and predicted GPS position

Figure 7. Genetic algorithm fitness curves. (a) Test 1 (Top). (b) Test 2 (Middle). (c) Test 3 (Bottom).

Table 2. Results of GA-SVR.

Test Direction

Results of GA Number

of support

vectors Bias

RMS error of

trained (m)

RMS error of

predicted (m)
C γ

latitude 0·576 22·020 101 −0·463 7·46e-3 0·083

1 longitude 3·194 29·592 101 −0·551 3·44e-4 0·111

height 7·750 107·273 101 −0·456 5·26e-5 0·024

latitude 312·228 0·007 191 −0·173 0·994 0·835

2 longitude 354·014 0·001 192 −1·371 0·647 0·515

height 302·118 0·012 187 3·501 0·003 0·005

latitude 22·254 116·920 77 −0·511 0·163 0·295

3 longitude 6·792 141·278 80 −0·384 0·113 0·201

height 51·796 780·042 64 −0·830 0·166 0·017
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Figure 8. GA-SVR training results of Latitude, Longitude, and Height. (a) Test 1 (Top). (b) Test 2

(Middle). (c) Test 3 (Bottom).
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increments based on the GA-SVR algorithm. With a more smooth and stable state,

the trained and predicted accuracy in Test 1 and Test 3 is much better than that in

Test 2. The RMS of the errors of the three tests is shown in Table 2.

5.2. Pseudo-GPS position-aided navigation. The pseudo-GPS position is calcu-

lated by adding the predicted GPS position increments to the GPS position (recorded

before the GPS outage), as shown in Section 4.1. Figure 9 shows the pseudo-GPS po-

sition and its deviations for the three tests. Note that latitude deviations are transformed

to metres by multiplying the radius of the curvature in the meridian, and longitude

deviations are transformed by multiplying the radius of the curvature in the prime ver-

tical and cosine of the latitude. The RMS of the latitude, longitude, and height devia-

tions are 1·440 m, 0·717 m, and 0·561 m, respectively in Test 1, 11·641 m, 20·148 m, and

4·350 m, respectively in Test 2, and 1·576 m, 1·874 m, and 0·077 m, respectively in Test

3. The accuracy of the pseudo-GPS position in Test 1 and Test 3 is obviously much

higher than that in Test 2 due to low speeds and smooth operation.

INS/RTK-GPS stands for the conventional GPS/INS loosely coupled integration al-

gorithm when GPS signals are available; INS/GA-SVR means improved adaptive fil-

tering with the pseudo-GPS positions during the absence of GPS signals; INS-only

represents the navigation system depending solely on the equipped INS. Figure 10

shows deviations in the comparisons of the INS/RTK-GPS, INS/GA-SVR, and

INS-only algorithms in three dimensions. The results indicate that deviations for

INS-only are drifted to 27 m in 120 seconds when the GPS is unavailable, but the

RMS of the deviation with INS/GA-SVR is 1·699 m with a maximum deviation of

no more than 2·734 m in Test 1. The performance is very stable. In Test 2, the devia-

tions in the INS-only drift to 119 m in 240 seconds, while the RMS of the deviation

with INS/GA-SVR is 24·026 m, with a maximum deviation of less than 36·403 m.

Navigation solutions undulate frequently from 560∼680 seconds and are better than

Figure 9. Pseudo-GPS position comparison and deviations. (a) Test 1 (Left). (b) Test 2 (Middle).

(c) Test 3 (Right).

691GA-SVR AND PSEUDO-POSITION-AIDED GPS/ INSNO. 4



INS-only after that point as the result of the accuracy of the pseudo-GPS position. In

Test 3, deviations in the INS-only drift to 9 m in 81 seconds, while the RMS of the de-

viation with INS/GA-SVR is 2·472 m, with a maximum deviation of no more than

3·600 m.

Figure 11 shows the velocity comparison for the INS/RTK-GPS and INS/GA-SVR

algorithms in the north, east, and up directions. In Test 1, the RMS of the deviation

using the INS/GA-SVR algorithm are 0·051 m/s, 0·068 m/s, and 0·015 m/s, with the

maximum no more than 0·146 m/s, 0·187 m/s, and 0·041 m/s in the north, east, and

Figure 10. Position errors comparison in three dimensions. (a) Test 1 (Top). (b) Test 2 (Middle).

(c) Test 3 (Bottom).
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up directions, respectively. This is almost identical to the true velocity with INS/RTK-

GPS. In Test 2, the RMS of the deviation using the INS/GA-SVR algorithm are 0·560

m/s, 0·406 m/s, and 0·075 m/s, with a maximum of no more than 1·003 m/s, 0·782 m/s,

and 0·226 m/s in north, east, and up directions, respectively. In Test 3, the RMS of the

deviation using the INS/GA-SVR algorithm are 0·104 m/s, 0·077 m/s, and 0·033 m/s,

with a maximum deviation of less than 0·239 m/s, 0·187 m/s, and 0·040 m/s in north,

east, and up directions, respectively. This result indicates that the velocity in the up di-

rection is close to that with INS/RTK-GPS, but there are small deviations between

INS/RTK-GPS and INS/GA-SVR in the north and east directions.

Figure 12 shows an attitude comparison of the INS/RTK-GPS and INS/GA-SVR

algorithms in the roll, pitch, and heading. In Test 1, the RMS of the deviation with

the INS/GA-SVR algorithm are 0·109°, 0·250°, and 0·222°, with the maximum no

more than 0·161°, 0·342°, and 0·290° in the roll, pitch, and head, respectively, which

are almost identical to the attitude of INS/RTK-GPS. In Test 2, the RMS of the devi-

ation with the INS/GA-SVR algorithm are 0·039°, 0·135°, and 0·985°, with a

maximum of no more than 0·088°, 0·278°, and 1·509° in the roll, pitch, and head, re-

spectively. In Test 3, the RMS of the deviation with the INS/GA-SVR algorithm are

0·023°, 0·040°, and 0·111°, with a maximum of no more than 0·058°, 0·070°, and

0·168° in the roll, pitch, and head, respectively. These results indicate that the attitude

in the roll and pitch is close to INS/RTK-GPS, but there are small differences between

INS/RTK-GPS and INS/GA-SVR in the heading. The statistical results for the vel-

ocity and attitude are given in Table 3.

The results indicate that 1) Based on the GA-SVR algorithm, the accuracy of the

pseudo-GPS position is high when the vehicle operates a low-speed-stable navigation

platform along both a straight line and a curve, and low if the vehicle operates a

high-speed-unstable navigation platform; 2) The velocity and attitude of navigation

solutions are very close to the true value, and they benefit from the implementation

Figure 11. Velocity comparison. (a) Test 1 (Top). (b) Test 2 (Middle). (c) Test 3 (Bottom).
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of improved adaptive filtering that only adjusts the position covariance matrix rather

than other states; and 3) The accuracy of navigation solutions depends largely upon the

accuracy of the pseudo-GPS position when the GPS is unavailable.

6. CONCLUSIONS. To overcome the shortcomings of GPS/INS integrated navi-

gation during GPS outages, we have proposed a pseudo-position-aided INS navigation

algorithm. Based on GA-SVR, the algorithm uses the predicted pseudo-position and

improved adaptive filtering to calculate reliable navigation solutions. The proposed al-

gorithm has been tested on low-speed-stable and high-speed-unstable navigation plat-

forms where the vehicle travels along a straight line and around a curve. Results show

that the proposed new approach can provide reliable and accurate navigation solutions

when the GPS is unavailable. The calculation of the optimal parameters in an SVR

training model will take more time, which will affect the real-time navigation of the

integrated system. Thus the optimal parameters should be trained in advance accord-

ing to the INS performance and the different motion states of the vehicle. With the

Figure 12. Attitude comparison. (a) Test 1 (Top). (b) Test 2 (Middle). (c) Test 3 (Bottom).

Table 3. Results of velocity and attitude comparison.

Test

Velocity deviation (m/s) Attitude deviation (degree)

North East Up Roll Pitch Head

1 Max 0·146 0·187 0·041 0·161 0·342 0·290

RMS 0·051 0·068 0·015 0·109 0·250 0·222

2 Max 1·003 0·782 0·226 0·088 0·278 1·509

RMS 0·560 0·406 0·075 0·039 0·135 0·985

3 Max 0·239 0·187 0·040 0·058 0·070 0·168

RMS 0·104 0·077 0·033 0·023 0·040 0·111
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further development of parallel computing technology and computer performance,

this issue will be resolved in the future.
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