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Positron annihilation measurements show that negative Ga vacancies are the dominant acceptors in
n-type gallium nitride grown by hydride vapor phase epitaxy. The concentration of Ga vacancies
decreases, from more than¥@o below 13° cm 3, as the distance from the interface region
increases from 1 to 30@m. These concentrations are the same as the total acceptor densities
determined in Hall experiments. The depth profile of O is similar to thatgyf, \Buggesting that the

Ga vacancies are complexed with the oxygen impurities.20®3 American Institute of Physics.

[DOI: 10.1063/1.1569414

Hydride vapor phase epitaxyVPE) is a method forthe to 1® cm 2 (60 um samplé. In the free-standing GaN
fast growth of GaN layers on sapphire substrates. The qualitgample the electron concentration is only 50> cm™ 3.
of these layers improves drastically with thickness, making  Conventional positron lifetime spectroscdpyas per-
them interesting candidates for substrates of GaN homoepitormed in samples thicker than 3@m. The positron annihi-
axy. For example, the dislocation densities decrease from thtions in the sapphire substrate were subtracted from the
very high values of>10" cm™? close to GaN/sapphire in- spectra by estimating their fractio®20%—40% from the
terface to less than $&m~2 in films which are thicker than exponential stopping profile of fast positrons froffNa
50 um.*~* The impurity concentratior? electrical and op-  source. In order to measure depth profiles, all GaN layers
tical properties;>®and deep level defeét8have also quali- were investigated by implanting 0—25 keV positrons from a
tatively similar depth profiles. The atomic structures of themonoenergetic beam at the depths of Qs from the sur-
dominating point defects, however, have not been identifiedace. The measured Doppler broadening of the 511 keV an-
and their role as electrically active centers has not been quanihilation radiation was characterized by the low and high
titatively estimated. electron-momentum paramete8sand W.*°

Earlier positron annihilation experiments in GaN have  The average positron lifetime,, in the free-standing
identified the Ga vacancdy,which most likely forms defect HVPE GaN sample is indistinguishable from that in the GaN
complexes with Q impurities!'!2 These previous works lattice (rg=160 ps) at 300—500 K but increases to 162 ps at
have been performed either in bulk crystals where the impu30 K (Fig. 1). The average positron lifetime in the 40—-60
rity concentrations are high or in epitaxial samples with dis-um GaN layers is larger than in the free-standing GaN. The
location densities above 1@m 2. As both negative positron lifetime spectra can be decomposed into two com-
impurities and dislocation are positron traps in GaN, it ponents, corresponding to annihilations in the bulk lattice
has not been possible to determine experimentally the chardéfetime ;) and at vacancy defectéifetime ). The life-
of Vg, complexes or the quantitative role of them in thetime 7,=235=5 ps is the same as identified previously for
electrical properties of the material. In this work, we showthe positrons annihilating as trapped at Ga vacarl@ies,
that negatively charged Ga vacancies are the dominant addicating that defects involving ¥, are present.
ceptor defects im-type HVPE GaN. The increase of the average positron lifetime at low tem-

The GaN samples were grown by hydride vapor phas@eratures shows that the positron trapping’fate
epitaxy on sapphire substrates. The layers with thicknesses 1 rer 18-5
of 1, 5, 10-14, 36-39, and 49—68n were fabricated at k=py[Veag= — 2—2=— B 1)
MIT Lincoln Laboratory. A free-standing 30@m-thick Tg T2~ Tay 7B Sy~ S
sample was grown at Samsung Advanced Institute of Tech,.reases roughly as=T~ Y2 (4, is the positron trapping

nology. It was separated from the sapphire by laser-inducegdoetficient, see later for the definitions of tBearameters
lift-off. The electron concentrations of tf[li;’type GaN layers  The temperature dependence of the average positron lifetime
decrease with thickness from mid'#@m = (1 um sample g totally reversible and reproducible, indicating that the con-
centration of Ga vacancies remains constant. Because the
dElectronic mail: ksa@fyslab.hut.fi Fermi level is close to the conduction band, the charge states
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FIG. 1. Average positron lifetimer{,) and the lifetime of positrons trapped in defect-free GaN and at the Ga vacancy. The top axis indicates the mean
at vacancies £,) vs measurement temperature in GaN samples with threestopping depth corresponding to the positron implantation energy.
different thicknesses. The dashed line shows the temperature dependence the
positron lifetime in bulk GaN latticésee Ref. 18

<30 K. In fact, the secondary ion-mass spectrometry in the
of acceptor-like defects like y, do not change with the mea- Pulk of the 60um-thick layer has shown that the concentra-
surement temperature. The temperature dependence of thigns of typical acceptor impurities aféMg]<10° cm™*
positron trapping ratecoT~ 12 thus reflects the increase of and[C]<10"cm™3°i.e., clearly less thafiVe,].
the positron trapping coefficient, at low temperatures. The temperature-dependent Hall experiments yield the
This behavior is expected for negative vacanéié§When  total donor and acceptor concentrations ®p=38
the thermal velocity of positrons decreases, the overlap ok 10 cm 2 and No=3x10'*cm 2 in the 60xm-thick
the positron wave function with the attractive Coulomb po-GaN on sapphire andNp=8x10"cm™® and N,=3

tential becomes more efficient, thus facilitating faster transi-< 10> cm™® in the free-standing GaN sample. The total ac-
tion into the vacancy’ ceptor concentrations are in very good agreement with the

Thus, the increase of positron trapping at low temperaconcentrations of Ga vacancies determined in positron ex-
tures gives direct experimental evidence that the charge gfériments, confirming that Ga vacancies are the dominant
Ga vacancies is negative. This is in good agreement with thacceptors in HVPE GaN.

results of theoretical calculationéwhich predict a charge To detect positron trapping at Ga vacancies in thinner
state of 3- for isolated Ga vacancies and 2-feg;VSigzand (<30 um) films we implant positrons from a monoenergetic
Vg Oy complexes im-type GaN. beam and probe the Doppler broadening of the annihilation

The concentrations of Ga vacancies can be estimateddiation(Fig. 2). At low positron implantation energies sur-
from the positron results by applying E(l). We assume a face effects with a high characterist®s parameter ofS
positron trapping coefficient of.,=3x10"°s /N, (N,  >0.5 are observed. With increasifgthe positron diffusion
=8.775< 10?> cm % is the atomic density of GaN®'®The  to the surface decreases and ®(&) curve saturates to a
Ga vacancy concentrations arex@0®®cm 2 and 2  constant leveB=S, , characterizing the interior of the layer
X 10'® cm™ 2 in the 40- and 6Qum-thick layers, respectively. at about 0.5—-1um below the surface. Th&_values are
By scaling the positron trapping coefficient as,~<x,  Systematically larger thafg recorded in defect free GaN,
«T~ %2 we can estimate the Q/ concentration of 2 demonstrating the presence of vacancy defects. The linearity
% 10'° cm™2 in the free-standing GaN sample. of valence and core electron momentum distributidires.,

The positron data show further that the defects involvingthe so-calledS vs W plot % indicates that(i) the samples
Ga vacancies are the dominant negatively charged acceptdngve a single dominant vacancy-type positron trap @nd
in the samples. The enhancement of positron trapping at lothe momentum distribution of annihilating electrons in this
temperatures would not be observed, if other negative censacancy is similar to that of Ga vacancy detected in thicker
ters competed with ¥, as positron traps. For example, nega- (>30 um) films where both positron lifetime and Doppler
tive ions such as Mg, localize positrons at hydrogenic states broadening experiments could be performed. Hence, the Ga
at low temperatures, strongly decreasing the fraction of posvacancy is the dominant positron trap in all layers.
itron annihilations at vacancy defects and consequently the The Vg, concentrations can be estimated from the Dop-
average positron lifetim& In the present HVPE GaN pler data by applying Eq(l). We determine the valu§,
samples, only a small decrease ef, is detected atT =1.0465; for total positron trapping at the Ga vacancy by
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Vs~ Oy have a considerably higher thermal stabitityin
10%° fact, SIMS experiment€ show that the O concentration pro-
file is similar to that of \&, in Fig. 3. This correlation gives
further evidence to attribute the observed Ga vacancies in
HVPE GaN to complexes ¥~ Oy

In summary, our positron annihilation experiments show
that Ga vacancies are the dominant accepistgpe GaN
grown by hydride vapor phase epitaxy on sapphire. The con-
centration of Ga vacancies decreases from aimaétd 3
to less than 1¥ cm™ 2 when the thickness of the GaN layers
increases from 1 to more than 1@@n. Furthermore, the Ga
vacancy concentration is equal to the total acceptor density
determined by temperature-dependent Hall experiments. The
depth profile of Ga vacancies is similar to that of O, suggest-
ing that the Ga vacancies formed during the growth are
bound to defect complexes with the oxygen impurities.
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