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GA2 INDEX OF SOME GRAPH OPERATIONS

G.H. Fath-Tabar, A. Hamzeh and S. Hossein-Zadeh

Abstract

Let G = (V, E) be a graph. For e = uv ∈ E(G), nu(e) is the num-
ber of vertices of G lying closer to u than to v and nv(e) is the number of
vertices of G lying closer to v than u. The GA2 index of G is defined as∑

uv∈E(G)

2
√

nu(e)nv(e)

nu(e)+nv(e)
. We explore here some mathematical properties and

present explicit formulas for this new index under several graph operations.

1 Introduction

In this paper, we only consider simple connected graphs. As usual, the distance
between the vertices u and v of G is denoted by dG(u, v) (d(u, v) for short). It
is defined as the length of a minimum path connecting them and dG(u)(d(u) for
short) denotes the degree of u in G. The Wiener index of a graph G is defined
as W (G) =

∑
{u,v} d(u, v)[7, 17, 20, 23]. GA2 index of the graph of G is defined

by GA2(G) =
∑

uv∈E(G)

2
√

nu(e|G)nv(e|G)

nu(e|G)+nv(e|G) [4] that nu(e|G)(nu(e) for short) is the
number of vertices of G lying closer to u and nv(e|G) is the number of vertices of
G lying closer to v. Notice that vertices equidistance from u and v are not taken
into account.

The Cartesian product G×H of graphs G and H is a graph such that V (G×H)
= V (G) × V (H), and any two vertices (a, b) and (u, v) are adjacent in G × H if
and only if either a = u and b is adjacent with v, or b = v and a is adjacent
with u, see [10] for details. The join G = G1 + G2 of graphs G1 and G2 with
disjoint vertex sets V1 and V2 and edge sets E1 and E2 is the graph union G1 ∪G2

together with all the edges joining V1 and V2. The composition G = G1[G2] of
graphs G1 and G2 with disjoint vertex sets V1 and V2 and edge sets E1 and E2 is
the graph with vertex set V1 × V2 and u = (u1, v1) is adjacent with v = (u2, v2)
whenever (u1 is adjacent with u2) or (u1 = u2 and v1 is adjacent with v2),[10, p.
185]. For given graphs G1 and G2 we define their corona product G1 ◦ G2 as the
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graph obtained by taking |V (G1)| copies of G2 and joining each vertex of the i-th
copy with vertex vi ∈ V (G1). Obviously, |V (G1 ◦G2)| = |V (G1)|(1 + |V (G2)|) and
|E(G1 ◦G2)| = |E(G1)|+ |V (G1)|(|V (G2)|+ |E(G2)|).

The Szeged index was originally defined as Sz(G) =
∑

e=uv∈E(G)[nu(e)nv(e)][5,
13, 16, 17] where nu(e) and nv(e) are the same as the definition of GA2. Now,

we define GA1(G) = GA(G) =
∑

uv∈E(G)

2
√

d(u)d(v)

d(u)+d(v) [22] where d(u) is the degree
of vertex u. Throughout this paper, Cn, Pn, Kn and Wn denote the cycle, path,
complete graphs and wheel on n vertices. Also, Km,n denotes the complete bipartite
graph. Our other notations are standard and taken mainly from [3, 8, 21].

2 Some properties of GA2 index

The Geometric-Arithmetic inequality
√

nu(e)nv(e) ≤ nu(e)+nv(e)
2 , implies that

GA2(G) ≤ |E(G)|, with equality if and only if for all e ∈ E(G), nu(e) = nv(e).
A k-regular graph G on n vertices is called strongly regular with parameters

(n,k;a,c) if and only if each pair of adjacent vertices have a common neighbors and
any two distinct non-adjacent vertices have c common neighbors ([6], p.177). We
also say that G is (n,k;a,c)-strongly regular. A strongly regular graph is primitive
if both G and its complement Ḡ connected; otherwise it is imprimitive or trivial.
We restrict our attention to primitive strongly regular graphs, since an imprimitive
strongly regular graph is either a complete multipartite graph or its complement,
i.e., the disjoint union of some copies of Km, for some m. This restriction allows us
to assume c = 0 and c = k. The simplest non-trivial examples of strongly regular
graphs are c and the Petersen graph, with 5 the parameter vectors (5,2,0,1) and
(10,3,0,1), respectively. It is easy to see that a non-trivial strongly regular graph
has diameter 2.

Proposition 1. If G is a strongly k−regular graph then GA2(G) = 1
2k|V (G)|.

Proof. We assume c 6= 0 and c 6= k. Let us consider an edge e = uv of G. Its
endvertices have a common neighbors and all of them are equidistant to u and v.
The vertex u has another k−1−a neighbors and all of them are closer to u than to
v. Together with u itself, this gives us n(e) = k−a. We need not bother to consider
other u vertices: those at the distance 2 from u are either adjacent to v, or are at
the distance 2 from v, since the diameter of G is equal to 2. Hence they cannot
contribute to n(e). By the same reasoning, n(e) = k − a. Therefore, by definition
GA2(G) = |E(G)| = 1

2k|V (G)|. This if the end of the proof. 2

Proposition 2.[4, Theorem 3] For any connected graph G with m edges,

GA2(G) ≤
√

mSz(G),

with equality if and only if G ∼= Kn.
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Proposition 3.[4, Theorem 4] For any connected graph G with m edges,

GA2(G) ≤
√

Sz(G) + m(m− 1),

with equality if and only if G ∼= Kn.

Proposition 4.[4, Theorem 6] Let G be a connected graph with n vertices and
m ≥ 1 edges. Then

GA2(G) ≥ 2
n

√
Sz(G) + m(m− 1).

The equality is attained if and only if G ∼= K2.

Proposition 5.[17] If T is a tree then Sz(T ) = W (T ).

Corollary 6. If T is a n-vertex tree then GA2(T ) ≤
√

(n− 1)W (T ), GA2(T ) ≤√
W (T ) + (n− 1)(n− 2) and GA2(T ) ≥ 2

n

√
W (T ) + (n− 1)(n− 2).

Proposition 7. Suppose G is a connected graph. Then GA2(G) ≤ d |E(G)|−1
2 e +√

d |E(G)|−1
2 e2 + Sz(G), with equality if and only if G is a union of the odd number

of K2.

Proof. By definition,

[GA2(G)]2 =
∑

uv∈E(G)

4nu(e)nv(e)

[nu(e) + nv(e)]2
+ 2

∑
uv 6=xy∈E(G)

2
√

nu(e)nv(e)

nu(e) + nv(e)
·
2
√

nx(e)ny(e)

nx(e) + ny(e)

≤
∑

uv∈E(G)

nu(e)nv(e) + 2d |E(G)| − 1

2
e ·GA2(G)

= Sz(G) + 2d |E(G)| − 1

2
e ·GA2(G)

⇒ [GA2(G)− d |E(G)| − 1

2
e]2 ≤ d |E(G)| − 1

2
e
2

+ Sz(G).

Therefore,

GA2(G) ≤ d|E(G)| − 1
2

e+

√
d |E(G)| − 1

2
e
2

+ Sz(G)

and equality holds if and only if G is a union of the odd number of K2. 2

3 Main Results

In this section, some exact formulas for the GA2 index of the Cartesian product,
composition, join and corona of graphs are presented.

The Wiener index of the Cartesian product of graphs was studied in [7, 20]. In
[17], Klavžar, Rajapakse and Gutman computed the Szeged index of the Cartesian
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product graphs. The recent authors, [1, 2, 9, 11, 12, 13, 14, 15, 16, 18, 24], computed
some exact formulas for the hyper-Wiener, vertex PI, edge PI, the first Zagreb,
the second Zagreb, the edge Wiener and the edge Szeged indices of some graph
operations. The aim of this section is to continue this program for computing the
GA2 index of these graph operations.

Proposition 8. Let G1 and G2 be connected graphs. Then GA2(G1 × G2) =
GA2(G2)|V (G1)|+ GA2(G1)|V (G2)|.
Proof. If e = uv, e′ = (u, x)(v, x) then n(u,x)(e′) = |V (G2)|nu(e) and n(v,x)(e′) =

|V (G2)|nv(e). Thus
2
√

n(u,x)(e′)n(v,x)(e′)
n(u,x)(e′)+n(v,x)(e′)

= 2
√

nu(e)nv(e)

nu(e)+nv(e) and by definition,

GA2(G1 ×G2) =
∑

e1=uv∈E(G1×G2)

2
√

nu(e1)nv(e1)

nu(e1) + nv(e1)

=
∑

e′=(u,x)(v,x)

2
√

n(u,x)(e
′)n(v,x)(e

′)

n(u,x)(e
′) + n(v,x)(e

′)
+

∑
e′=(u,x)(u,y)

2
√

n(u,x)(e
′)n(u,y)(e

′)

n(u,x)(e
′) + n(u,y)(e

′)

= |V (G2)|
∑

e=uv∈E(G1)

2
√

nu(e)nv(e)

nu(e) + nv(e)
+ |V (G1)|

∑
e=xy∈E(G2)

2
√

nx(e)ny(e)

nx(e) + ny(e)

= GA2(G2)|V (G1)|+ GA2(G1)|V (G2)|.

This completes our argument. 2

Corollary 9. Suppose G1, G2, ..., Gn are graphs. Then

GA2(
k∏

i=1

Gi) = (
k∏

i=1

|V (Gi)|)
k∑

i=1

GA2(Gi)
|V (Gi)| .

Corollary 10. Suppose G is a graph. Then GA2(Gn) = nGA2(G)|V (G)|n−1. In
particular, GA2(Qn) = n2n−1.

Corollary 11. If G1 = Pm × Pn, G2 = Pm × Cn and G3 = Cm × Cn are C4-net,
C4-nanotube and C4-nanotorus, respectively. Then
GA2(G1)= 4|E(G1)|

|V (G1)|
∑|V (G1)|−1

i=1

√
i(|V (G1)| − i)+4|V (G1)|

|E(G1)|
∑|E(G1)|−1

i=1

√
i(|E(G1)| − i),

GA2(G2) = 4|V (G2)|
|E(G2)|

∑|E(G2)|−1
i=1

√
i(|E(G2)| − i) + |E(G2)||V (G2)|,

GA2(G3) = 2|E(G3)||V (G3)|.
Proof. We notice that if e = uv is an arbitrary edge of Pn or Cn then nu(e) =

nv(e). Thus 2
√

nu(e)nv(e)

nu(e)+nv(e) = 1 for each edge of Pn or Cn. Therefore, GA2(Pn) =
4
n

∑n−1
i=1

√
i(n− i) and GA2(Cn) = n. Now, Proposition 8 completes the proof. 2

Proposition 12. Let G = G1 + G2, where G
,

is are ri-regular, i = 1, 2. Then

GA2(G) = GA2(G1) + GA2(G2) + 2|V (G1)||V (G2)|
√

(|V (G1)|−r1)(|V (G2)|−r2)

|V (G1)|+|V (G2)|−(r1+r2)
.
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Proof. Suppose G = G1 + G2. We can partition the edges of G = G1 + G2 into
three subsets E1, E2 and E3, as follows:

Ei = {e ∈ E(G1 + G2)|e ∈ E(Gi) }, i = 1, 2
E3 = {e ∈ E(G1 + G2)|e = uv, u ∈ V (G1) and v ∈ V (G2)}.

By [13, Theorem 2], if e = u1v1 ∈ Ei then nu1(e|G) = nu1(e|Gi) and nv1(e|G) =
nv1(e|Gi). If e = uv ∈ E3 then nu(e|G) = |V (G2)| − dG2(v) and nv(e|G) =
|V (G1)| − dG1(u). Therefore,

GA2(G) =
∑

uv∈E(G1)

2
√

nu(e|G1)nv(e|G1)

nu(e|G1) + nv(e|G1)
+

∑
uv∈E(G2)

2
√

nu(e|G2)nv(e|G2)

nu(e|G2) + nv(e|G2)

+
∑

u∈V (G1)
v∈V (G2)

2
√

(|V (G2)| − dG2 (v))(|V (G1)| − dG1 (u))

(|V (G2)| − dG2 (v)) + (|V (G1)| − dG1 (u))

= GA2(G1) + GA2(G2) + 2|V (G1)||V (G2)|
√

(|V (G1)| − r1)(|V (G2)| − r2)

|V (G1)|+ |V (G2)| − (r1 + r2)
.

This is the end of our proof. 2

Corollary 13. If G is r-regular graph then

GA2(nG) = nGA2(G) + 2
n∑

i=2

|V (G)|i
√

(|V (G)| − r)(|V (G)|i−1 − r)
|V (G)|i − 2r

.

Corollary 14. GA2(Km,n) = 2 (mn)
3
2

m+n , GA2(Kn, n, . . . , n︸ ︷︷ ︸
t times

) = 2
∑t

i=2

√
ni and

GA2(Wn) = n− 1 + 2(n− 1)
√

n−3
n−2 .

We present formula for GA2 index of open fence, Pn[K2].

Example 15. GA2(Pn[K2]) = n + 4
n−1

∑n−1
i=1

√
(2i− 1)(2n− 2i− 1).

Proposition 16. If G2 is triangle-free and r-regular graph then

GA2(G1[G2]) < |V (G2)|2|E(G1)| |V (G2)|(|V (G1)| − 1)
|V (G2)| − 2r

+ |V (G1)|GA1(G2).

Proof. Suppose G = G1[G2] and tG(e) denotes the number of triangles containing
e of the graph G. Let

Au = {(u, v)|v ∈ V (G2)},
Bu = {(u, v1)(u, v2)|v1v2 ∈ E(G2)},

T (u1, u2) = {(x, y)(a, b)|((x, y), (a, b)) ∈ Au1 ×Au2},
E(G) = (∪u1u2∈E(G1)T (u1, u2)) ∪ (∪v∈V (G1)Bv).
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By [13, Theorem 3], if e = (u1, v1)(u2, v2) ∈ T (u1, u2) then

n(u1,v1)(e|G) = |V (G2)|nu1(u1u2|G1)− dG2(v2)

and n(u2,v2)(e|G) = |V (G2)|nu1(u1u2|G1) − dG2(v1) and if e = (u, v1)(u, v2) ∈ Bu

then n(u,v1)(e|G) = dG2(v1) and n(u,v2)(e|G) = dG2(v2). Therefore

GA2(G) =
∑

e=uv∈∪u1u2∈E(G1)T (u1,u2)

2
√

n(u1,v1)(e|G)n(u2,v2)(e|G)
n(u1,v1)(e|G) + n(u2,v2)(e|G)

+
∑

e=(u,v1)(u,v2)∈Bu

2
√

dG2(v1)dG2(v2)
dG2(v1) + dG2(v2)

=
∑

e=uv∈∪T (u1,u2)

|V (G2)|nu1(u1u2|G1)− r

|V (G2)|nu1(u1u2|G1)− 2r
+ |V (G1)|GA1(G2)

< |V (G2)|2|E(G1)| |V (G2)|(|V (G1)| − 1)
|V (G2)| − 2r

+ |V (G1)|GA1(G2),

which completes our proof. 2

Proposition 17. If H is triangle-free and r-regular graph then

GA2(G ◦H) = GA1(H) + GA2(G) + |V (G)||V (H)|
2
√
|V (G)|+ |V (G)||V (H)| − r − 1

|V (G)|+ |V (G)||V (H)| − r
.

Proof. The edges of G ◦ H are partitioned into three subsets E1, E2 and E3 as
follows:

E1 = {e ∈ E(G ◦H)| e ∈ E(Hi) i = 1, 2 . . . , n},
E2 = {e ∈ E(G ◦H)| e ∈ E(G)},
E3 = {e ∈ E(G ◦H)| e = uv, u ∈ V (Hi), i = 1, 2 . . . , n and v ∈ V (G)}.

Suppose e = uv ∈ E(H). If there exists w ∈ V (H) such that uw 6= E(H) and
vw 6= E(H) then dG◦H(u,w) = dG◦H(v, w) = 2. Also, if there is w ∈ V (H) such
that uw ∈ E(H) and vw ∈ E(H) then dG◦H(u, w) = dG◦H(v, w) = 1. Moreover, if
e = uv ∈ E1 then

nu(e|G ◦H) = dH(u)− tH(uv), nv(e|G ◦H) = dH(v)− tH(uv),

and if e = uv in E2 then nu(e|G ◦ H) = (|V (H)| + 1)nu(e|G), nv(e|G ◦ H) =
(|V (H)| + 1)nv(e|G), nu(e|G ◦ H)nv(e|G ◦ H) = |V (G ◦ H)| − (dH(u) + 1) and
nu(e|G ◦H) + nv(e|G ◦H) = |V (G ◦H)| − dH(u). If e = uv ∈ E3 then by above
calculations,

GA2(G ◦H) =
∑

uv∈E(G◦H)

2
√

nu(e|G ◦H)nv(e|G ◦H)

nu(e|G ◦H) + nv(e|G ◦H)
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=
∑

uv∈E1

2
√

(dH(u)− tH(uv))(dH(v)− tH(uv))

dH(u) + dH(v)− 2tH(uv)

+
∑

uv∈E2

2
√

(|V (H)|+ 1)2nu(e|G)nv(e|G)

(|V (H)|+ 1)(nu(e|G) + nv(e|G))

+
∑

uv∈E3

2
√
|V (G ◦H)| − (dH(u) + 1)

|V (G ◦H)| − dH(u)

= GA1(H) + GA2(G) + |V (G)||V (H)|
2
√
|V (G)|+ |V (G)||V (H)| − r − 1

|V (G)|+ |V (G)||V (H)| − r
,

as desired. 2

As an application of this result, we present the formulae for GA2 index of thorny
cycle Cn ◦ K̄m.
Corollary 18. GA2(Cn ◦ K̄m) = n + nm 2

√
nm+n−1

n(m+1) .
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