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GaAs MOSFET With Oxide Gate Dielectric
Grown by Atomic Layer Deposition

P. D. Ye, G. D. Wilk, J. Kwo, B. Yang, H.-J. L. Gossmann, M. Frei, S. N. G. Chu, J. P. Mannaerts, M. Sergent,
M. Hong, K. K. Ng, and J. Bude

Ti/Au Gate
AlLO, Oxide

102} O implant
isolation @
Source |

Abstract—For the first time, a IlI-V compound semiconductor
MOSFET with the gate dielectric grown by atomic layer deposition
(ALD) is demonstrated. The novel application of the ALD process
on IlI-V compound semiconductors affords tremendous function- N’E“
ality and opportunity by enabling the formation of high-quality o
gate oxides and passivation layers on IlI-V compound semicon- P
ductor devices. A 0.65um gate-length depletion-mode n-channel =

GaAs MOSFET with an Al O3 gate oxide thickness of 16 shows
a gate leakage current density less than I0* A/cm? and a max- 104k
imum transconductance of 130 mS/mm, with negligible drain cur- — é
rent drift and hysteresis. A short-circuit current-gain cut-off fre-
quency fr of 14.0 GHz and a maximum oscillation frequencyfimax %@W
H : 5 L L i ' L L
of 25.2 GHz have been achieved from a 0.6pm gate-length device. 10 S 5 4 5 0 3 4 & 8
Index Terms—Atomic layer deposition, depletion mode, GaAs V_(V)
MOSFET. %
Fig. 1. Two-terminal gatéd—V" characteristics of an AD; /GaAs MOSFET.
Source and drain are grounded together. Inset: Schematic view of a
depletion-mode n-channel GaAs MOSFET with ALD-grown,®} as gate

I. INTRODUCTION

MOS integrated-circuit technology dominates théielectric.
Si-based microelectronics industry. The key for the
aggressive yet successful scaling of Si CMOS technologydgposition of GaO; and GaO;(Gd,O;) dielectric films on
the outstanding material properties of Si@nd the SiQ/Si the GaAs surface in an ultrahigh-vacuum multichamber molec-
interface. The benefits of a GaAs-based MOSFET are wdliar beam epitaxy (MBE) system has been shown to provide
known, based on the success of Si technology. This motivhigh-quality interface with a lowD;; [14]-[17]. Promising
tion has attracted great interest for decades [1]-[9]. Galliufisults have been demonstrated in both inversion-channel
arsenide (GaAs)-based devices potentially have great adv@id depletion-mode GaAs MOSFETs using this technique
tages over silicon (Si)-based devices for both high-speed dA§1-[20].
high-power applications, in part from an electron mobility In this letter, we report for the first time a MOSFET on a lll-V
in GaAs that is~5x greater than that in Si, and from thesubstrate with an AlO; gate dielectric deposited by atomic
availability of semi-insulating GaAs substrates. In contrast tayer deposition (ALD). AlOs is a highly desirable gate di-
GaAs MESFETs and HEMTSs, both of which exhibit a sever@ectric from both a physical and electrical characteristics stand-
limitation on forward gate bias of a few tenths of a volt (arisin§0int: Al203 has a high bandgaf-9 eV), a high breakdown
from the nature of Schottky barrier heights), GaAs MOSFETEId (5-10 MV/cm), and high thermal stability (up to at least
feature a much larger logic swing, which provides much greatfp00°C) and remains amorphous under typical processing con-
flexibility in digital IC design. ditions. Furthermore, AlD; is easily wet-etched yet is robust
The main obstacle to GaAs-based MOSFET devices is tgainst interfacial reactions and moisture absorption (i.e., non-
lack of high-quality, thermodynamically stable insulators ofYydroscopic). The AlO; gate oxide is grown by ALD, which
GaAs that can match the device criteria as St Si, e.g., a is a variant of CVD, and has recently shown promise for use in
mid-bandgap interface-trap dens@it) of Nlolo/crnz_ev_ hlgh'k gate dielectrics for Si CMOS [21] ALD is ax sity
Many approaches [10]-[13] have been applied to grow a ggg_bust manufacturing process that is already commonly used
oxide on GaAs, such as thermal, anodic, and plasma methd@®ughout the Si industry. This process does not require ul-
or direct deposition of thermodynamically stable oxide filmgahigh-vacuum conditions for wafer transfer between semicon-

on GaAs. These approaches have had limited success, howeli§tor epi-layer growth and oxide layer deposition and may find
due to a high and unacceptahl®; value. Recentlyjn situ wide applications in microelectronics manufacturing.

Il. DEVICE STRUCTURE AND PROCESS
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The device structure of the fabricated depletion-mode
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n-channel AjJO3;/GaAs MOSFET is shown in the inset of
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Fig. 2. Drain current versus drain bias in both forward (dashed black line) and sl
reverse (solid gray line) sweep directions as a function of gate bias/-ie oo-o0o-a, b—>o
characteristics show negligible hysteresis in drain current. 150 / /
E 125 ™ Data measured droy
. 17 3 . E 100 \ data measured ::&Ticg?]:;;:r from f,
Si-doped GaAs layer (4 10 ‘/cm’) were sequentially grown Q@ [0 from deral
. .. . . < 75f ALO, 1608
by MBE on a (100)—pr|ented sem[—lnsulatlng 2-in GaAs sub- o o e’ 700
strate. After the semiconductor epilayer growth, the wafer was L osam
transferredex situto an ASM Pulsar2000™ ALD module. A a1 VSV, =1V
160-A-thick Al,O5; oxide layer was deposited at a substrate G0 A0 AT 1O AT 1O 10 110
temperature of 300°C, using alternately pulsed chemical f(Hz)

precursors of AICH;)s (the Al precursor) and kD (the (b)
oxygen precursor_) In a carrier oNgas flow. Each precursor Fig. 3. (a) Drain current versus gate bias in both forward (dashed black line)
undergoes a self-limiting reaction at the surface, and th®Al and reverse (solid gray line) sweep directions. Dotted line is transconductance

film is thereby grown with excellent thickness and uniformityersus gate bias &f;, = 3 V. (b) Peak transconductange, versus frequency
rom dc to several gigahertz. Thg, is essentially constant for frequencies

precision. A post-deposition anneal was done at 800for  apove 20 Hz, indicating that efficient charge modulation of the channel can be
60 s in an oxygen ambient. Device isolation was achieved bghieved over the entire useful frequency range of the device.

oxygen implantation. Activation annealing was performed at

450°C in a helium gas ambient. Using a wet etch in diluted HI\:Ne ascribe the asymmetric gatel” characteristics to different

the oxide on the source and drain regions was removed Wh&'%rriertransport mechanisms and barrier heights in the different

th:r(g?;?maégabwaes_bzg;s(ggdoz};.f:cgf fs;(ssté /gh/'n\]l'.7 Acogtn 25 polarities. The current is larger when the semiconductor is
\;vl'ft-off roces)s/ followed bp a '4'250 annueal N ; n'ltrou en iased to inject electrons compared with when the metal is bi-
! P ' W y ! rOgeN ased to inject electrons.

ambient. Finally, conventional Ti/Au metals were e-beam The DCI—V characteristics of a MOSEET show a clean bin-
evaporated, followed by liftoff to form the gate electrodes. Th@noﬁ ata gate voltage 0f2.5 V (see Fig. 2) with a gate len pth
source-to-gate and the drain-to-gate spacings~@&5 um. 9 g ) g 9 9

. : g of 1 pm and gate width of 20@m. Device operation is achieved
The sheet resistance and contact resistance is (2sg|.kand for positiveV,, bias voltages, and no substantial” hysteresis

(1)250 0 g:sml -;hzng dafml.e'?ﬁteh;rgrzetgs rrenc;ejf;sriguftlag\l/ce?; oigeobserved in _the Qrain cur_re.nt Qrift in both the _fory\{ard and re-
Iithog,]raph)’/ (,aliénment isolation, ohmic. and gate), all do verse sweep d|rect!ons. This indicates that no S|gn|f|car_1t mobile
using a contact printer7 ' ' ' Sulk o_X|de charge is present and that density of slow interface
) traps is low. The smal,,, andI,, values forV,, > 0V are

mainly limited by the surface mobility of the GaAs layer and/or
higher D;; near the conduction-band edge. In order to separate

Fig. 1 demonstrates the low gate leakage of these deviceshase two factors, more detailed capacitance and Hall measure-
the gatel-V characteristics of a MOSFET with anAD; gate ments as a function of gate bias are underway. Ongoing exper-
oxide thickness of 16@.. The gate length and width of the deiments with an inserted jn,Gay sAs channel show significant
vice are 0.65:m and 100um, respectively. For gate operationmprovement in botly,, andI;; performance foV,, > 0V,
between a biad{,) of +4 Vto —4 V, the gate leakage currentiswhich can be attributed to the higher surface mobility of the
less than 100 pA, corresponding¢d0~* A/lcm?. Based on the Ing »Ga, sAs layer.
datain Fig. 1, these MOSFET devices clearly exhibit extremely Fig. 3(a) illustrates the drain current as a function of gate bias
low gate leakage currents over a 14-V gate bias range, whicliridoth the forward and reverse sweep directions in the satura-
more than three orders of magnitude lower than for MESFETisn region. The device shows negligible hysteresis. The slope of
under similar bias. The forward breakdown voltage-&V for the drain current shows that the peak extrinsic transconductance
a 1604 -thick Al, O3 layer, which corresponds to a breakdowg,,,) of the 1uum gate length device is 100 mS/mm. The peak
electric field larger than 5 MV/cm. This verifies the high qualityy,,, can be improved frora-90 mS/mm at a 4sm gate length
of the ALD-grown oxide even after the full transistor proces$o ~130 mS/mm at 0.62m gate length. Fig. 3(b) shows the

Ill. ELECTRICAL RESULTS AND DISCUSSIONS
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Fig. 4. RF characteristics of AD;/GaAs MOSFETs with gate length and
width of 0.65 and 10@.m, respectively. RF tester includes two identical devices [5]
with total gate length of 20@m. Inset:f,- and f...x for different gate lengths.

The dashed line illustratefr = v../27L,.

. 6]
peakg,, as a function of frequency, measured from dc to sev-
eral gigahertz, under typical operating conditiohg,(= 3 V,

V,s = —1V). It can be seen that theg,, remains essentially [

gs
constant for frequencies above 20 Hz, indicating that efficient
charge modulation in the channel can be achieved over the en-
tire useful frequency range of the device. Furthermore, note that®!
there is about a 20% decreasgjjp from 20 Hz down to dc. A
model calculation of this change i), gives an upper limit for
Dy, of 5x 10" to 10'? /cm?-eV.

From S-parameter measurements, the short-circuit cugigj
rent-gain cut-off frequencyfr) and the maximum oscillation
frequency (fmax) are determined by biasing the devices
at Vgs = 3V andV,, = —1 V. Under these conditions,
the 0.65um gate length device showfr = 14 GHz and
fmax = 25 GHz. These values are obtained by extrapolatinghz]
the short-circuit current gaifiH»;) and the unilateral power
gain (U) curves, respectively, using20 dB/decade slopes, as
shown in Fig. 4. The inset of Fig. 4 illustrates tfie and f,,,.«
as a function of gate length. As the trend shoyis,and f,.x
can be significantly improved by reducing the gate length. The14]
observedfr versus gate length is quite close to the theoretical
relation of fr = vgae/27L,, Wherevg,, is ~6 x 10° cm/s.

The long-term drain-current drift behavior of the [15]
Al,03/GaAs MOSFET is also studied when the devices
are biased at a stress conditionlgf = 4V andV,, = 2 V. [16]
The long-term drain-current drift is less than 3% for a stress
period of ~12 h. The result is comparable with the best datd!’]
reported previously [19], indicating that the ALD-grown,&l; [18]
film and Al,O3/GaAs interface are of very high quality.

(9]

(11]

[13]

IV. CONCLUSIONS -~
We have demonstrated the first ALD-grown insulated gate,g

MOSFET on llI-V substrates, using #0; gate dielectric

for n-channel depletion-mode GaAs devices. The Q.65-

gate-length device exhibits an extrinsic transconductance (5%1]

130 mS/mm, aryr of 14 GHz, and ary ., of 25 GHz, with
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negligible I-V hysteresis and a gate leakage current density
less than 10* A/cm?. The stability under stress indicates that
the ALD-grown AbO; film and the ALOs;/GaAs interface
are of high quality. These results provide new opportunities
to explore many other alternative dielectrics for use as gate
oxides and as effective passivation layers on IlI-V compound
semiconductor devices.
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