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Abstract Because of its control of spike-timing and

oscillatory network activity, γ-aminobutyric acid (GABA)-

ergic inhibition is a key element in the central regulation of

somatic and mental functions. The recognition of GABAA

receptor diversity has provided molecular tags for the

analysis of distinct neuronal networks in the control of

specific pharmacological and physiological brain functions.

Neurons expressing α1GABAA receptors have been found

to mediate sedation, whereas those expressing α2GABAA

receptors mediate anxiolysis. Furthermore, associative

temporal and spatial memory can be regulated by modulat-

ing the activity of hippocampal pyramidal cells via

extrasynaptic α5GABAA receptors. In addition, neurons

expressing α3GABAA receptors are instrumental in the

processing of sensory motor information related to a

schizophrenia endophenotype. Finally, during the postnatal

development of the brain, the maturation of GABAergic

interneurons seems to provide the trigger for the experi-

ence-dependent plasticity of neurons in the visual cortex,

with α1GABAA receptors setting the time of onset of a

critical period of plasticity. Thus, particular neuronal

networks defined by respective GABAA receptor subtypes

can now be linked to the regulation of various clearly

defined behavioural patterns. These achievements are of

obvious relevance for the pharmacotherapy of certain

brain disorders, in particular sleep dysfunctions, anxiety

disorders, schizophrenia and diseases associated with

memory deficits.

Keywords Gamma-aminobutyric acid . Benzodiazepines .

Anxiety . Learning and memory . Critical period plasticity

Inhibitory interneurons

The activity of inhibitory interneurons, most of which are

γ-aminobutyric acid (GABA)-ergic, is thought to set the

spatio-temporal conditions required for the various patterns

of network oscillations that may be critical for information

processing (O’Keefe and Nadel 1978; O’Keefe and Recce

1993; Skaggs et al. 1996; Paulsen and Moser 1998; Engel

et al. 2001; Harris et al. 2002; Mehta et al. 2002; Traub et

al. 2002; Klausberger et al. 2003).

Diversity of interneurons

To achieve a strict time control of principal cells,

GABAergic interneurons display several remarkable fea-

tures. (1) Their action potential is traditionally faster than

that of pyramidal cells and the kinetics of synaptic events

that excite inhibitory cells are faster than those that excite

pyramidal cells (Martina et al. 1998; Geiger et al. 1997). (2)

GABAergic interneurons are morphologically highly di-

verse, which reflects their multiple functions in neuronal

networks (Gupta et al. 2000; Markram et al. 2004; Monyer

and Markram 2004). (3) These interneurons show a

domain-specific innervation of principal cells; thus,

depending on the type of interneuron, particular input

domains of pyramidal cells can be selectively regulated

and, similarly, the output of pyramidal cells can be

specifically regulated by axo-axonic GABAergic

interneurons. (4) The response properties of interneuron

signalling is shaped by the type of GABAA receptor

expressed synaptically or extrasynaptically. For instance,
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the soma of hippocampal pyramidal cells is innervated by

two types of basket cells: the fast spiking parvalbumin-

containing basket cells form synapses containing α1GABAA

receptors, which display fast kinetics of deactivation (Nyíri

et al. 2001; Klausberger et al. 2002; Freund and Buzsaki

1996; Pawelzik et al. 2002), whereas the synapses of the

regular spiking cholecystokinin (CCK)-positive basket cells

contain α2GABAA receptors, which display slower kinetics

than α1 receptors (Nyíri et al. 2001; Brussaard and

Herbison 2000; Hutcheon et al. 2000; Jüttner et al. 2001;

Vicini et al. 2001). Axon initial segments of principal cells

also contain α2 receptors, which appear to be kinetically

sufficient for simple on/off signalling. Furthermore, distinct

GABAA receptors are segregated to synaptic and extra-

synaptic membranes (Nusser et al. 1998; Fritschy and

Brünig 2003). Thus, functionally specialized interneurons

operate with the kinetically appropriate GABAA receptor

subtypes to regulate network behaviour (Fig. 1, Table 1).

Since GABAergic interneurons are operative throughout

the brain, a highly diverse repertoire of GABAA receptors is

required.

Retrograde regulation of GABAergic interneurons

Retrograde signalling adds another level of complexity to

the regulation of interneuron activity. The terminals of

CCK-positive GABAergic basket cells in hippocampus and

amygdala contain CB1-cannabinoid receptors (Katona et al.

1999, 2001). These receptors mediate depolarisation-

induced suppression of inhibition (DSI) (Pitler and Alger

1994; Alger and Pitler 1995). This phenomenon is due to

endocannabinoids which emanate from the postsynaptic

cell and act as retrograde signal (Wilson and Nicoll 2001;

Maejima et al. 2001). The depolarization of hippocampal

pyramidal cells (Pitler and Alger, 1992) and of cerebellar

Purkinje cells (Llano et al. 1991) results in a transient

decrease in the release of GABA from inhibitory terminals

that contain CB1-receptors and synapse onto the depolar-

ized cells (Vincent and Marty, 1993; Pitler and Alger, 1994;

Alger and Pitler, 1995).Both the DSI in the hippocampus

(Wilson and Nicoll 2001; Maejima et al. 2001) and the

cerebellum (Kreitzer and Regehr 2001a,b) are the result of

activity-dependent de-novo synthesis and release of endo-
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Fig. 1 Representation of a GABAergic synapse depicting major

elements of signal transduction. GABAA receptors are heteromeric

membrane proteins linked by an as yet unknown mechanism to the

synaptic anchoring protein, gephyrin, and the cytoskeleton. The

sequence of subunits corresponds to a modelling proposal (Ernst et

al. 2003). The binding sites for GABA and benzodiazepines are

located at the interface of the α/β and α/γ2 subunits, respectively.

Synaptic GABAA receptors mediate phasic inhibition providing a

rapid point-to-point communication for synaptic integration and

control of rhythmic network activities. Extrasynaptic GABAA recep-

tors (not shown) are activated by synaptic spillover or the non-

vesicular release of GABA. By mediating tonic inhibition, they

provide a maintenance level of reduction in neuronal excitability

(Mody and Pearce 2004; Möhler et al. 2005)
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cannabinoids from the postsynaptic neuron. By interacting

with CB1 receptors, the calcium influx into the presynaptic

terminal is reduced (Kreitzer and Regehr 2001a; Caulfield

and Brown 1992) resulting in a decrease of GABA release.

Pharmacologically, the inhibition of the degradation of

anandamide resulted in an CB1 receptor-mediated anxio-

lytic response (Kathuria et al. 2003). Recently, endocanna-

binoids were shown to mediate not only transient, but also

long term changes in inhibitory synaptic transmission.

Endocannabinoid production, stimulated through metabo-

tropic glutamate receptor activation in hippocampal pyra-

midal cells, caused a long lasting reduction in GABAergic

signaling onto the pyramidal cells (Chevaleyre and Castillo

2003). A similar change in long-term synaptic plasticity of

Table 1 GABAA-receptor subtypes (compiled from Möhler et al. 2002; Fritschy and Brünig 2003)

Composition Pharmacological characteristics Regional and neuronal localisation Subcellular localization

α1β2γ2 Major subtype (60 % of all GABAA

receptors). Mediates the sedative,

amnestic and, to a large extent, the

anticonvulsant action of benzodiazepine

site agonists. High affinity for classical

benzodiazepines, zolpidem and the

antagonist flumazenil

Cerebral cortex (layer 1–VI, selected

interneurons and principal cells);

hippocampus (selected interneurons

and principal cells); pallidum striatum

(interneurons); thalamic relay nuclei;

olfactory bulb (mitral cells and

interneurons); cerebellum (Purkinje

cells and granule cells); deep cerebellar

nuclei; amygdala; basal forebrain;

substantia nigra pars reticulata; inferior

colliculus; brainstem

Synaptic (soma and dendrites)

and extrasynaptic in all neurons

with high expression

α2β3 γ2 Minor subtype (15–20%). Mediates

anxiolytic action of benzodiazepine site

agonists. High affinity for classical

benzodiazepine agonists and the

antagonist flumazenil. Intermediate

affinity for zolpidem

Cerebral cortex (layers I–IV)

hippocampal formation (principal cells

mainly on the axon initial segment);

olfactory bulb (granule cells); striatum

(spiny stellate cells); inferior olivary

neurons (mainly on dendrites);

hypothalamus; amygdala (principal

cells); superior colliculus; motor

neurons

Mainly synaptic, enriched in axon

initial segment of cortical and

hippocampal pyramidal cells

α3βnγ2 Minor subtype (10–15%). High affinity

for classical benzo-diazepine agonists

and the antagonist flumazenil.

Intermediate affinity for zolpidem

Cerebral cortex (principal cells in

particular in layers V and VI; some axon

initial segments); hippocampus (some

hilar cells); olfactory bulb (tufted cells);

thalamic reticular neurons; cerebellum

(Golgi type II cells); medullary reticular

formation; inferior olivary neurons;

amygdala; superior colliculus;

brainstem; spinal cord; medial septum;

basal forebrain cholinergic neurons;

raphe and locus coeruleus

(serotoninergic and catecholaminergic

neurons)

Mainly synaptic, including some

axon initial segments;

extrasynaptic in inferior olivary

neurons

α4βnδ Less than 5 % of all receptors.

Insensitive to classical benzodiazepine

agonists and zolpidem

Dentate gyrus (granule cells); thalamus Extrasynaptic (no direct

morphological evidence)

α5β3γ2 Less than 5% of all receptors; high

affinity for classical benzodiazepine

agonists and the antagonist flumazenil.

Low affinity for zolpidem

Hippocampus (pyramidal cells);

olfactory bulb (granule cells,

periplomerular cells); cerebral cortex;

amygdala; hypothalamus; superior

colliculus; superior olivary neurons;

spinal trigeminal neurons; spinal cord

Extrasynaptic in hippocampus,

cerebral cortex, and olfactory

bulb; synaptic and extrasynaptic

in spinal trigeminal nucleus and

superior olivary nucleus

α6β2,3γ2 Less than 5 % of all receptors.

Insensitive to classical α6β2,3δ

benzodiazepine agonists and zolpidem.

Minor population. Lacks

benzodiazepine site

Cerebellum (granule cells); dorsal

cochlear nucleus

Synaptic (cerebellar glomeruli)

and extrasynaptic on granule

cell dendrites and soma

Cell Tissue Res (2006) 326:505–516 507



the GABAergic system was observed in the amygdala. The

release of endocannabinoids in the basolateral amygdala

contributed to the extinction of aversive memory based on a

long lasting decrease of GABAergic signalling (Marsicano

et al. 2002). Thus, CB1 receptor activation in the

hippocampus, amygdala and possibly other parts of the

brain result in reduced levels of anxiety. This is due to

either a transient depression of GABA release or a

modulation of long term plasticity at the respective

synapses. In addition, endocannabinoids act as retrograde

signals at excitatory glutamatergic synapses where they

mediate a depolarisation-induced suppression of excitation

(Kreitzer and Regehr 2001a) which may also contribute to

their behavioral effects.

Structure of GABAA receptors

Like other members of the nicotinic superfamily of

ligand-gated ion channels, ionotropic GABA receptors

are considered to consist of 5 protein subunits arranged

around a central pore that constitutes the actual ion

channel. Each subunit has a large extracellular N-terminal

domain which incorporates part of the agonist/antagonist

binding site, followed by three membrane spanning

domains (M1-3), an intracellular loop of variable length

and a fourth membrane spanning domain (M4), with the

C-terminal end being extracellular. Each subunit arranges

itself such that the second membrane-spanning domain

(M2) forms the wall of the channel pore. The cytoplasmic

loop, between the third and fourth transmembrane

domains (M3 and M4), is believed to be the target for

protein kinases, required for subcellular targeting and

membrane clustering of the receptor. There are 16

different subunits comprising the GABAA receptor family:

α1–6, β1–3, γ1–3, δ, ɛ, π and θ. In addition, there are splice

variants of many of these subunits. Based on this subunit

repertoire more than 2000 different GABAA receptors

could exist if the subunit combinations were restricted to

those containing two α, two β and one other subunit. In

fact, studies of native GABAA receptors suggest that there

may be less than 20 widely occurring GABAA receptor

subtype combinations, with the major combinations being

α1β2/3γ2, α2β3γ2, α3β3γ2 (for review Barnard et al.

1998; Whiting et al. 2000; Sieghart and Sperk 2002;

Möhler et al. 2000, 2002, 2005; Möhler 2001, 2002;

Fritschy et al. 2004; Rudolph and Möhler 2006) (Table 1).

In the retina homomeric receptors consisting of the ρ

subunit represent a particular class of GABA gated chloride

channels. Their GABA site is insensitive to bicuculline and

baclofen and they are not modulated by barbiturates or

benzodiazepines. Due to these distinctive features the

receptors are sometimes termed GABAc-receptors

(Bormann 2000), although they are a homomeric class of

GABAA-receptors (Barnard et al. 1998).

The physiological significance of the structural diversity

of GABAA receptors lies in the provision functionally

diverse of receptors which differ in their channel kinetics,

affinity for GABA, rate of desensitization and ability for

transient chemical modification such as phosphorylation. In

addition, GABAA receptor subtypes differ in their topology

in neuronal networks in that they show a cell-type specific

expression and-in case of multiple receptor subtypes

present in a neuron-a domain-specific location (Table 1).

Pharmacology of GABAA receptors

Diazepam-sensitive GABAA receptors

Receptors containing the α1, α2, α3 or α5 subunits in

combination with any of the β subunits and the γ2 subunit

are most prevalent in the brain. These receptors are

sensitive to benzodiazepine modulation. The major receptor

subtype is assembled from the subunits α1β2γ2, with only a

few brain regions lacking this receptor (e.g. granule cell

layer of the olfactory bulb, reticular nucleus of the

thalamus, spinal cord motoneurons) (Fritschy and Mohler

1995; Pirker et al. 2000, Fritschy and Brünig 2003).

Receptors containing the α2 or α3subunit are consider-

ably less abundant and are highly expressed in brain areas

where the α1 subunit is absent or present at low levels. The

α2 and α3 subunits are frequently coexpressed with the β3

and γ2 subunits which is particularly evident in hippocam-

pal pyramidal neurons (α2β3γ2) and in cholinergic neurons

of the basal forebrain (α3β3γ2). The α3 GABAA receptors

are the main subtypes expressed in monoaminergic and

basal forebrain cholinergic cells (Gao et al. 1993) and are,

in addition, strategically located in the thalamic reticular

nucleus for modulating the thalamo-cortical circuit

(Huntsmann et al. 1999). Marked differences in desensiti-

zation kinetics have been reported between synaptic α2-and

extrasynaptic α3-receptors whereby the latter desensitize

very slowly (Devor et al. 2001). The factors regulating

GABAA receptor kinetics at synaptic and extrasynaptic

sites are yet unknown (Moss and Smart 2001). The ligand-

binding profile of the α2-and α3-receptors differs from that

of α1β2γ2 by having a considerably lower displacing

potency for ligands such as βCCM, CL 218,872, and

zolpidem.

Receptors containing the α5 subunit are of minor

abundance in the brain but are expressed to a significant

extent in the hippocampus, where they comprise 15 % to 20

% of the diazepam-sensitive GABAA receptor population,

predominately coassembled with the β3 and γ2 subunits.

Pharmacologically, the α5-receptors are differentiated from

508 Cell Tissue Res (2006) 326:505–516



α1β2γ2, α2β3γ2 and α3β3γ2 receptors by a lower affinity

to CL 218, 872 and near-insensitivity to zolpidem.

The subunits γ1 and γ3 characterize a small population

of receptors that contain various types of α and β subunits.

Due to their reduced affinity for the classical benzodiaze-

pines they do not appear to contribute to any great extent to

their pharmacology in vivo.

It should be kept in mind that complex benzodiazepine

actions such as the development of tolerance can implicate

more than a single receptor subtype. For instance, while the

sedative action of diazepam is mediated by α1 GABAA

receptors (see below), the development of tolerance to this

action under chronic diazepam treatment requires the

interaction with both α1 GABAA receptors and α5 GABAA

receptors (van Rijnsoever et al. 2004).

Diazepam-insensitive GABAA receptors

GABAA receptors that do not respond to clinically used

ligands such as diazepam, flunitrazepam, clonazepam, and

zolpidem are of low abundance in the brain and are largely

characterized by the α4 and α6 subunits. Receptors contain-

ing the α4 subunit are generally expressed at very low

abundance but more prominently in thalamus and dentate

gyrus (Pirker et al. 2000); those containing the α6 subunit

are restricted to the granule cell layer of the cerebellum

(about 30–50 % of all GABAA receptors in the cerebellum;

Nusser et al. 1996; Pöltl et al. 2003). Both receptor

populations are structurally heterogeneous, and the majority

of the α6-containing receptors contain the γ2 subunit in the

α6α1β2γ2 subunit combination (Pöltl et al. 2003). Apart

form the lack of affinity of classical benzodiazepines, the

benzodiazepine-site profile of α4 and α6 receptors is

characterized by a low affinity for flumazenil and bretazenil

and an agonistic efficacy of Ro 15-4513 and bretazenil

(Benson et al. 1998). The δ subunit is frequently coas-

sembled with the α4 or the α6 subunit in benzodiazepine

insensitive receptors (Möhler et al. 2000; Whiting et al.

2000; Möhler 2001). Receptors containing the δ subunit are

located exclusively at extrasynaptic sites as shown in dentate

gyrus and cerebellum. They are tailor made for tonic

inhibition, due to their high affinity for GABA and slow

desensitization kinetics (Brickley et al. 1996, 2001).

GABAA receptor subtypes: a new pharmacology

The selective pattern of expression of GABAA receptor

subtypes opened the possibility to modulate distinct

neuronal circuits, provided novel ligands were found which

displayed a differential interaction with GABAA receptor

subtypes based on either selective affinity or selective

efficacy (Table 2). Such agents would be expected to

display therapeutic indications which are more selective

than those of the classical benzodiazepines and go beyond

their spectrum of activity.

The dissection of receptor pharmacology has been

achieved experimentally by generating four lines of point-

mutated mice in which the receptors containing the α1, α2,

α3 or α5 subunits, respectively, are rendered diazepam-

insensitive by replacing a conserved histidine residue (H) in

the drug-binding domain by an arginine (R; Benson et al.

1998; Rudolph et al. 1999; Löw et al. 2000; Crestani et al.

2002). In the respective point-mutated mice, the pharmaco-

logical action linked to the point-mutated receptor should be

missing and thereby reveal the pharmacological relevance of

the respective receptor in wild-type mice. Since the subunit

composition and distribution of GABAA receptor subtypes

are largely conserved between rodents and non-human

primates, the results are thought to be relevant to the human

condition (Rudolph and Möhler 2004).

GABAA receptors for sedation and sleep

Frequently, sedation is taken as a surrogate marker for

hypnotic activity. The sedative component of benzodiaze-

pines, measured by the reduction of locomotor activity, has

been attributed to neuronal circuits expressing α1GABAA

receptors, the most prevalent receptor subtype in the brain.

Mice in which the α1GABAA receptor has been rendered

diazepam-insensitive by a point mutation [α1(H101R)] fail

to be sedated by diazepam (Rudolph et al. 1999; McKernan

et al. 2000). Ligands with a preferential affinity for α1

receptors such as zolpidem or zaleplon are used as

hypnotics (Table 2). Similarly, the changes in the electro-

encephalogram (EEG) pattern induced by zolpidem in wild-

type mice are almost exclusively mediated via α1GABAA

receptors (Kopp et al. 2004a). However, the changes in

sleep architecture (suppression of rapid eye movement or

REM sleep) and EEG-frequency profiles (reduction of

slow-wave sleep, increase in fast β-frequencies) induced

by classical benzodiazepines are largely attributable to

effects mediated by receptors others than α1 (Tobler et al.

2001). The enhancement of α2GABAA receptors by

diazepam appears to have the most pronounced effect on

the sleep EEG in wild-type mice. When the α2GABAA

receptor is rendered diazepam-insensitive by a point

mutation [α2(H101R)], the diazepam-induced suppression

of δ-waves, the increase in fast β-waves in non-REM sleep

(>16 Hz) and the diazepam-induced increase of θ-waves in

REM sleep are strongly attenuated (Kopp et al. 2004b).

Thus, the hypnotic EEG fingerprint of diazepam can be

dissociated from its sedative action. Future hypnotics might

target changes in the EEG pattern, which are characteristic

of physiological sleep, and thereby aim at improving sleep

quality. For instance, the GABA-mimetic gaboxadol

(4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridine-3-0l hydrochlo-

Cell Tissue Res (2006) 326:505–516 509



ride; synonym THIP), which interacts preferentially with

α4β3δ GABAA receptors in vitro (Brown et al. 2002;

Storustovu and Ebert 2003) has been found to enhance

slow-wave sleep in vivo (Lancel and Steiger 1999; Huckle

2004).

GABAA receptors for anxiolytic action

Since α1GABAA receptors were found to mediate sedation

but not anxiolysis (Rudolph et al. 1999; McKernan et al.

2000), the anxiolytic activity of benzodiazepines was

expected to reside in one or several of the remaining

benzodiazepine-sensitive GABAA receptors (α2, α3, α5).

The differentiation of GABAA receptors by knock-in point

mutations showed that the α2 receptor, but not the α3 or

α5GABAA receptor, mediated the anxiolytic activity of

diazepam (Löw et al. 2000; Crestani et al. 2002). In

α2(H101R) mice, but not in α3(H126R) or α5(H105R)

mice, diazepam failed to induce anxiolytic activity (light-

dark paradigm, elevated plus maze). With respect to the

α2GABAA receptor, a highly selective target for the

anxiolytic activity of benzodiazepine tranquillizers had

Table 2 GABAA receptor subtype ligands*

Drug Main activity Interaction with recombinant GABAA

receptors1,2
Reference

A.Benzodiazepine site ligands

Zolpidem Hypnotic Preferential affinity for α1 Dämgen and Lüddens,

1999

Zaleplone Hypnotic Preferential affinity for α1 Dämgen and Lüddens,

1999

Indiplon Hypnotic Preferential affinity for α1 Foster et al. 2004

L-838 417 Anxiolytic Comparable affinity at α1, α2, α3, α5 subtype.

Partial agonist at α2, α3, α5 (not α1) subtype

McKernan et al. 2000

Ocinaplon Anxiolytic Comparable affinity at α1 α2, α3, α5 subtype.

Partial agonist at α2, α3, α5 subtype nearly

full agonist at α1

Lippa et al. 2005

SL 651 498 Anxiolytic Agonist at α2, α3, partial agonist at α1 and

α5 subtype

Griebel et al. 2003

TPA 023 Anxiolytic Partial agonist at α2, α3 subtypes, antagonist

at α1, α5 subtypes

Atack et al. 2006a

TPA 003 Anxiolytic Partial agonist at α3 subtype Dias et al. 2005

ELB 139 Anxiolytic Selective receptor profile uncertain Langen et al. 2005

L-655 708 Memory enhancer, Anxiogenic Partial inverse agonist with preference for

α5 subtype

Sternfeld et al. 2004;

Chambers et al. 2004;

Navarro et al. 2002,

2004

α3 IA Anxiogenic Weak inverse agonist at α3 Atack et al. 2005

B. Modulatory site other than

benzodiazepine site

Ethanol Anxiolytic Sedative High sensitivity (≥3 mM) at α4(α6)β3δ
3;

Medium sensitivity (≥30 mM) at α4(α6)β2δ
3;

Low sensitivity (≥100 mM) at α4(α6)β3γ2

Wallner et al. 2003

Neurosteroids (e.g. 3α,

5α-THDOC)

Anxiolytic Sedative Anaesthetic High sensitivity at δ-containing subtypes 3 and

at α1, α3 receptors in combination with β1

Belelli and Lambert 2005

Intravenous anaesthetics

(Etomidate Propofol)

Sedative Anaesthetic Act on receptor subtypes containing β3 i.e.

mainly α2 and α3 subtypes

Rudolph and Antkowiak

2004

C. GABA site

Gaboxadol Hypnotic Partial agonist at α1, α3 subtypes full agonist

at α5 and superagonist at α4β3δ receptors2
Stornstovu and Ebert

2003

*This table is a modified version from Rudolph and Möhler (2006)
1Classical partial agonists that do not differentiate between GABAA receptor subtypes such as Bretazenil (Haefely et al. 1990) or Pagoclone

(Atack et al. 2006b) are not considered in this review.
2Data should be treated with caution as properties of recombinant receptors that are expressed in foreign host cells might not give an accurate

reflection of their neuronal counterparts.
3GABA is a weak partial agonist on δ-containing receptors, which largely explains the strong modulatory response of ligands acting on

δ-containing receptors (Bianchi and MacDonald 2003). THDOC, 5α-pregnane3α,21-diol-20-one.
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been identified. In keeping with this notion, the benzodi-

azepine site ligand L-838417, which exhibited efficacy at

α2, α3 and α5 but not α1GABAA receptors, proved to be

anxiolytic in wild-type rats (Table 2; McKernan et al.

2000). Similarly, partial agonists of 3-heteroaryl-2-pyri-

dones acting at the benzodiazepine site with efficacy at α2,

α3 and α5 receptors, but not at α1 receptors, were found to

show anxiolytic activity in rodents (Table 2; Collins et al.

2002). Nevertheless, the extent to which the α3GABAA

receptor component contributed to the anxiolytic activity of

these ligands remained to be clarified. In mice that lacked

α3GABAA receptors, the anxiolytic activity of diazepam

was undiminished (Yee et al. 2005). However, an α3-

selective inverse agonist was anxiogenic and proconvulsant

in rodents (Table 2; Collins et al. 2002). In addition, TP003

with selective efficacy at the α3GABAA receptor was

anxiolytic, although only at high receptor occupancy (Dias

et al. 2005). Classical benzodiazepines exert anxiolysis at

low receptor occupancy suggesting that the α2GABAA

receptors, and not the α3GABAA receptors, are the major

mediators of this activity. The contribution of α3GABAA

receptors is unlikely to be of major relevance. Thus, the

strategy to develop novel daytime anxiolytics, which are

free of sedation, is clear (Whiting 2003; Möhler et al. 2002;

Möhler et al. 2005).

The α2GABAA receptors by their preponderant locali-

zation on the axon-initial segment of principal cells in the

cerebral cortex and hippocampus can control the output of

these cells. In addition, among α1, α2 and α3GABAA

receptors, α2 receptors are prominent in the central nucleus

of the amygdala, a key area for the control of emotions,

whereas α1GABAA receptors are totally absent (Marowsky

et al. 2004). Thus, by their strategic distribution in brain

areas involved in anxiety responses, α2GABAA receptors

represent key substrates for anxiolytic drug action.

GABAA receptors for learning and memory

Hippocampal pyramidal cells express various structurally

diverse GABAA receptors in a domain-specific manner.

Whereas α1 and α2GABAA receptors are largely synaptic,

α5GABAA receptors are located extrasynaptically at the

base of the spines and on the adjacent shaft of the

pyramidal cell dendrite. The α5GABAA receptors are

therefore in a privileged position to modulate the excitatory

input arising at the spines via N-methyl-D-aspartate

(NMDA) receptors. The introduction of a point mutation

(H105R) into the α5 subunit is associated with a specific

reduction of the hippocampal α5-subunit-containing

GABAA receptors, whereas the pattern of distribution is

undisturbed (Crestani et al. 2002). Mice with a partial

deficit of α5GABAA receptors in the hippocampus show an

improved performance in trace fear conditioning, a hippo-

campus-dependent memory task (Crestani et al. 2002). In

addition, these mutants display a resistance to the extinction

of conditional fear over several days (Yee et al. 2004).

Similarly, in a mouse line in which α5GABAA receptors are

absent in the entire brain (Collinson et al. 2002; Whiting

2003), improved performance has been observed in the

water maze model of spatial learning. Furthermore, a partial

inverse agonist acting at α5GABAA receptors enhances the

performance of wild-type rats in the water maze test

(Chambers et al. 2003; Table 2). Thus, neuronal inhibition

in the hippocampus mediated via α5GABAA receptors is a

critical element in the regulation of the acquisition and

expression of associative memory. Of note, the behavioural

consequences of an impairment of α5GABAA receptors are

opposite to those of an NMDA receptor deficit as shown in

spatial and temporal associative memory tasks. Thus, these

two receptor systems seem to play a complementary role in

controlling signal transduction at the hippocampal principal

cells.

GABAA receptors for sensorimotor processing

A deficit in GABAergic inhibitory control is one of the major

hypothesis underlying the symptomatology of schizophrenia

(Lewis et al. 2005). A potential contribution of GABAA

receptor subtypes has therefore been investigated with

regard to the overactivity of the dopaminergic system, an

overactivity considered to be a major factor in schizophre-

nia. The dopaminergic system is under GABAergic

inhibitory control mainly via α3-containing GABAA recep-

tors (Fritschy and Möhler 1995; Pirker et al. 2000). Their

functional role has been explored in mice lacking the α3

subunit gene. Mice with an α3-knockout display no

adaptive changes in the expression of α1, α2 and α5

subunits and their anxiety-related behaviour is normal.

However, they exhibit a marked deficit in prepulse

inhibition of the acoustic startle reflex, pointing to a deficit

in sensorimotor information processing (Yee et al. 2005).

This deficit in prepulse inhibition is normalized by the

administration of the antipsychotic dopamine D2-receptor

antagonist haloperidol, suggesting that the behavioural

phenotype is caused by hyperdopaminergia (Yee et al.

2005). Attenuation of prepulse inhibition is a frequent

phenotype of psychiatric conditions, including schizophre-

nia. These results suggest that α3-selective agonists might

constitute an effective treatment for sensorimotor gating

deficits in various psychiatric conditions, a view supported

by the observation that the partial benzodiazepine-site

agonist bretazenil, in earlier open clinical trials, displayed

an antipsychotic activity similar to neuroleptic drugs (Delini-

Stula and Berdah Tordjman 1996). The α3-selective agonists

might lack the sedative or extrapyramidal side-effects of

classical neuroleptics and would thus be valuable agents.
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Among various brain structures, the hippocampus is

believed to play an important role in the modulation of

prepulse inhibition. In α5(H105R) point-mutated mice, the

expression of the α5 subunit containing GABAA receptors

in the hippocampus is reduced (see above; Crestani et al.

2002). In these animals, prepulse inhibition is attenuated

concomitant with an increase in spontaneous locomotor

activity (Hauser et al. 2005). Thus, the α5-subunit-contain-

ing GABAA receptors, which are located extrasynaptically

and are thought to mediate tonic inhibition, are important

regulators of the expression of prepulse inhibition and

locomotor exploration. Post-mortem analyses of brains

from patients with schizophrenia have consistently revealed

structural abnormalities of developmental origin in the

hippocampus (Lewis et al. 2005). Such abnormalities may

include disturbances of α5GABAA receptor function given

that schizophrenic patients are known to exhibit a deficit in

prepulse inhibition. Thus, agonists acting on both α3 and

α5GABAA receptors may be beneficial in overcoming this

endophenotypic manifestation of the disease.

GABAA receptors for anaesthetic action

The targets that mediate the clinical effects of general

anaesthetics are largely unknown (Campagna et al. 2003;

Rudolph and Antkowiak 2004). Recent work has focused

on the role of GABAA receptors, with studies being based

on the analysis of point-mutated knock-in mice carrying

point mutations in the β3 and β2 subunits of the GABAA

receptor. These mutations render the GABAA receptors

containing the respective subunits insensitive to modulation

by etomidate, propofol and certain volatile anaesthetics,

such as enflurane. The β3-containing GABAA receptors

have been found to mediate the immobilizing action of

etomidate and propofol apparently in full (Table 2; Jurd et

al. 2003) and of enflurane, isoflurane and halothane in part

(Jurd et al. 2003; Lambert et al. 2005; Liao et al. 2005). In

addition, they mediate part of the hypnotic action of

etomidate and propofol (Jurd et al. 2003) but apparently

not of the volatile anaesthetics (Jurd et al. 2003; Lambert et

al. 2005). In contrast, the hypnotic action of etomidate is

mediated by β2-containing GABAA receptors (Reynolds et

al. 2003). Further studies have revealed that the respiratory

depressant action of etomidate and propofol is also

mediated by β3-containing GABAA receptors, whereas the

heart-rate depressant action and, to a large part, the

hypothermic action of etomidate and propofol are mediated

by other targets (Zeller et al. 2005; Cirone et al. 2004).

Thus, a β3-selective agent would be predicted to be

immobilizing and respiratory depressant but would largely

lack the heart-rate depressant and hypothermic actions of

etomidate and propofol. The analysis of α subunits

involved in mediating the actions of general anaesthetics

is expected to result in further insights into the contribution

of GABAA receptors to anaesthesia. Mutations in α

subunits have been identified in recombinant studies that

render αxβxγ2 GABAA receptors insensitive to specific

volatile anaesthetics but not to etomidate or propofol

(Mihic et al. 1997; Krasowski et al. 1998). Studies with

knock-in mice carrying these mutations are expected to

yield information as to the contribution of individual

GABAA receptors subtypes and the GABAA receptor

family as a whole to the action of volatile general

anaesthetics.

GABAA receptors controlling postnatal development

Apart from its trophic role in embryonal development

(Represa and Ben-Ari 2005), GABA is a major determinant

for postnatal developmental plasticity; this has been

investigated in various sensory systems. For instance, in

the rodent somatosensory system, axons from each whisker

form a somatotopic map in the cortex, known as the barrel

map. During a critical period of neonatal development, this

barrel map is fine-tuned in response to sensory experience

based on a variety of synaptic mechanisms involving not

only excitatory, but also inhibitory circuits (Foeller and

Feldmann 2004). The role of inhibitory circuits in synaptic

reorganization is similarly apparent in the auditory system.

Recent work has revealed a dramatic remodelling of

inhibitory synapses shortly after the onset of hearing (aural

dominance bands). The restructuring relies on both spon-

taneous and sensory-evoked neural activity (Kandler 2004).

In the postnatal visual system, the role of GABA has been

investigated in detail.

In the visual system, developmental plasticity is most

apparent in the formation of ocular dominance columns in

layer IV of the primary visual cortex. Cortical territories

receiving neuronal input from one eye alternate with

territories from the other eye. Initially, at birth, the thalamic

inputs from both eyes to the visual cortex are totally

overlapping (Ferster 2004). The separation of the visual

inputs into ocular dominance columns only arises in the

subsequent phase of remodeling. This process is sensitive

to light as shown by classical work on the influence of

monocular deprivation on ocular dominance plasticity

(Wiesel and Hubel 1963). After the closure of one eye

during a critical period of early postnatal life, the input

from the open eye subsequently has a larger cortical

territory than the input from the deprived eye. Critical

period plasticity is best viewed as a continuum of local

circuit computations that result in a structural rewiring of

thalamic afferents (Hensch 2005).

The mechanism of visual cortical plasticity was analyzed

in detail with regard to the contribution of intracortical
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GABAergic transmission. GABAergic transmission was

modulated locally by infusion of the benzodiazepine

agonist diazepam or the inverse agonist DMCM. Following

chronic infusion of diazepam into the striate cortex (starting

at postnatal days 14–17), the spacing of the ocular columns

was widened, whereas infusion of DMCM reduced the

spacing (Hensch and Stryker 2004). Visual responsiveness

remained undisturbed under these conditions (Hensch and

Stryker 2004). Thus, intracortical GABA interneurons

shape the geometry of the incoming thalamic arbours. In

addition, the degree of GABAergic inhibition has been

found to be a key determinant for the onset of critical

period plasticity. The enhancement of GABA transmission

by diazepam has long been known to induce the

premature onset of the critical period (Fagiolini and

Hensch 2000). It has now been found that only circuits

containing α1GABAA receptors drive cortical plasticity,

whereas α2-enriched connections separately regulate neu-

ronal firing (Fagiolini et al. 2004). These results are based

on the use of knock-in mice in which the respective

individual α-subunit had been rendered diazepam-insen-

sitive by a point mutation (Rudolph et al. 1999; Löw et al.

2000). These recent findings therefore present a cellular

and molecular basis for critical period plasticity in the

visual cortex triggered by neuronal inhibition (Fagiolini et

al. 2004; Ferster 2004).

For ocular stripes to form postnatally, activity in nearby

inputs from the same eye are considered to cooperate with

each other as cluster of cortical cells in their bid to take

over cortical territory (Ferster 2004). By lateral GABAergic

inhibitory connections, activity in more distant cells must

be “anti-correlated”. Inputs from the same eye are therefore

suppressed in their bid to take over the adjacent territories.

The pattern of ocular dominance columns thus arises during

the segregation of eye-specific inputs to the visual cortex in

a self-organizing process. The cortex itself, through a

specific type of GABAergic interneuron, plays a central

role in organizing this pattern (Ferster 2004). The special

developmental function of neocortical α1GABAA receptors

suggests that constraints should be placed on drugs

designated for use in human infants (Fagiolini et al. 2004).
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