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The gabbro-garnet granulite-eclogite transformation may play a significant role in driving the motions 
of terrestrial lithospheric plates. Whether or not this transformation is in fact important as a driving 
mechanism for plate tectonics depends on the relationship of the reaction time to geologic time. Solid 
state diffusion under completely dry conditions is investigated as a possible model for the gabbro-eclogite 
reaction, with the result that it could not produce the transition in geologically meaningful times at 
temperatures less than circa 600ø-800øC in the earth's upper mantle. Other reaction mechanisms must ex- 
ist for the geologically rapid occurrence of the phase change at lower temperatures. It is found that one of 
these mechanisms can be grain interstitial diffusion in a mantle with minute amounts of water. In this 
model, dissolved ions migrate through water films surrounding mineral grains to sites of reaction. A 
water-undersaturated mantle contains a small quantity of hydrous phases, such as chlorite, amphibole, or 
talc, the presence of which implies that interstices within the rock can contain water in equilibrium with 

these minerals and at a pressure PH•.o which is less than the pressure in the rock. Implicit then is the pres- 
ence of other gases and/or structural rock integrity. This PH•.o is calculated for serpentine, tremolite, and 
talc as a function of temperature and rock pressure. Various pertinent cations are sufficiently mobile in 
aqueous solution that at high temperature and high pressure, diffusion through water will not significantly 
slow the reaction. Rather, pressure-induced solubility of ions in this water vapor is the important rate- 
limiting process in the model. Rock pressure and temperature must be such as to generate at least •0.5-1 
kbar of Pu•.o in the presence of the hydrous phases for geologically short reaction times. Under ambient 
conditions Pu•.o is quite small, the cations are relatively insoluble, and the reaction time is geologically 
long. Upon subduction of a basaltic upper crust or lithosphere, for example, an increase in Pu•.o occurs, 
and with increasing pressure the mineral solubility in this supercritical water increases dramatically, yield- 
ing geologically short reaction times; for example, •20 m.y. for chlorite-containing rocks with • 10-5-cm 
film thickness for ion diffusion at depths of • 15-30 km and at temperatures of • 150ø-300øC for different 
heating models of the descending slab. For gabbros in which amphibole (tremolite)-pyroxene equilibria 
buffer the partial pressure of water, depths of • 55-70 km and temperatures of 400ø-550øC are required 
for rapid eclogitization, again for different slab heating models. Thus contrary to previous suggestions, 
the gabbro-eclogite transformation, as it probably occurs in the descending or spreading lithosphere, is 
not simply rate-controlled by temperature but depends heavily on pressure and on the nature of the minor 
hydrous minerals present. 

INTRODUCTION AND BACKGROUND 

It has been observed that with increasing pressure at high 

temperature (•800 ø to 1200øC) a gabbroic mixture (pyroxene 

and plagioclase, with or without olivine, quartz, and spinel) 

with a density of 2.9-3.1 g/cm 3 reacts, starting at 10-15 kbar, 

and forms a garnet granulite (garnet, pyroxene, and 

plagioclase) with a density between 3.2 and 3.3 g/cm 3. At still 

higher pressure (15-30 kbar), depending on specific composi- 

tion, an eclogite assemblage (garnet and pyroxene) with a den- 

sity in the range 3.4-3.5 g/cm • forms. 

There have been numerous speculations regarding the role 

of this gabbro-garnet granulite-eclogite phase transformation 

in a number of phenomena in the earth's interior. lto and Ken- 

nedy [1971] and Kennedy and lto [1972] on the basis of their 

claim of fairly sharp increases in density at the onsets of the 
gabbro-garnet granulite and garnet granulite-eclogite transi- 

tions have recently modified the original phase change in- 

terpretation of the Mohorovicic discontinuity [Lovering, 1958; 

Kennedy, 1959]. They suggest that the discontinuity in seismic 

P wave velocity from 7.5 to 8.2 km/s found at depths of about 

50 km under continental areas which have undergone recent 
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vertical movement and at depths of about 20 km under certain 

ocean rises may represent the equilibrium phase boundary 

between garnet granulite and eclogite [lto and Kennedy, 1970]. 

Also they propose that the shallower seismic P wave velocity 

discontinuity of 6.5-7.5 km/s may map a rate process bound- 

ary that is an approximate isotherm along which the 

temperature is sufficiently high (•400øC) that recrystallization 

of metastable gabbro to the stable garnet granulite occurs. 

Ringwood and Green [1966] in spite of their objections to a 

worldwide gabbro-eclogite M discontinuity suggested that in 

areas of high heat flow and presumably of high temperatures 

at the base of the crust, as occur in tectonic provinces, the gab- 

bro-eclog•te transition could explain the often gradational 
Moho observed in these regions. They also speculated that 

piles of basalt and gabbro formed at continentaI margins in the 

initial stages of orogeny would subsequently transform to 

eclogite and sink into the underlying mantle, triggering the 
orogenic epic and eventually resulting in continental accretion. 

A second related hypothesis proposed by Ringwood and Green 

[1966] (see also Schubert and Turcotte [1972]) is that gabbro in 

the oceanic crust undergoes thermally activated transforma- 

tion to eclogite upon descending into the mantle at an island 

arc subduction zone. The gravitational body force associated 

with this relatively cool and dense eclogitic layer provides all 
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or part of the driving mechanism for the mantle flow field as- 

sociated with plate tectonics. The gabbro-eclogite transforma- 

tion then takes place in the upper -,,300 km of the subduction 

zone. At greater depths the downward body forces accom- 

panying the lower transition of a-(Mg, Fe)2SiO4 to the/5 and 3' 

phase have recently been described by Turcotte and Schubert 

[1971]. 

Press [1969] has suggested that as the basalts and gabbros 

which may be produced at depth under midocean ridges move 

laterally away from the ridge, carried by the horizontal motion 

of the lithosphere below, transformation to eclogite could oc- 
cur upon cooling. The resulting gravitationally unstable litho- 

sphere would then readily sink at an island arc subduction 
zone. This idea calls for the gabbro-eclogite transformation to 

occur during cooling at relatively constant pressure, whereas 

the Ringwood and Green [1966] and Schubert and Turcotte 

[1972] suggestion, although similar in some respects, envisions 

the phase change taking place upon heating with increasing 

pressure. A further significant distinction between the Press 

[1969] and Ringwood and Green [1966] and Schubert and Tur- 

cotte [1972] mechanisms is that the former invokes an eclogite 

suboceanic lithosphere, while the latter refer only to the gab- 

bro-eclogite phase change in the oceanic crust known to be of 

basaltic composition. We emphasize that the phase change 

densification of only the subducting oceanic crust, should it 

occur at sufficiently shallow depth in the mantle, could provide 

a downward body force in the lithosphere comparable to that 
of thermal contraction of the entire descending lithosphere or 

to that associated with the elevation of the olivine-spinel phase 

boundary [Turcotte and Schubert, 1971]. 

Proper evaluation of these proposals requires knowledge of 

the pressure-temperature stability field of the transformation, 
its rate of reaction, and either the nature of the variations in 

the geotherm or the heating or cooling rates of material ele- 

ments. Extensive experimental investigations have delineated 

the equilibrium stability field of the phase change at relatively 
high temperatures and pressures [e.g., Boyd and England, 1959; 

Yoder and Tilley, 1962; Ringwood and Green, 1966; Green and 

Ringwoo& 1967; Cohen et al., 1967; lto and Kennedy, 1970, 

1971; Green and Ringwood, 1972; Kennedy and lto, 1972], and 

although extrapolation of the experimental data to lower 
temperatures and pressures is still a controversial issue [Green 

and Ringwoo& 1972; Kennedy and lto, 1972], our knowledge of 

the equilibrium stability field is adequate for evaluation of the 

role of the reaction in many geophysical processes. However, 
the same cannot be said of our knowledge of the reaction 

rate; aside from approximate estimates of the reaction times 

at two temperatures in a single experiment [Ito and Kennedy, 

1971], no data on the reaction rate are available. Unfor- 

tunately, our lack of knowledge of reaction rates is the most 

serious limiting factor in our assessment of the importance of 

the gabbro-eclogite transformation in many phenomena. 

As an example, consider the gabbro-eclogite transformation 

in the descending crust. According to the pressure-tempera[ure 
stability diagram of Figure 1 and the shear stress heating 

curves for crustal elements [Turcotte and Schubert, 1973] 

(shown in Figure 9, for example), a layer of crustal basalt and 

gabbro attached to the upper surface of a lithospheric slab 

descending into the mantle will find itself in the stability field 

of eclogite at relatively shallow depth (notwithstanding the 

controversy over the extrapolation of the empirically deter- 

mined stability fields to low temperature and pressure, this 
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Fig. 1. Theoretical phase lines for garnet-forming reactions in Mg-rich pyroxene and oilvine determined from ther- 
mochemical data of Robie and Waldbaum [1968] and Ahrens [1973]. Also shown is the experimentally determined phase line 
of the reaction enstatite + spinel = forsterire + pyrope [McGregor, 1964] together with the approximate range of the gab- 
bro-garnet granulite-eclogite phase change. 
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depth will certainly be no more than 20-30 km). However, at 

these shallow depths the temperature of crustal elements will 
be less than about 200øC [Turcotte and Schubert, 1973], and 

the rate of reaction may be sufficiently slow for the gabbro to 

be metastable well into the eclogite stability field. The transi- 

tion from gabbro to eclogite in the relatively cold descending 

crust is a rate-dominated process. The equilibrium phase 

diagram tells us only that the reaction may occur in the 

descending crust; rate processes determine whether or not the 

reaction will in fact take place. 

In the present paper we hope to clarify the importance of the 

gabbro-eclogite transition to several processes in the earth's 

interior by better understanding the reaction rate of the trans- 

formation. This is accomplished by developing simplified 
microscopic models of the phase change which permit assess- 

ments of reaction times and their dependences on variables 

such as pressure, temperature, and grain size. Two basic 
models will be considered, one a solid state diffusion model for 

the transition under totally dry conditions and the other a 

model of diffusion through interstitial water vapor. The major 

conclusion we reach is that the transformation may occur via 

grain interstitial diffusion of ionic species if the gab- 

bro-eclogite reaction is to occur on a geologically significant 

time scale at temperatures below •800øC. The reaction rate, 

instead of being controlled by temperature as was commonly 
believed (recall the Ringwood and Green [1966] and Schubert 

and Turcotte [1972] proposal for thermally activated transfor- 

mation in the descending crust, for example) is governed 

mainly by the generation of water vapor in equilibrium with 

hydrous mineral phases and the increase in ion solubility with 

pressure in the supercritical water. 

CASE FOR SOLID STATE DIFFUSION 

In examining the possible physical mechanisms which con- 

trol the gabbro-eclogite transformation under dry conditions, 

solid state diffusion is a prime candidate since it is known to be 

experimentally difficult to form garnet granulite, or eclogite, at 

temperatures lower than about 800øC [Ito and Kennedy, 1971]. 

However, even at these temperatures with Li:B407 as a fluxing 

agent, complete transformation in very fine grained starting 
materials was not achieved on a 1-week time scale. Ito and 

Kennedy [1971] reported that at 1200øC equilibrium was at- 

tained in approximately 5 min. From these data and the as- 

sumption that the reaction time is proportional to the ex- 

ponential of the product of a constant and the reciprocal 

temperature (see (8)), they inferred that in geologic times of 

106-107 yr, recrystallization of gabbro to garnet granulite, or 

eclogite, should occur down to temperatures as low as about 

400øC. At still lower temperatures, gabbro was inferred to re- 

main metastable in the garnet granulite, or eclogite, fields for 

extremely long periods. 

The solid state diffusion model of the gabbro-eclogite reac- 

tion considers the growth of garnet at the interface between 

crystals of olivine and plagioclase with the rate of reaction 

controlled by the diffusion of cations through the growing gar- 

net crystal. Geologic examples of solid diffusion limited 

mineral formation may be provided by certain of the coronas 

or reaction rims in high-temperature metamorphic rocks. In 

the formation of certain of these metamorphic textures, 

coarse-grained anhydrous mineral assemblages in cooling 

from high temperature undergo reactions at grain boundaries 

resulting in the growth of new minerals which armor the 

primary ones and thus slow the diffusion-controlled reactions. 

A classic multilayered corona which occurs at the junction 

of olivine and plagioclase in gabbroic rocks is described by 

Spry [1969] as follows. The successive rims in the com- 

pound corona are olivine-hypersthene-hornblende-garnet- 

plagioclase. The end members o[ivine and plagioclase ap- 
parently reacted under anhydrous metamorphic conditions to 

produce hypersthene and garnet, which were in part later 

transformed under hydrous conditions to hornblende. Figure 2 

[from Spry, 1969] shows the approximate compositions of the 

successive rims in this complex layered corona. The mineral 

composition of each rim represents the chemical gradient 

formed by the migration of Fe ++ and Mg ++ outward from 

olivine and Ca ++ and A1 +a outward from plagioclase. An ex- 

ample of a complex corona texture between olivine and 

plagioclase is shown in Figure 3 [from Spry, 1969]. 

We shall attempt by considering only one reaction to ex- 

amine the diffusion processes in systems which realistically 

represent the more crucial of the 19 or so reactions which 
Green and Ringwood [1967] list as occurring in gabbros of 

various initial compositions upon transforming to eclogite. 
The reaction, which is most amenable to a simple analysis, is 

(Mg, Fe)2SiO4(olivine) + CaA12SiaOs(anorthite) 

-• (Mg, Fe)•CaAl•Si•O•(garnet) (1) 

The theoretical phase lines for this reaction (assuming only the 

Mg end member) and other garnet-forming reactions for Mg- 

rich pyroxene and olivine together with the approximate range 

of the gabbro-eclogite phase change are shown in Figure 1. 
Thermochemical data selected from Robie and Waldbaum 

[1968] and Ahrens [1973] were used in the calculations. A point 

on the theoretical phase equilibrium line was found by 

iteratively determining values of temperature and pressure at 

which the free energies of the phases were identical. This point, 

together with the Clausius-Clapeyron relation, determines the 
theoretical phase line. 

The simplicity of reaction (1) follows from the fact that it in- 

volves only three species, each having the same Si/O ratio. We 

assume that although the SiOn-- tetrahedra are rearranged in 

reaction (1), they undergo no net transport. This assumption 
seems well justified, as recent data for O-- self-diffusion in 
forsterite [Heuer et al., 1973] demonstrate very low diffusivities 

(10-xs-10 -u cm•/s at 1400ø-1500øC). Thus we assume that 
under dry conditions diffusion of such cations as Ca ++, Al +3, 

6O 

5O 

20- 

I0- 

Fig. 2. Variation in composition of minerals in successive layers 
of a compound corona texture; from inside to outside: olivine, 
hypersthene, hornblende, garnet, and plagioclase [from Spry, 1969]. 
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Fig. 3. Microphotograph of •mplex corona texture between olivine (center) and plagioclase (outside) of the type 
depicted in Figure 1 [from Spry, 1969]. 

Mg ++, and Fe ++ will occur as suggested in Figure 4. Note, as 
in Figure 2, that the garnet forms between the olivine and 

plagioclase. Similar solid state diffusion-controlled reactions, 
which occur in the formation of spinels from the oxides, have 
been treated in detail by Schmalzreid [1969]. Other similar 
diffusion-controlled reactions have been studied for the 

growth of SrAI•.O• and BaAI•.O• (spineIs) by Iseki et al. [1970], 
for BiFeOa (a perovskite) by Mukherjee and Wang [1970], for 
AI•.SiO, (mullite) by Davis and Park [1972], and for CaZrOa by 
Augers et al. [1972] all via solid state reaction from the oxides. 

For reaction (1), charge balance considerations at the inter- 

faces imply that two moles of garnet form at the garnet- 
anorthite interface for each mole of garnet forming at the 
forsterite-garnet interface. 

To relate diffusion constants to reaction rates, we have as- 

sumed that cation diffusion through a growing garnet crystal 

will limit its growth rate, because, of the three species 
participating in reaction (1), garnet is the densest and because, 

since garnet is forming in situ, it is likely to be relatively free 
from deformation-induced defects (and hence present a high 
impedance for diffusive transport). If F is the number of 
reaction-limiting cations diffusing across a growing garnet 
crystal per unit area per second, i.e., cation flux, then 

Fcr DC/x (2) 

where C is the number concentration of this ion in the species 
in which it originates, x is the thickness of the growing garnet 
crystal, and D is the coefficient of diffusion of this ion in gar- 
net. Proportionality (2) assumes that the excess concentration 

of the reaction-limiting ion is linearly distributed over the gar- 
net phase and that this concentration gradient drives the diffu- 
sion process. This assumption cannot be completely valid since 
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Forsterite 

Mg2SiO 4 

Anorthite 

CaAI2Si208 

Forsterite 

Mg2SiO 4 

Pyrope-grossular 
Garnet 

Mg2CaAI2Si30•2 

• 2Ai +++ 
_.• Ca ++ 
•_,,. 4Mg + + 

Anorthite 

CaAIzSizO 8 

Interface reaction 

3(MgaSiO 4) + Ca ++ + 2AI +++ _4Mg ++ 
Interface reaction 

= CaMg2AI2Si30•2 
2 (Ca3/2AI 3Si3012)+ 4Mg ++- 2AI +++ -Co ++ 

= 2CaMg2AI2Si3012 

Fig. 4. Solid state diffusion model for the formation of garnet in the reaction Mg,SiO4 (forsteritc) + CaA1,Si308 
(anorthite) -• Mg2CaA12Si40•2 (garnet). The thickness of initial forsteritc and anorthite grains is 5, and the thickness of 
the growing garnet region is x. The diffusion of the cations AI +++, Ca ++, and Mg ++ across the garnet region limits 
the rate of reaction. 

we are also assuming that the reaction is taking place at close 

to but not precisely at conditions of thermodynamic 

equilibrium and hence that the free energy of the ions in the 

garnet is not quite equal to that in the other two species. The 
cation flux F is also related to the increase in thickness of the 

garnet region by 

F oc Cgaic (3) 

where Cga is the concentration of the reaction-limiting ion in 

garnet and œ is the time rate of change of the garnet crystal 

thickness. Equations (2) and (3) yield 

C 
xdc oc D (4) 

If b is the grain size characteristic of the plagioclase and 
olivine, the volume fraction of garnet formed, •I,, is 

ß = x/2• (5) 

Thus using (4) and (5), we find the transformation rate law 

D 

D C • = Ko •2 (6) •I"i' o• 4(•2 C•, -- 
where Ko is a constant taken as 1. If D were constant, integra- 

tion of (6) would yield a reaction or growth law of the form 

xlt'- oct (7) 

where t is time. As pointed out by Jost [1960], this parabolic 
growth law is often experimentally observed in tarnishing and 
other interface reactions involving solids. This type of time 
dependence was explicitly observed by Augers et al. [1972] and 
Davis and Park [1972] upon growth of CaZrOa and AI,.SiO5 at 
interfaces. The characteristic reaction time for the formation 

of garnet r is 

•2 •2 
r: = =-- roe (8) 

K0 D K0 D0e- a c/R 2, where T is the temperature in degrees Kelvin, AG is the diffu- 

sion activation energy, R is the gas constant, A is AG/R, Do is 

the diffusion frequency term, and ro is b"/KoDo. 

We now examine the values of ro and A which are required 

to form garnet (eclogite) in lower crustal and upper mantle en- 

vironments on time scales of 105-10 • yr and 10*-11Y yr. These 

are of interest as they represent times required to transform 

gabbro to eclogite on tectonically significant distance scales of 

-,• 10-100 km and • 10 s- 10 • km, respectively, in the subduct- 

ing oceanic crust [Ringwood and Green, 1966; Schubert and 

Turcotte, 1972] and in the suboceanic lithosphere as the latter 

moves away from an ocean ridge [Press, 1969; Forsyth and 

Press, 1971]. Equation (8) determines values of A as a function 
of ro for which a reaction time r would be achieved at a 

temperature T. Figure 5 shows A versus ro for reaction times of 

105 yr (solid lines) and 10 • yr (dashed lines) at temperatures 

between 700 ø and 1200øK. For example, with A = 3 X 10 • øK 

and ro = 10-" s, the reaction time would be 10 s yr at 900øK. 

The distance interval listed with each temperature is an ap- 

proximate measure of the distance along the slip zone of a 

subducting slab at which that temperature is reached as a 

result of frictional heating [Turcotte and Schubert, 1973]. In 

addition, Figure 5 shows A versus ro for a reaction time of 10 * 

yr and temperatures of 700 ø and 800øK, appropriate to the 
movement of suboceanic lithosphere laterally away from a 
rise. 

By comparing the plots of A versus ro with values of these 

parameters inferred from the limited self-diffusion and binary 
diffusion data available for related materials and summarized 

in Table 1 (no explicit diffusion data exist for garnet), we can 

assess whether solid state diffusion is a mechanism capable of 
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TABLE 1. Solid State Diffusion Data 

Diffusing 
Species Host 

Temperature Range Do, AG, 
of Data, øC cm•'/s kCal/mol Source 

Ca ++ a'-CaaSiO4 

a-Ca:SiO4 

a-CaSiO8 

fl-CaSiOa 
CaSi:O? 

CaFe:O4 
CaO 

CaO 

Mg++-Fe ++* (Mg, Fe):SiO4 
(Mg, Fe):SiO4 

Ca ++ MgO 
Mg ++ MgO 

MgAI:O4 
Fe ++ MgO 

MgO 
A1 +++ AI:O8 

Na ++ perthite 
Na-K KAI:Si8Os-NaAI:Si808 

1165-1514 0.036 65 

1165-1514 0.02 55 

ß .. 70,000 112 
ß ß ß 0.2 78 

ß. ß 0.01 73 

ß ß ß 30. 86 

ß . ß 0.4 81 

1465-1760 11.75 X 10 -5 64.3 

1000-1100 3.7 X 10 -7 28.8 

900-1100 3.4 X 10 -8 47 

790-1850 8.9 X 10 -4 63.67 

1400-1600 0.249 79.13 

ß ß ß 200. 86.0 

ß .. 8.83 X 10 -8 41.75 

ß ß ß 3.2 X 10 -4 41.99 

ß ß ß 27.54 114 

550 10-•-10-•'õ .. ß 
1020-1088 1.5 X 10 •9 167 

Fyfe and Verhoogen [1958] 
Fyfe and Verhoogen [1958] 
Fyfe and Verhoogen [1958] 

Lindner [ 1955] 
Lindner [1955] 

Fyfe and Verhoogen [ 1958] 
Lindner [1955] 

Kurner and Gupta [1969] 
Buening and Buseck [1973]'[ 

Meisner [1972]:!: 
Wuensch and Vasilos [ 1968] 
Wuensch and Vasilos [1968] 

Lindner and Akerstrbrn [1958] 
Wuensch and Vasilos [1968] 
Wuensch and Vasilos [ 1968] 

Birchenall [ 1968] 
Fyfe and Verhoogen [1958] 
Fyfe and Verhoogen [1958] 

* Interdiffusion of Fe++-Mg ++ in olivine. 
't' Along C axis, p(O:) = 10 -•: atm, 10 wt % Fe. 
:!: Along C axis, 5 wt % Mg ++. 
õ Values given are the range of diffusion constants. 

yielding the gabbro-eclogite transformation at temperatures 
and on time scales of interest. The values of r0 and A shown in 

Figure 5 for various pertinent minerals are calculated for the 

grain size range which we believe describes oceanic gabbros 

and accompanying basalts, 0.1-1 cm. We think that the recent 
binary diffusion data for olivine [Meisner, 1973; Buening and 

Buseck, 1973] and the previous data for Al +++ diffusion in 

Al:Os [Paladino and Kingery, 1962] delineate the range of pos- 

sibilities for garnet. (For the present purposes, we are neglect- 

ing the small decrease of diffusivity with compression.) 

Although activation energies for multicomponent diffusion in 

garnet could conceivably be as low as the 29 kcal/mol reported 

by Buening and Buseck [1973] below 1125øC in olivine, we in- 

fer from previous examination of complex diffusion systems 

[Cooper, 1965; Schmalzreid, 1969; Buckley, 1973] that the 

effective ternary diffusion constant for reaction (1) is more 

likely within one order of magnitude of the value of the 

diffusivities of the slowest moving species, in our case, A1 +++. 

The examples given by Buckley [1973] further suggest that the 

activation energy in the case of a binary system is also close to 

that of the slowest diffusing end member. (Since in ideal solu- 

tions the binary diffusion fluxes are, at thermodynamic 

equilibrium, linear combinations of end member self-diffusion 

fluxes, for the present purpose we have not differentiated 

between binary and self-diffusion data.) 

The question of whether cation diffusion in a polycrystalline 

aggregate can be controlled (and presumably occur more 

rapidly) by surface diffusion processes has been examined by 

Paladino and Coble [1963] and Mistler and Coble [1971]. They 

conclude that cation-diffusion is usually independent of grain 

boundaries in ionic compounds although they point out that 

some exceptions do occur. In the case of Al:Os they find that 

apparent self-diffusion coefficients (surface diffusion) for ox- 

ygen are greater than those for Al +++ only in aggregates hav- 

ing crystallites smaller than 20 •t. We conclude that there are 

insufficient experimental data at present to assess the possible 

importance of solid state surface diffusion processes as they 

pertain to the basalt- or gabbro-eclogite reaction rate. 

From Figure 5 we infer that if the effective bulk diffusion 

constant for the gabbro-eclogite transition is similar to that of 

AI +++ in AI:O,, solid state diffusion cannot produce the gab- 

bro-eclogite transformation on the required time scale below 
•900øC within the oceanic crust during subduction and within 

the suboceanic lithosphere as spreading from a ridge takes 

place. However, if diffusion activation energies of •30 kcal/ 
mol, such as those found for Mg++-Fe ++ diffusion in olivines, 

are more typical of the diffusion constant associated with solid 

state growth of garnet (a possibility we believe to be less 

likely), then minimum gabbro-eclogite transformation 
temperatures of-'•600øC are a possibility. However, the usual 

occurrence of strongly zoned metamorphic garnets in nature 

[e.g., Graham and Ahrens, 1973] strongly suggests that diffu- 

sion in garnet occurs' very slowly at crustal temperatures. 

Recent studies of the reactivity and sintering of silicates 

[Burte and Nicholson, 1972; Cutler, 1969] have demonstraied 
that recrystalliz•tion rates in a parabolic growth (7)can be 

enhanced by the presence of water vapor at low partial pres- 

sures (< 1 atm). Although the rates seem to be controlled by 

bulk diffusion through silicate lattices, it appears that water 

vapor tends to react with the SiO4 = bonds in the manner 

O O O O 

I I I I 

O--Si•mSi• + H•.O --• O--S i• H •' OH--Si--O 
I I I I 

O O O O 

and effectively provide a broken bridge (•') in the lattice. 

According to Burte and Nicholson [ 1972], this type of reaction 

results in an effective O = vacancy production, which in turn 
will enhance cation bulk diffusion via interstitial sites in the 

silicate lattice. A detailed model for this effect has not yet been 

proposed, although a similar mechanism has been discussed by 

Greenwood [ 1963] in his study of the synthesis of anthophyllite. 

GRAIN INTERSTITIAL DIFFUSION 

In the preceding section we have demonstrated that under 

totally dry conditions in the relatively cool down-going slab or 

in the spreading suboceanic lithosphere, solid state diffusion 

processes appear to be too slow to bring about the gab- 
bro-eclogite transformation on the necessary time scale. If 
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Fig. 5. Solid state diffusion activation energy A = AG/R versus diffusion frequency parameter r0 = 62/KoDo for 

gabbro-eclogite reaction times of 105, lq 8, and 108 yr at various temperatures. Distance intervals corresponding to a given 
temperature indicate the approximate distance along the slip zone of a subducting slab at which that temperature is reached 
via frictional heating. Also shown are values of A and r0 for 0.1- and 1.0-cm grain sizes inferred from measurements of sell- 
diffusion in various minerals (Table 1). 

minute amounts of water are present, the rate of reaction may 

be speeded up via the formation of vacancies as a result of 
broken Si--O-- structural bridges or through a transport 

mechanism that we refer to as grain interstitial diffusion. In 

this latter process, ions involved in the gabbro-eclogite trans- 
formation migrate through a thin film of interstitial water 
vapor to sites of garnet formation, as depicted in Figure 6. 

It seems generally accepted that water is a minor constituent 

of the earth's crust [Ronov and ¾aroshevsky, 1969; Vinogradov, 

1967; Poldervaart, 1955], while studies of mantle-derived ultra- 
mafic nodules and rocks show that small amounts of 

phlogopite and amphibole are to be found in the upper mantle 

[Wyllie, 1971] and recently, still another water-bearing 

mineral, titanoclinohumite, has been identified as probably be- 

ing derived from the mantle [McGetchin et al., 1970]. Very 

recently, Giardini et al. [1974] have found biotite as a primary 
inclusion in diamond. The thermal regime calculations by Tur- 

cotte and Schubert [1973] demonstrate that the portion of 
island arc andesitic volcanism over a subduction zone cor- 

relates well with the achievement of the solidus temperature 

•1100øC in basaltic rocks containing small quantities of 

water. The work of Essene et al. [1970] on amphibole- 
containing basalts shows that if the water content is small, the 

eclogite stability remains similar to that of dry basalts over the 

range of pressures and temperatures studied in the dry 

systems. Wyllie [1970] has also noted that the presence of a 

small amount of water would probably not affect the phase 

relationships below the solidus. The effect of water vapor, pos- 
sibly with some dissolved COs or Ns, either in excess or in the 

undersaturated situation in vapor pressure equilibrium with 

the minerals serpentine [Kitahara et al., 1966], anthophyllite 

[Evans and Trommsdorf 1970], amphiboles lEsserie et al., 

1970; Oxburgh, 1964; Kushiro et al., 1967], or micas [Allen et 
al., 1972; Modreski and Boettcher, 1973], which can exist to 

successively greater depths down to at least 100 km, is ex- 

plored in the following section. 

It is assumed that small quantities of water exist as part of 

an interstitial fluid, the other components of which may be 

COs or Ns, and thus the HsO vapor pressure (PHso) may be less 
than the total pressure Pv. In general, the water will be above 

the 374øC and 221 bar critical point, at a pressure greater than 

(if it is in excess) or equal to the pressure of water in 
equilibrium with the existing minerals. The interstitial water is 

thus capable of transporting ions in solution. The effect of ex- 
cess water on the equilibrium for the greenschist-amphibolite- 

eclogite transformation has been investigated by Essene et al. 

[1970] and Allen et al. [1972]. If the rocks of the lithosphere are 

water-saturated (an assumption which the laboratory data 
from the extreme lowering of melting intervals argue against 

[Hill and Boettcher, 1970]), the equilibrium transformation of 

amphibolite to eclogite will occur at considerably higher pres- 

sure than in the undersaturated basalt- or gabbro-eclogite 

system (Figure 7). In the water-saturated situation, transfor- 

mation rate• (schist, amphibolite-eclogite) are quite rapid, as 
is shown below. 

According to the grain interstitial diffusion model, the gab- 

bro-eclogite (or, if saturated, the greenschist, amphi- 

bolite-eclogite) transformation rate could be limited either 
by the ease with which ions can dissolve in the inter- 

(Mg,Fe)SiO 3, CaAI2Si208 

(Mg,Fe)2SiO 4 .••œ • 

._++, Fe ++ 

Garnet '- r 
AI+++,H3SiO•, 

Fig. 6. Schematic of grain interstitial diffusion model for basalt- 
cclogitc reaction. Cations dissolve in water of film thickness 6f sur- 
rounding forsterite and anorthite grains of size I and diffuse to sites of 
garnet formation. 
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AOB approximate stability fields for quartz tholeiite and alkali olivine 
basalt [from Essene et al., 1970]. 

stitial water film or by their mobility in diffusion through the 

water. We consider each effect separately, first examining the 
effective diffusion constants if the pertinent ions needed to 

crystallize garnets were available in the interstitial fluid so- 

lution. Diffusion constants at ambient pressures and tem- 

peratures up to --, 100øC for cations such as Na +, K +, and 

Ca ++ are all of rather similar magnitude, varying from • 10 -• 

to 10 -4 cm2/s [Longworth, 1972]. Walton [1960] has in fact 
shown that in the crust the molecular components of rocks, 

including silica, have, in aqueous solution, diffusivities of the 
order of 10-3-10 -4 cm•'/s under a wide range of temperature 

and pressure. Were the ions required for the transformation of 

basalt to, eclogite, from a simple picture such as that shown in 
Figure 6, present in sufficient concentration in a film of fluid 
surrounding each grain, then straightforward application of 

(8), with D (conservatively) varying from 10 -4 to 10 -• cm•'/s, 

would yield time constants of only '•3-30 days for 1-cm 

grains. 

Under ordinary near-surface conditions, even when water 

participates in other silicate equilibrium reactions, the trans- 
formation rates are slow because the normal concentration of 

the necessary ions in the interstitial solution is far too low. An 

estimate of the concentration of ions participating in typical 

silicate reactions in a predominantly water interstitial fluid at 

standard conditions can be obtained by using the Garrels and 

Christ [1965] estimate of the standard free energy of the ion 

H3SiO4-, in aqueous solution, of-286.8 kcal/mol. Straight- 

forward application of the directly determined thermo- 
chemical data [Robie and Waldbaum, 1968] for solution and 

ionization of MgSiO3, CaAI2Si•.Os, and Mg•.SiO4 yields values 

of the Mg ++ and A1 +++ concentrations of--,1 X 10 -• mol/l 
and 2 x 10 -x3 mol/1, respectively. These values were calcu- 

lated assuming the œH of seawater. For neutral water the 
above estimates must be increased by factors of •4 and •25, 

respectively. The above concentration values imply unac- 
ceptably long reaction times. 

In contrast to near-surface conditions, in a water-saturated 

system at depth, eclogite forms above 19 + 7 kbar (Figure 7). 

At this pressure, Figure 13 demonstrates that ion solubility is 

sufficiently great that the amphibolite-eclogite transition will 
occur rapidly. 

Since ample evidence exists that some water-bearing 

minerals are present in virtually all mantle-derived rocks and 

since melting data for water-saturated basaltic compositions 

indicate that it is unlikely that the lithospheric rocks are fully 

water-saturated, it is important to consider the conditions in 

unsaturated rocks which are required to enhance the reaction 

rates associated with the gabbro-eclogite transformation. For 

water vapor to exist inside voids within minerals or along grain 

boundaries and yet not be in excess requires either that 
another fluid phase(s) be present, such that the partial pressure 

of the other phase(s) plus P.•o is equal to P•,, or that P.•o < P•- 
and that the rock be able to support kilobar-level stress 

differences over a grain size distance scale. Although it has 

long been believed that the small openings in samples of 
crustal and mantle rocks are a superficial effect, recent obser- 

vations of equant pores in crustal rocks [e.g., Brace et al., 

1972], in crustal pyroxene in eclogite [Champness et al., 1974], 
and olivine from diamond pipes [Green, 1972] demonstrate 

that small openings can in fact exist within deeply buried 
rocks. From the observations of openings within pyroxenes, 

Champness et al. [1974] suggest that in the crust, eclogites 
might crystallize at low temperature as a result of ion transport 
in a fluid phase. These authors carried out microprobe 

analyses for a trace of chlorine in these holes (possibly from 
cormate seawater) but found none. They suggested instead that 
where a melange of ocean floor material, including sediment, is 
subducted, sufficient quantities of N• may be trapped, such 
that 

Pf•u•a = P• + P. 2o + Pco•' ß ß -• P•- 

In this case even though the partial pressure of water is low, it 

may be sufficient to provide the high-diffusivity medium 
needed to produce the gabbro-eclogite transformation at low 
temperatures within geologically significant time scales. 

VAPOR PRESSURE OF HYDROUS MINERALS 

Of major concern in recent studies of the stability of 

hydrous minerals such as serpentine, chlorite, tremolite, talc, 
and phlogopite at high temperatures and pressures has been 
their dehydration, which can then give rise to partial melting in 
the upper mantle. Our concern in the present paper is the 
vapor pressure associated with the suboceanic basaltic 
lithosphere both below the ocean,floor and upon subduction 
into the mantle. Although it is likely that only a small percent- 

age of hydrous phases are present in most of an under- 

saturated lithosphere, the presence of these hydrous phases, 
even if only in trace quantities, will give rise to a nonzero H•.O 
vapor pressure if either another gaseous phase (e.g., CO•., N•) 
is present or the grains within the rock can support kilobar 
stress differences over distances comparable to the grain size. 

Thus within each grain of a hydrous mineral, a low but non- 

negligible P%o will be present at temperatures below the 
dehydration temperature by the very existence of the hydrous 

mineral. (The value of P.•o will only equal the Pt at the 
temperature and pressure associated with dehydration, if no 
other gases are present.) The water vapor pressures associated 
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Temper- 
ature, 

o K 

400 

500 

600 

700 

800 

TABLE 2. Vapor Pressure in Kilobars for Serpentine, MgaSi:O,(OH)4 

Total Pressure, kbar 

1 2.5 5 10 15 20 25 30 35 40 50 

0.41 4.86 10.11 15.75 21.68 

0.14 0.22 0.37 2.89 7.68 12.74 18.54 24.43 30.60 37.01 50.24* 
0.42 0.48 1.82 6.14 11.05 16.34 21.97 27.87 34.04 40.31' 
1.11' 2.11 4.02 8.39 13.32 18.59 24.18 30.01' 36..12' 

11.18' 

* Calculated vapor pressure exceeds total pressure, indicating H:O is stable. 

with the presence of serpentine, tremolite, and talc were cal- 

culated using the following reactions, which are taken to be 
typical for the spontaneous breakdown of each mineral.below 

its dehydration temperature: 

l/2MgaSi2Os(OH)4 • I/2MgSiOa + I/2Mg2SiO4 + H•.O(v) (9) 
serpentine enstatite forsterite 

Ca•M gs( Si80•)(O H )•. -• 
tremolite 

2CaMgSi•O8 + 3MgSiOa + SiOn. + H20(v) (10) 
diopside enstatite quartz 

MgaSi•O•0(OH)a-• 3MgSiOa + SiOa + HaO(v) (11) 
talc enstatite quartz 

These water vapor pressures are the osmotic equilibrium pres- 
sures of water associated with each of these minerals 

[Greenwoo& 1961]. In the actual assemblages involved in the 

gabbro-eclogite transition, higher values of P.•o may occur. 
The vapor pressure P. 2o, which we take to be the minimum 
value which can be associated with each of the above minerals, 

was numerically calculated using [Kern and Weisbrocl, 1967] 

AGv ø = iX Vv 8 dP + V•,o dP (12) 
bar bar 

Here AGr ø is the difference in molar free energy of the mineral 
between the pressures Pr and 1 bar at temperature T, A Vr 8 is 
the molar volume change of the solid phases between the pres- 

sures P and 1 bar at temperature T, and VH:O is the molar 
specific volume of water at pressure P and temperature T. 
Although A Vr 8 is also a function of pressure, we have as- 
sumed the value at standard conditions [Robie and Waldbaum, 

1968], largely because the equations of state of the hydrous 
minerals are so poorly known. 

The results given in Tables 2, 3, and 4 and Figures 8-10 were 

obtained by using the high-temperature free energy data of 
Robie and Waldbaum [1968] with the exception of serpentine, 

for which we used the data of King et al. [1967]. The value of 
the second integral was obtained from the tabulation of 

Helgeson and Kirkham [1974] below 10 kbar and by numerical 
integration using the equation of state tabulation for water 

given by Kennedy and Holser [1966] above 10 kbar. 
It should be noted that in Figures 8-10 each line of constant 

vapor pressure intersects the dehydration reaction boundary at 
the point where P,•o = P•. Similar calculations for the 
reactions forsterite d- talc -• enstatite d- water and analcite -• 

albite d- nepheline d- water at low pressures have been carried 
out by Yoder [1955] and Greenwood [1961]. Greenwood [1961] 
has derived a series of formulas which give the slope 

(•9P/c•T)v•:o and the curvature (•9:P/c•T:)v•:o of the lines of 
constant P•2o at the point of intersection with the dehydration 
curve. The calculated dehydration boundary for reaction (9) 
(Figure 8) is virtually indistinguishable below 20 kbar from 
that for the reaction 

MgaSi:O,(OH)• + Mg(OH):-• 2Mg:SiO• + H:O (13) 
serpentine brucite forsterite 

observed by Kitahara et al. [1966] also shown in the figure. 
Moreover, Evans and Trommsdorf [1972] have demonstrated 

that the conditions for the hydration of dunites are relatively 
insensitive to iron content. In the case of tremolite, the 

calculated dehydration boundary lies at •100øC higher 
temperatures but has a shape similar to .that computed earlier 
by Esserie et al. [1970] on the basis of estimated ther- 

modynamic properties for tremolite. As can be seen in Figure 
10, the calculated stability field of talc plus diopside relative to 
tremolite is displaced at 6-7 kbar higher pressure (based on the 
Robie and Waldbaum [1968] compilation) than that obtained 
by Esserie et al. [1970]. 

It should be noted that at temperatures below the dehydra- 
tion temperature of serpentine the vapor pressure associated 
with serpentine (and probably also, because of its structural 
similarity, chlorite) is considerably greater than that of 
tremolite (or talc). Comparison of Figures 9 and 10 or Tables 3 

TABLE 3. Vapor Pressure in Kilobars for Tremolite, Ca:Mg,[Si80•:](OH): 

Temper- 
ature, 

o K 

Total Pressure, kbar 

1 2.5 5 10 15 20 25 30 35 40 50 60 

400 

500 

600 

700 

800 

900 

1000 

1100 

0.16 

0.30 

0.40 

0.59 7.57 15.45 

0.31 3.85 10.98 18.87 

0.02 0.28 1.03 7.15 14.38 22.33 

0.07 0.26 0.44 3.87 10.22 17.57 25.51 

0.03 0.11 0.26 0.41 1.74 6.96 13.61 21.07 29.10 

0.20 0.27 0.40 1.69 4.54 10.28 17.44 25.13 33.40 

0.33 0.39 0.55 2.79 7.51 13.96 21.39 29.30 37.76 

0.43 0.48 1.74 5.23 10.52 17.54 25.03 33.09 41.58' 

36.40 

39.73 

42.85 

46.47 

51.50' 

57.41' 

55.76 

59.36 

62.36* 

66.26* 

* Calculated vapor pressure exceeds total pressure, indicating H:O is stable. 



392 AHRENS AND SCHUBERT: GABBRO-ECLOGITE REACTION RATE 

TABLE 4. Vapor Pressure in Kilobars for Talc, MgaSi401o(OH)2 

Temper- 
ature, 

o K 

Total Pressure, kbar 

1.0 2.5 5 10 15 20 25 30 35 40 50 60 

400 0.49 6.01 12.24 

500 0.06 0.40 4.03 9.74 16.00 29.72 

600 0.19 0.39 2.76 7.76 13.63 19.93 33.74 

700 0.02 0.10 0.25 0.40 1.60 6.14 11.57 17.55 23.95 37.73 

800 0.23 0.29 0.41 1.07 4.84 9.75 15.42 21.57 28.07 41.90 

900 0.34 0.38 0.43 0.92 3.84 8.22 13.63 19.59 22.93 32.62 46.94 

1000 0.46 0.49 0.87 3.03 6.84 11.76 17.59 23.76 30.24 37.13 52.40* 

1100 1.78' 2.41 3.81 7.55 12.49 18.24 24.31 30.72* 

44.66 

48.59 

52.68 

57.3O 

63.57* 

* Calculated vapor pressure exceeds total pressure, indicating H20 is stable. 

and 4 demonstrates that the vapor pressures associated with 

talc and tremolite are similar. The considerably higher vapor 
pressure associated with serpentine or chlorite implies, as Fry 

and Fyfe I1969] have pointed out, that if eclogite forms in com- 

munication with other minerals, serpentine or chlorite general- 

ly would be expected to dehydrate in favor of forming 
amphibole (tremolite or talc if sufficient Ca exists in the 

system) at high pressures. Although some tremolite is formed 
associated with serpentine in the metamorphosed ultramafic 

rocks of the Alps, studies of the mineral assemblages present 

[Evans and Trommsdorf, 1970] demonstrate that talc and 

serpentine are not found in the same rocks. Although we are 

only considering three minerals, we would generally expect 

that if both olivine and pyroxene are present, a water-deficient 
system will tend to form amphibole at the expense of serpen- 

tine. Upon subduction at relatively low temperature, talc will 

form at pressures above •,25-30 kbar at the expense of serpen- 

t i i ! i i i I 

48 

40 lEO 

ß 

o. 24 

o 

IOO E 

60 • 

4O 

I 

I 20 
I 

I 

i 

I 

• • 0 0 400 600 800 I000 
Temperofure, øK 

Fig. 8. Vapor pressure of H•O associated with pure serpentine for 
spontaneous dehydration, according to reaction (9), as a function of 
temperature and total pressure. Possible thermodynamic paths for the 
top of the subducting lithosphere are shown as lines of constant r andf 
[Turcotte and Schubert, 1973]. 

tine and probably chlorite. Thus we expect chlorite or serpen- 

tine to control the minimum P.•.o only in the case of silica- 
poor rocks containing little pyroxene. 

We conclude this section by estimating the reaction time for 

the interstitial diffusion mechanism, given the concentration of 

ionic species in the water containing fluid film. In our model, 

ionic transport takes place within a thin film of fluid (thickness 

•r) within and around each crystal grain along a length l, as 
shown in Figure 6. If pore fluid occupies a very small fraction 
of the rock volume, as is assumed here, the mass fraction of 

fluid mr is given by 

m•, = G •f pf (14) 
I pr 

where G is a geometrical factor, equal to 3 in the case of cube- 

shaped crystals, and Pr and pr are the mass densities of the fluid 

and rock, respectively. Assuming that G = 3, •i r = 10-5-10 -6 

cm, I = 1 cm, P r • 1 g/cm 3, and pr • 3 g/cm 3, we find rn r = 

10-5-10 -6 . This value of mr is certainly an overestimate, as it is 

unlikely that continuous fluid films surround every min,eral 
grain. We feel that •i r = 10 -6 cm is probably a lower bound to 
film thickness, as this is • 100 interatomic spacings, and hence 
the fluid in any thinner film will no longer have the intrifisic 
transport properties of the bulk fluid. Thus a grain interstitial 
diffusion mechanism for the formation of eclogite from basalt 

or gabbro involves only a very small quantity of water, much 

less than that required to saturate the system. 

The.time t required to transport S moles of a solute a dis- 

tance I through a tube of cross-sectional area q is [Jost, 1960] 

t = Sl/DqCo (15) 

where Co is the concentration of the diffusing species at the dis- 
solving end of the tube and D is the diffusion constant, as- 

sumed independent of concentration. We consider (15) as only 

an approximate relation since the fluid is undoubtedly dissolv- 
ing ions such as Mg ++, Fe ++, A1 +++, and Ca ++ with coor- 

dinated water molecules everywhere around the crystal. With 

q = l•i r, (15) becomes t = S/(DCdir). For complete transfor- 

mation of 1 cm a of basalt or gabbro to eclogite, S = 0.02 mol 

(S ccp). If some transportation under standard conditions is 

possible, the time scale t may be calculated from (15) by using 
D = l0 -4 cmVs, br = 10-6-10-5 cm, Co = 10 -s mol/cm a, and 

S = 0.02 tool. These values yield about 10•-10 • yr, which im- 

plies essentially no reaction on a tectonically meaningful time 

scale in agreement with geological observation. As will be dis- 

cussed in the following section, the time scale can be markedly 

reduced, as Co is increased many orders of magnitude by in- 
creases in both pressure and temperature. We assume that the 

time required to dissolve the cations and establish the con- 
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centration Co in the interstitial fluid is small, i.e., this time is 

not the rate-limiting step in the gabbro-eclogite reaction. 

EFFECT OF PRESSURE AND TEMPERATURE ON 

SOLUBILITY AND DIFFUSION OF IONS 

To estimate the effect of pressure p and temperature T on 

the diffusion constant D of ions in aqueous solution, we have 

assumed, following Jost [1960] and Walton [1960], that D 

could be inferred from the viscosity of the fluid r/ using the 
Stokes-Einstein equation 

R T 
D -- (16) 

6•r NAr• • 

where R is the gas constant, NA is Avogadro's number, and r• 

is the effective radius of the diffusing ion. The use of (16) is, of 

course, necessitated by the lack of direct experimental 

measurement of D at high pressures and temperatures, 

whereas data on the viscosity of water are available at pres- 

sures up to I k bar over a wide range of temperature and even 
to 10 kbar at temperatures below 100øC. We assume that the 

concentration of the diffusing ions is sufficiently low not to 
affect the properties of the fluid. 

The dependence of viscosity on temperature and pressure is 
shown in Figure 11. The solid portions of the curves are based 

on experimental data, while the dashed parts are extrapola- 
tions to higher pressures. Viscosity data for compressed water 

and superheated steam in the temperature range 0ø-700øC and 

for pressures between 1 and 800 bars are tabulated by Kestin 
and Dipippo [1972]. Measurements of viscosity of water for 
temperatures up to 900øC and pressures to I kbar have been 

reported by Nagashima and Tanishita [1969]. Dudziak and 

Franck [1966] have measured water viscosities for pressures as 
high as 3.5 kbar and temperatures up to 560øC. Finally, Bert 

and Cappi [1965] presented viscosity values for compressed li- 
quid at temperatures up to 100øC and pressures to 10 kbar. All 

these data have been included in Figure 11. The compressed li- 

quid viscosities (for T = 100 ø, 200 ø, and 300øC in Figure 11) 
were extrapolated to higher pressures by noting that the 

measured viscosity values for the temperatures of 100 ø, 200 ø, 

and 300øC showed an essentially linear dependence on pres- 

sure. This linear dependence was assumed to apply at high6r 
pressure for the viscosity curves at temperatures of 100 ø, 200 ø, 

and 300øC. For supercritical steam (temperatures 400ø-900øC 

in Figure 11), the viscosities were extrapolated to high pressure 
by assuming the validity of the correlation given by Kestin and 

Dipippo [1972]. This correlation is strictly applicable only for 
375øC < T < 700øC and 1 bar < p < 800 bars. Use of the cor- 

relation required knowledge of the density of supercritical 
steam at the relevant pressures and temperatures [Kennedy, 

1950; Rice and Walsh, 1957; Kennedy and Keeler, 1972]. 

Walton [1960] has noted that better agreement with ex- 

perimental results is obtained if the 6•r in (16) is replaced by 
4•r. With this change, (16) may be rewritten as 

Drt = (1.1 X 10 -•7 erg/øK)T/;i (17) 

Figure 12 shows the product Dr• obtained from (17) and the 

data of Figure 1 1 as a function of pressure with temperature as 
a parameter. This is a useful intermediate step since the diffu- 

sion coefficient for different ions is then readily obtainable. 
Since r• is of the order of an angstrom unit, the diffusion coeffi- 

cients of various cations will vary between about 10 -s and 10 -4 
cm2?s over a wide range of geologic conditions, a conclusion 
already reached by Walton [1960]. As can be seen from Figure 

12, the diffusion constant characteristic of supercritical water 
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Fig. 9. Vapor pressure of H:O associated with pure tremolite for 
spontaneous dehydration, according to reaction (10), as a function of 
temperature and total pressure. Possible thermodynamic paths for the 
top of the subducting lithosphere are shown as lines of constant r andf 
[Turcotte and Schubert, 1973]. 
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tion of pressure p with temperature T as a parameter. Extrapolations to higher pressures are indicated by dashed parts ot 
the curves. Data were obtained from Kestin and Dipippo [1972], Nagashima and Tanishita [1969], Dudziak and Franck 
[1966], and Beet and Cappi [1965]. 

above 400øC may vary even less than an order of magnitude, 
from a depth of perhaps 3 km to several hundred kilometers in 

the mantle. Effective ionic radii for cations in hydrothermal 

solution are typically in the ,range 2/• for Na + to 44.5 ,& for 
Al 8+ [Garrels and Christ, 1965]. 

In contrast to the effective diffusion constant, although per- 
tinent data are less abundant, the concentration of the diffu- 

sing species in supercritical water is strongly dependent on pres- 

sure and to a lesser degree on temperature. This effect, which 

strongly controls grain interstitial diffusion and hence trans- 

formation of gabbro to eclogite in the lower crust and upper 

mantle, has not been previously recognized. The data of 

Morey and Hesselgesser [1951] and Kennedy et al. [1962] for 
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FiB. 12. The product of diffusio• constant D and iodc radius r• 
for ions diffusi•8 throush compressed liquid and superheated stgam as 
a fu•ctio• of pressure at various tempgraturgs. The dgpendgnce of Dr½ 
on tgmpgrature and pressure has bggn dgtgrmingd from th½ Stokgs- 
Ei•st½i• rdatio• •tw½½• Dr½ and viscosity and the dependence of 
viscosity on temperature and pressure (Fisur½ 11). 

the amount of the equivalent oxide dissolved in supercritical 

water are summarized in Figure 13. These data should repre- 
sent an upper bound to the ion concentration (we have not at- 

tempted to calculate the appropriate aqueous dissociation 

reactions, although in principle it is possible to do so 
[Helgeson and Kirkham, 1974]). It can be seen that silica, either 

from SiO: crystal or from feldspar or pyroxene, is about an 
order of magnitude more soluble than the other oxides. The 

single datum for the solubility of Al:O8 (corundum) suggests 

that this oxide is less soluble in pure form than when the 

source is a feldspar, probably. because of the lack of highly 
ionic readily soluble associated cations. When extrapolated to 

1 bar, these data are not inconsistent with the very low 

solubilities under standard conditions inferred in the previous 

section. The data of Figure 13 indicate a negligible dependence 

of solubility on temperature; they also suggest a power law 

dependence of solubility on pressure. The relation 

Co(mol/l) = 2.38 X lO-'•(p(bars)) •'7 (18) 

should be approximately valid for the concentration of ions in 

equilibrium with feldspars and pyroxenes (and presumably 

also olivine) in the 1-30 kbar and 300ø-1000øC range. 

Finally, the gabbro-eclogite reaction time as a function of 

temperature and pressure, based on the grain interstitial diffu- 

sion model, can be calculated from (15), (17), (18), and Figure 

11 with q = l•, S = 0.02 mol, bf = 10 -5 and 10 -6 cm, and r• = 

0.5/k. Figure 14 shows the resultant partial pressure of water 
required to achieve transformation as a function of reaction 

time. The H:O partial pressures accompanying traces of 
various hydrous minerals contained in or associated with 

basalts and gabbros, which were calculated in the preceding 
section, are applied to the reaction rate problem in a later sec- 
tion. 

EFFECT OF COg ON SOLUBILITY AND 

PHASE EQUILIBRIA 

In this section we summarize the available data on the 

solubility of various cations in high pressure and high 
temperature H:O-CO• mixtures and on the influence of CO•. 
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Fig. 13. Measured values of the solubility of a number of minerals in superheated steam at various pressures and 
temperatures. The solubility is strongly pressure-dependent and relatively insensitive to temperature. Data are from Morey 
and Hesselgesser [1951] and Kennedy et al. [1962]. 

on different mineral system phase equilibria. Table 5, from 

Morey [1957], shows that the addition of a small amount of 

CO•. to superheated steam at 500øC and 1 kbar significantly 

increases the solubility of iron and tin oxides and CaCO3 while 

it decreases the solubility of quartz. Burnham [1967] reported 

on the effects of 2 and 5 wt % CO, solutions on the composition 

of the aqueous phase in equilibrium with granite at 650øC and 

6.0 kbar. The total solute content was considerably reduced 

below that in distilled water at the same temperature and pres- 

sure; the reduction in solute content was proportional to the 

percentage of CO2. For the 5% CO, mixture the ratio of the 

concentration of Si to the concentration of Si in the pure 

aqueous phase was 0.55. A similar concentration reduction 
ratio for AI was 0.49, for K it was 0.28, and for Na it was 0.25. 

Calcium content in the 5% CO, mixture as compared with that 

in the pure H,O phase was reduced even more than the Na 

content. Burnham [1967] pointed out that the effects of CO, on 

the solubilities of the alkalies K and Na as compared with the 
solubilities of Si and AI were consistent with the element dis- 

tributions in contact metasomatic aureoles. 

$hettel [1973] has published the most complete information 

on the solubility of quartz in H,O-CO, mixtures at 5 kbar and 

500ø-900øC. Decreasing the fugacity of H,O by dilution with 
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Fig. 14. Time scales for the gabbro-eclogite transition as a func- 

tion of ?.,.o according to the grain interstitial diffusion model. 
Equation (15), with values of D = 10-' cm•'/s, $ = 0.02 mol, and Co 
given by (18), is used to construct the diagram. 

CO, exponentially decreases the Si solubility, a result of the 

value of the hydration number n in the reaction' SiO, + nH,O 
-• SiOn.. nH•.O. Values of n are 4.9, 4.4, and 4.5 at 

temperatures of 500 ø, 700 ø, and 900øC, respectively. At 700øC 

the solubility of SiO, is 2.35 wt % for pure H,O, 0.5 wt % for 

XH20 = 0.75, and 0.1 wt % for ':•][rH20 = 0.5 [Shettel, 1973]. 
The compositions of fluid phase solutes in a basalt-water- 

carbon dioxide system consisting of 50 wt % of 1921 Kilauea 

basalt, 16% H•.O, and 34% CO•. have been given by Holloway 

[1971] for temperatures of 800 ø, 900 ø, 1000 ø, and 1100øC. 
The total solute content was small, ranging from 0.5 to 2 wt %, 

the solute content tending to be proportional to fluid density 

and thus tending to decrease with increasing temperature and 

to increase with increasing pressure. SiO,, AI,O3, and MgO 
constituted most of the solute, other oxides such as CaO, 

Na,O, and TiO, also being present. 

In addition to the influence of CO, on mineral solubility in 

superheated steam, the effect of CO, on the phase equilibria of 

minerals is clearly an important one for our study of the 

basalt-eclogite reaction. Hill and Boettcher [1970] have deter- 
mined the solidus curves for basalt-H,O and basalt-H,O-CO•. 

mixtures at pressures up to 30 kbar (Figure 15). The basalt- 
H,O system contained 15% H,O by weight, while the mixture 
with CO, had 50 mol % each of CO, and H,O. Below 15 kbar 

the presence of CO, raises the solidus temperature as much as 

100øC, while above this pressure the influence of CO•. on 

solidus temperature is insignificant. Hill and Boettcher [1970] 

also demonstrated that plagioclase is stabilized at high pres- 

sure in the presence of CO,. Above about 10 kbar, amphibole 

stability is also increased in the presence of CO, as a result of 

the reduction in H,O activity with the addition of CO•.. Hol- 

loway and Burnham [1972] have also investigated the solidus 

and upper stabilities of plagioclase and amphibole in a basalt- 

H•.O-CO•. system containing about 36 wt % H•.O and 64 wt % 

CO, in the fluid phase at pressures of 2, 5, and 8 kbar and 

temperatures between 800 ø and 1100øC. In comparison with 

the properties of a basalt-H,O mixture, it was found that the 

TABLE 5. Solubilities in Parts per Million in Superheated Steam 
With About 7% CO: at 500øC and 1 Kilobar [After Morey, 1957] 

Without CO: With CO: 

CaCO3 120 940 

Fe:O3 80 230 
NiO 20 43 

SnO: 2 50 

Quartz 26,000 19,000 
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Fig. 15. Effect of CO: on approximate phase diagram of vapor 
saturated basalt-water-carbon dioxide compositions [Hill and Boett- 
cher, 1970]. 

solidus temperature and upper stability temperature of 
plagioclase were increased by about 100øC and the decomposi- 
tion temperature of amphibole was increased by about 60øC. 

For a peridotite (SiO: wt % 43.7-45.7, Alo. O3 wt % 1.6-8.2, 

CaO wt % 0.7-8.1)-Ho.O-COo. system, Mysen and Boettcher 

[1973] have studied the stability of amphibole at pressures 

from 7.5 to 30 kbar and for X.:o (mole fraction) between 0.25 
and 1.0. Amphibole was stable up to temperatures of 1080 ø, 

1100 ø, 950 ø, and 760øC at pressures of 7.5, 13, 23.5, and 20 

kbar, respectively. Changing X.o. o from 1.0 to 0.25 did not 
significantly affect the amphibole stability. 

We conclude from the foregoing that although the presence 

of COo. modifies the phase diagrams and affects the ion 

solubility in superheated steam, the major role of COo. is to 

provide an additional fluid partial pressure so that water vapor 
may be present in undersaturated rock interstices. 

APPLICATION OF THE GRAIN INTERSTITIAL 

DIFFUSION MODEL TO SUBDUCTION 

We assume in the following that basaltic composition rocks 

of the uppermost lithosphere comprising the basement rock of 

the ocean floor are subducted and are in the process exposed to 

a thermodynamic path similar to the paths computed by Tur- 

cotte and Schubert [1973] and Toksbz et al. [1971]. The ques- 

tion as to how deep basaltic-type composition rocks extend 

into the mantle portion of the lithosphere, i.e., depths greater 
than --• 12 kin, in the form of granulite, or eclogite, has been the 

subject of several recent studies [Forsyth and Press, 1971; lto, 
1974] and remains to be definitively settled. However, there 

appears to be little doubt that the uppermost igneous rocks are 
basaltic. If, as we believe is likely, these rocks are under- 

saturated with respect to Ho.O, we can apply the Ho.O vapor 

pressure calculation for serpentine (assuming a similarity to 

chlorite), tremolite, and talc to give lower bounds on the time 

scale for the gabbro-eclogite transformation. In general, the 

presence of other major phases, and possibly extra but not ex- 

cess water, will only tend to increase the vapor pressure and 

hence give faster reaction times. By only considering the above 

three minerals we are tacitly assuming that the system contains 

sufficient water to have formed all the possible very low vapor 
pressure minerals such as phlogopite. We suspect that the 

breakdown reactions of such minerals as phlogopite and pos- 

sibly titanoclinohumite will buffer the Ho.O partial pressure at 
temperatures greater than -• 1100øC and pressures of -• 100 

kbar, probably below regions in the subducting slab where 

both the gabbro-eclogite transition and possibly partial 
melting [Turcotte and Schubert, 1973] are occurring. 

For rocks which are predominantly composed of olivine and 
plagioclase, with some chlorite representing the hydrous 

phase, Figure 8 demonstrates that upon subduction the 

minimum Ho.O vapor pressure will be quite high. Along the 

constant shear r and constant coefficient of friction f curves, 

vapor pressures of 1000 bars will be induced at depths of only 

15 and 30 km, respectively. For 10 -5- and 10-6-cm-thick films 

on the grains, vapor phase assisted diffusion can produce the 
gabbro-eclogite phase change on a time scale of-•2 and •20 

m.y., respectively. Vapor pressures of 2 kbar corresponding to 
reaction times of 300,000 yr to 3 m.y. are achieved at depths of 
-• 15 and -• 35 km for constant shear stress and constant fric- 

tion coefficient models, respectively. Hence in a predomi- 
nantly olivine-rich assemblage containing some water at 

temperatures below the high-pressure dehydration tem- 
perature of serpentine or chlorite, -•450øC (•775øK), the 
gabbro-eclogite transition, at least as far as the olivine compo- 
nents are concerned, will occur readily. At temperatures above 
the serpentine dehydration temperature, even more water will 
be available, and the system may behave like the saturated 
system (Figure 7) if sufficient pyroxenes are unavailable to 

form amphiboles. For the more usual pyroxene-rich as- 
semblages, serpentine or chlorite dehydrates in favor of 

amphibole, and the vapor pressure in the rock will probably be 
controlled by amphibole (here modeled by tremolite, if suffi- 

cient Ca ++ is present). In this case tremolite, or some similar 

mineral, controls the minimum vapor pressure until it breaks 

down in favor of such minerals as talc and diopside. (The 

vapor pressure in equilibrium with talc is virtually the same as 
that in equilibrium with tremolite.) In this case, 1000 bars'of 

water pressure is inferred to occur at depths of about 70 and 50 

km, respectively, along the constant friction and constant 

shear stress paths. We recall that the characteristic reaction 

times are 2 and 20 m.y., respectively, for films 10 -5 and 10 -6 
cm thick. Again as in the' case of serpentine- or chlorite- 

controlled Ps:o, these total pressures are well within the 
stability field of eclogite in a 'dry' system; however, the pres- 
sures required are comparable to the 15-20 kbar required to 
produce eclogite from a garnet amphibolite in a totally 
saturated system. 

Approximate contours of constant reaction time for the up- 
per 200 km of the mantle in the region of a descending slab are 
shown in Figure 16 for serpentine and tremolite, or talc, 

buffered Ho.O vapor pressures. The temperature distribution 
given in Figure 16 is based on the calculations of Turcotte and 

Schubert [1973] and Schubert et al. [1974] for an angle of dip of 
45 ø and a velocity of the plate approaching the trench equal to 
8 cm/yr. Frictional heating on the upper surface of the 
descending slab raises the temperature along the slip zone until 
an assumed melt temperature of 1000øC is reached. The shear 

stress heating occurs under a constant coefficient of friction f 
= 0.054. The volcanic line is located directly above the point 
on the slip zone where melting first occurs. Behind the volcanic 

line beneath the region of anomalously high heat flow the 
temperature on the slip zone is buffered at the melt 
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Fig. 16. Approximate contours of constant reaction time for the gabbro-eclogite phase change in a thermal model 
[Turcotte and Schubert, 1973; Schubert et al., 1974] of the downgoing slab and the surrounding mantle with H•.O partial 
pressure buffered by (a) serpentine and (b) talc or tremolite. 

temperature, which increases with pressure. The dashed 

isotherms above the descending slab in this region are only es- 

timates of the temperature, since processes such as magma 
transport of heat may significantly influence the thermal struc- 

ture. The continental geotherm is from Froideoaux and 

Schubert [1975], and the oceanic geotherm is from Turcotte 
and Oxburgh [1969]. 

Since the temperatures and pressures in the model of Figure 

16 are completely known, the H:O vapor partial pressure at 

any point in the mantle can be determined from Figure 8 for a 

serpentine- or chlorite-buffered system and from Figures 9 or 

10 for a tremolite- or talc-controlled H:O vapor pressure. For 
pressures and temperatures sufficiently high for dehydration of 

any of these minerals, we assume that P.•o = Ptot,• is the 
lithostatic pressure. Figure 14, with an assumed film thickness 

of 10 -• cm then yields the reaction times shown approximately 
by the hatched contours of Figure 16. In the serpentine- or 

chlorite-buffered situation for a gabbroic oceanic crust the 

grain interstitial model predicts change to eclogite at depths of 
around 30 km. In contrast, a depth of about 70 km is required 

for transformation of the oceanic gabbroic crust to eclogite in 
the talc- or tremolite-buffered system. If basalt or gabbro ex- 

ists in the suboceanic lithosphere beneath the crust, it will 

transform to eclogite at depths indicated by the reaction time 
contours of Figure 16 according to our diffusion model. 

The net gravitational body force on the descending slab is an 

important part of the driving force for plate motions [McKen- 

zie, 1969]. Schubert and Turcotte [ 1971] and Griggs [ 1972] have 

discussed the downward body forces due to thermal contrac- 

tion of the slab and the elevation of the olivine-spinel phase 
boundary; the force due to the olivine-spinel transition was es- 
timated to be about a third of that due to thermal contraction 

[Turcotte and $ch,ubert, 1971]. The gabbro-eclogite transition, 
even if confined only to the oceanic crust, also contributes im- 

portantly to the net downward body force on the slab. The 

downward body force per unit distance parallel to the trench 

and per unit depth, associated with the formation of eclogite, 

is Ao.g. (t•/sin 0), where AO is the density of eclogite minus the 

density of the surrounding mantle, t• is the crustal thickness, 

and 0 is the angle of dip. With AO = 3.5-3.3 g/cm •, t• = 5-10 

km, and 0 = 45 ø, we find this gabbro-eclogite phase change as- 

sociated body force per unit depth and trench length is about 

0.2 kbar. Schubert et al. [1974] find about 0.5 kbar for the 

body force 'density' associated with thermal contraction. If 

the oceanic crust transforms to eclogite at a depth of 50 km in 

the descending slab, then the total downward body force per 

unit length of trench due to an eclogite crust extending down 

to 400-km depth is about 0.7 X 10 • dyn/cm. This is to be 
compared with the total downward body force per unit length 

of trench of about 10 x• dyn/cm associated with the elevation 

of the 400-km olivine-spinel phase change in the descending 
slab, the downward body force of thermal contraction in the 

slab to a depth of 400 km of about 2 X 10 x• dyn/cm, and the 

upward body force associated with the hypothetical depres- 

sion of the 650-km spinel-oxide transition of approximately 

0.3 X 10 • dyn/cm [Schubert et al., 1974]. 

SUMMARY AND CONCLUSIONS 

Our major objectives have been to estimate the reaction rate 

of the gabbro-eclogite phase change and to delineate where the 

reaction may occur in the basalts and gabbros of the oceanic 

crust upon subduction beneath island arcs and in any initial 

gabbroic constituent of the upper •100 km of the oceanic 

lithosphere as it moves away from a ridge. In the case of 

transformation of the basaltic and gabbroic oceanic crust to 

eclogite upon subduction [Ringwood and Green, 1966; Schubert 

and Turcotte, 1972], times of the order of 10L10 • yr are of in- 

terest since these correspond to distances along the slab of 

• 10-100 km for typical subduction rates. For the transforma- 

tion of a possible gabbroic constituent of the oceanic 

lithosphere as it spreads from a ridge [Press, 1969; Forsyth and 

Press, 1971], the pertinent time scale is 10L10 s yr. The smaller 

value corresponds to the approximate time required to 

produce the increase in lithospheric seismic velocity with dis- 
tance from a spreading ridge, as observed at the •50 m.y. line 

in the North Atlantic [Hart and Press, 1973]. The 10 • yr value 
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is the approximate time required for an ocean basin transit of 

the moving suboceanic lithosphere. 

On the basis of the laboratory diffusion data for oxides and 

silicates, we have examined the range of possible reaction 

times for transformation of gabbro to eclogite via the 
mechanism of solid state volume diffusion of cations such as 

A1 +++, Fe ++, Mg ++, and Ca ++. We conclude that the effective 

multicomponent diffusion constant is probably within an 

order of magnitude of the slowest moving species, which 

within garnet we infer to be A1 +++. Our results imply that for- 

mation of 0.1-1 cm crystals of garnet by solid state diffusion 

below 600øC in the upper 100 km of the subducting or 

spreading oceanic lithosphere is impossible on the time scales 

of interest. Considerable indirect evidence demonstrating that 

solid state diffusion disequilibrium in garnets can be main- 

tained under metamorphic conditions for millions of years 

also stems from the typically gross variation in chemistry 
observed within a single garnet crystal from these environ- 

ments [Dudley, 1969; Graham and Ahrens, 1973]. 

Upon considering the implications of the presence of inter- 

stitial superheated steam in the suboceanic crust and 

lithosphere, even in a quantity as small as 10 -6 mass fraction, 

we conclude that eclogite can form relatively rapidly via the 
mechanism of interstitial diffusion. Evidence for the existence 

of water vapor in the suboceanic lithosphere stems from the 
chlorite- and amphibole-bearing igneous rocks which have 

been dredged from the ocean floor. Presumably a small frac- 

tion of the water is interstitial and probably at a lower 

pressure than that of the rock, being in vapor equilibrium 
with the minerals. 

In the interstitial diffusion process, we envision ions such as 
AI +++, Fe ++, Ca ++ , Mn ++, Cr +++, Fe +++ and HSiO4- 

produced in the interstitial fluid upon solution of such 

minerals as olivine, pyroxene, plagioclase, and spinel. Upon 

transport of these ions through a layer of superheated steam, 

which can probably be as thin as 10 •'/•, deposition at sites of 
garnet crystallization occurs. We infer that although SiOn. is 

more readily soluble in superheated steam than such oxides as 

Al•.Oa and M gO, its transport is less important, as garnet will 

probably form upon minor rearrangement of SiO4 = tetrahedra 
at sites of other minerals. 

For the interstitial diffusion process, the time constant for 

complete reaction of gabbro to eclogite will in general depend 

upon the grain size of the minerals in the rock, the partial pres- 
sure of water, the diffusion constant of ions in the fluid, and 

the concentration of the ions in solution at the point in the 

fluid where these go into solution. Although we have explicitly 

taken into account the (relatively minor) variations of viscosity 

and hence the diffusion constant with pressure and 

temperature, both the increase of solubility with pressure in 

superheated steam and the partial pressure of H20 which is 

available for ion transport turn out to be the two controlling 

parameters for interstitial diffusion rates. We infer from the 

limited pertinent solution data that once the temperature and 

pressure of the water triple point are achieved, temperature 

has only a minor effect on silicate solubility. The relatively 

large increase in the solubility of silicates with pressure could 

in principle be predicted on the basis of the marked increase 

with pressure in ionic electrical conductivity in water and D•.O 

[Hamann and Linton, 1966]. These authors have demonstrated 

that this arises from the large increase in the self-ionization of 

water with increasing pressure (in essence, the water acts as a 

strong acid at high pressure). 

Turcotte and Schubert [1973] have shown that the frictional 

heating of the subducting oceanic lithosphere at trenches 

would produce an increase of temperature AT in time At for 

material at the top of the oceanic crust given by 

AT = 2u(gAtDr) •/•' rlk (19) 

where K is the thermal diffusivity, k is the thermal conductivity, 

u is the velocity of the subducting plate, and r is the assumed 

constant shear stress acting along the top of the subducting 

crust. This increase of temperature with depth (or pressure) is 

shown in Figures 8-10 fc;r a subduction angle of 45 ø, u = 8 
cm/yr, K = 1.15 X 10 -•' cm•'/s, k = 10 -•' cal/cm s øK, and r = 

1.35 kbar. Also shown is the increase in temperature calculated 

under the assumption that the coefficient of friction along the 

shear zone is a constant (f = 0.054). By assuming that these 

temperature-pressure paths are typical of those to which 

oceanic lithosphere containing an uppermost gabbro composi- 

tion layer is exposed upon subduction, it is possible to estimate 

the time scale required to complete the gabbro-eclogite transi- 

tion for olivine- or pyroxene-rich rocks. By applying Figure 14 
to infer the time required for transformation, we conclude that 

for chlorite-rich rocks with 10-5-cm-thick grain boundaries, 

vapor phase assisted diffusion can occur on a time scale of •2 

m.y. at depths of only • 15 and • 30 km, respectively, for con- 

stant shear stress (r = 1.35 kbar) and constant friction coeffi- 

cient (f = 0.054) models. The temperatures of the reaction are 
extremely low for these models, only 150 ø and 300øC, respec- 

tively. For rocks which are pyroxene-rich, where the vapor 

pressure is buffered by the formation of amphibole, with 

tremolite (or talc) as a model, complete reaction of gabbro to 

eclogite, the phase diagram for the dry system being assumed, 
is calculated to occur at depths of 50 and 70 km for the two as- 

sumed thermodynamic paths. The reaction time is again •2 

m.y. The temperatures achieved upon complete reaction, 400 ø 
and 550øC, although higher than those of chlorite-buffered 

rocks, are still lower than the temperatures (>600øC) required 
of the solid state diffusion model. We note however that in the 

case of a tremolite-buffered H•.O system, the predicted depths 

for the gabbro-eclogite phase change imply pressures com- 

parable to the considerable range of transformation pressures 

observed for garnet amphibolite transforming to eclogite in 

the water-saturated basalts studied by Essene et al. [1970] and 

Allen et al. [1972]. The above ranges of temperature (•150 ø- 

550øC) are similar to the low crystallization temperatures in- 

ferred by Taylor and Coleman [1968] for the glaucophane- 
bearing rocks of the California Franciscan formation, which 

presumably formed upon subduction of the Mesozoic litho- 

sphere. 

Finally, we examine the possible time scales for the transfor- 

mation of initially hot basalt or gabbro to garnet granulite or 

eclogite within the oceanic lithosphere. From Figure 14 we in- 

fer that H•.O vapor pressures greater than •600 and •1500 

bars (depending on grain boundary thicknesses) are required 

to transform gabbro to eclogite on a time scale of • 10 m.y. 
Using the steady state pressure-temperature profile of Ito 

[1974], which essentially implies horizontal flow streamlines, 

we conclude from Figure 8 that such vapor pressures are 
always achieved at greater temperatures than those required 

for the dehydration of chlorite or serpentine. Hence we infer 

that the H•.O vapor pressure in the lower 'steady state oceanic' 

lithosphere (below 33 km) is probably buffered by equilibrium 

with amphibole. If the minimum vapor pressure associated 

with tremolite can be used as a measure of the in situ vapor 

pressure, our results imply that if a basaltic composition was 

originally crystallized upon cooling during sea floor spreading, 

garnet granulite and/or eclogite could form via the vapor as- 

sisted diffusion mechanism at depths of •39 :t: 3 km at 
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temperatures of •675øC in • 107 yr. Thus at greater depths the 

distribution of garnet will be controlled by the equilibrium 

phase diagram and not appreciably by reaction rates provided 

there are a small quantity of hydrous phases with vapor pres- 
sures similar to those of tremolite or talc. In this connection we 

note that the velocities of the S,, phase propagating through 

the oceanic lithosphere are definitely more consistent with a 

partially water-bearing rock [Hart and Press, 1973]. Also, 

comparison of the Hart and Press [1973] results with 

petrological models of Forsyth and Press [1971] shows better 

agreement of the observed velocities with a wet peridotite- 

eclogite mix model than with a pure wet peridotite model 

lithosphere. If an appreciable gabbroic fraction exists in the 

100-km-thick cooling lithosphere, we expect that increases in 
P,, and S,, velocity would reflect the gabbro-eclogite phase 

change predicted from the equilibrium phase diagram upon 

lithospheric cooling with distance from a ridge. This idea is, of 

course, compatible with the observation of Odegard and Sut- 

ton [1972] and Hart and Press [1973] of higher seismic 
velocities in the older lithosphere. 

Both the formation of eclogite from the oceanic crust, which 

should most certainly occur at relatively shallow depth upon 

subduction, and the possible presence of substantial eclogite in 

the upper •100 km of the oceanic lithosphere will produce 

substantial downward body forces on the slab, possibly con- 

trolling the subduction process. 
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