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ABSTRACT. This paper is an examination of techniques for obtaining Fourier
series-like expansions of finite-energy signals using so-called Gabor and wavelet
expansions. These expansions decompose a given signal into time and frequency
localized components. The theory of frames in Hilbert spaces is used as a criteria
for determining when such expansions are good representations of the signals. Some
results on the existence of Gabor and wavelet frames in the Hilbert space of all
finite-energy signals are presented.

0. Introduction.

The frequency analysis of signals by expanding them in terms of a fixed collection
of sinusoids, i.e., of representing the signal by means of its Fourier transform, has
long been a useful technique in mathematics and engineering. However, the fact
that the Fourier transform is not localized in time can make it an unnatural way
of representing a signal. For example, music can be thought of as a signal in which
the frequency content is changing over time since the combination of notes being
received by the ear is constantly changing. One would like to define a transform
which reflects this evolutionary nature of the spectrum of a signal. Gabor and
wavelet transforms are one means of accomplishing this. They are generalizations
of the ordinary Fourier transform defined for periodic functions in the sense that
they give Fourier series-like expansions of signals which display both the time and
frequency content of the signal.

Gabor-type expansions were introduced in the 1940s by D. Gabor [Gab]. He
proposed the representation of an arbitrary signal as a sum of translated and
modulated Gaussian functions. Gabor’s idea can be illustrated by a decades-old
technique known as the Short-time Fourier transform in which Fourier transforms
are taken of short consectuive segments of a given signal. This transform gives an
unambiguous representation of the signal and also gives a frequency picture of the
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signal locally in time.
To describe the Gabor transform, first fix a “windowing” function g. In order to

analyze an arbitrary signal f , one forms the product of f with a shifted version of g,
i.e., f(t) g(t− na) (where the bar indicates complex conjugation), then computes
the Fourier series coefficients of this product, i.e.,

cmn(f) =

∫

R

f(t) g(t− na) e−2πimbt dt,

for m, n ∈ Z, the set of integers. If g is concentrated at 0, then the coefficient
cmn(f) should to some extent give the intensity of the frequency mb at time na. It
is hoped that, as n and m range over all integers, the coefficients cmn(f) completely
determine f and that some sense can be made of the “Fourier series” representation

f(t) ∼
∑

m,n

cmn(f) g(t− na) e2πimbt.

The accuracy of the above representation is highly dependent on the function g
and the values of the parameters a and b.

The other type of expansion examined here is known as wavelet (or sometimes
affine wavelet) expansion. The transform associated with this type of expansion
was introduced by A. Grossman and J. Morlet as a way of analyzing seismic signals
[GGM]. There has been a great deal of recent work done using wavelets in this and
related areas. For example, they have been used in the analysis of images [Mal],
sound patterns [KMG], and in numerical matrix computation [BCR]. As with the
Gabor transforms, the point here is to represent a signal in a way which displays
both the time and frequency content of the signal. The way this is accomplished
in the wavelet case is as follows. Take a fixed function ϕ (known as the mother
wavelet) which is concentrated at 0 and consider the function an/2ϕ(ant). If a > 1
and n > 0 then this function is compressed in time and consequently expanded in
frequency. We form the coefficients cmn(f) by integrating f against translated
versions of this function, i.e.,

cmn(f) = an/2

∫

R

f(t) ϕ(ant − mb) dt.

For large n > 0, the coefficient cmn(f) gives an idea of the high-frequency content
of f in a small time neighborhood about a−nmb. As before, we want to make sense
of the representation

f(t) ∼
∑

m,n

cmn(f) an/2 ϕ(ant − mb).

The criterion we use to make sense of these representations comes from the
theory of frames in Hilbert spaces. In this we follow the paper [DGM], where this
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connection was first made. The general concept of frames was first introduced by
R. J. Duffin and A. C. Schaeffer in connection with non-harmonic Fourier series
[DS]. The Hilbert space under consideration here will be L2(R), the space of all
finite-energy signals on the real line R. All of the results presented here can be
generalized to more than one dimension. A theory in two dimensions is important
for image analysis in particular.

The focus of this paper is on presenting results on the existence of Gabor frames
and wavelet frames for the Hilbert space L2(R). The results here are due to others
and a more detailed and complete treatment can be found in the expository paper
[HW]. The first part is an introduction to Hilbert spaces and frames in Hilbert
spaces. In Section 2, the Zak transform is introduced and results on the existence
of Gabor frames for arbitrary g ∈ L2(R) and parameters a, b such that ab = 1 are
given. In this case, it turns out that necessary and sufficient conditions can be
given having to do with the Zak transform of g. In Section 3, we examine what can
be done for finer lattices, that is, when ab < 1. We present two existence theorems
giving simple conditions on g and a which guarantee that we have a frame for all
sufficiently small b > 0. Section 4 deals with wavelet frames and we show by means
of an example the sense in which the wavelet transform can be thought of as a time
and frequency localization operator. This example leads to an existence theorem
which appears in [DGM].

1. Frames in Hilbert Spaces.

In this section we will describe some of the basic properties of frames in Hilbert
spaces, showing that they are useful generalizations of orthonormal bases. By a
Hilbert space, we mean a vector space, H, which possesses an inner product
〈x, y〉 and which is complete in the norm ‖x‖ = 〈x, x〉1/2 (for the precise meaning
of these terms we refer the reader to [GG]).

The only Hilbert space we will actually use in this paper is L2(R), the space of
all complex-valued signals f defined on the real line, R, which have finite energy,
i.e., for which

‖f‖ =

(
∫

R

|f(t)|2 dt

)1/2

< ∞.

The inner product in this Hilbert space is

〈f, g〉 =

∫

R

f(t) g(t)dt,

where the bar indicates complex conjugation.
Frames were first introduced in 1952 by R. J. Duffin and A. C. Schaeffer in

the paper [DS], in connection with nonharmonic Fourier series. Their first use
in connection with wavelets was in 1986 in the paper [DGM] by I. Daubechies,
A. Grossmann, and Y. Meyer. The precise definition is as follows.
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Definition 1.1. A frame for a Hilbert space H is a set of vectors {xn} for which
there exist constants A, B > 0 such that

A‖x‖2 ≤
∑

n

|〈x, xn〉|2 ≤ B‖x‖2

for every x ∈ H.

It is well-known that given any Hilbert space H, there always exists an or-
thonormal basis, i.e., a set of vectors {en} such that

(1) 〈em, en〉 =

{

1, if m = n;

0, if m 6= n;
(2)

∑ |〈x, en〉|2 = ‖x‖2 for all x ∈ H.

Every orthonormal basis is clearly a frame with A = B = 1. However, frames
are much more general than orthonormal bases, for we do not place on them the
stringent requirement of orthonormality (condition (1)), and we relax the equality
in condition (2) to an inequality. A fundamental property of orthonormal bases is
that every element x ∈ H can be written in terms of the orthonormal basis in a
unique way as x =

∑

〈x, en〉en. We shall see that frames also give representations
of elements of the Hilbert space, although these representations need not be unique.
However, they are still computable and under good control.

As a trivial example of a frame which is not an orthonormal basis, consider the
following. Let {e1, e2, . . .} be an orthonormal basis for a Hilbert space H. This is
surely then a frame with bounds A = B = 1. However, the set

{e1/
√

2, e1/
√

2, e2/
√

2, e2/
√

2, . . .}

is also a frame with bounds A = B = 1, but is not an orthonormal basis.
In this paper we will be interested in constructing two specific types of frames

for the Hilbert space L2(R). In each case, the frame elements have a particu-
larly simple form, for they are functions which are generated from a single fixed
function (called the mother wavelet) by combinations of the basic operations of
translation, modulation, and dilation, defined by:

Translation: Taf(x) = f(x − a), for a ∈ R;
Modulation: Eaf(x) = e2πiaxf(x), for a ∈ R;
Dilation: Daf(x) = a−1/2f(x/a), for a > 0.

In Sections 2 and 3 we will construct frames of the form {gmn}m,n∈Z, where

gmn(t) = e2πimbtg(t − na) = EmbTnag(t)

for some fixed function g ∈ L2(R) and fixed parameters a, b > 0. Such frames will
be called Weyl-Heisenberg, or W-H, frames, and we say that g generates the
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frame. In Section 4 we discuss affine frames, which have the form {ϕmn}m,n∈Z,
where

ϕmn(t) = an/2ϕ(ant − mb) = DanTmbϕ(t)

for some fixed ϕ ∈ L2(R) and fixed a > 1, b > 0. We will discuss conditions on
g and ϕ under which we can be sure that Weyl-Heisenberg or affine frames will
exist. First, however, we list in the remainder of this section some properties of
general frames in Hilbert spaces. Most of these general results first appeared in
[DS]; expanded proofs and statements also appear in [HW].

Theorem 1.2. If {xn} is a frame then the following hold.

(1) Sx =
∑〈x, xn〉xn converges for all x ∈ H.

(2) S is an isomorphism of H onto itself, i.e., it is bijective and continuous,
and has a continuous inverse.

(3) x =
∑

〈x, S−1xn〉xn for all x ∈ H, but not necessarily uniquely.
(4) If x =

∑

cnxn for some scalars {cn} then

∑

n

|cn|2 =
∑

n

|〈x, S−1xn〉|2 +
∑

n

|cn − 〈x, S−1xn〉|2.

Condition (4) says that, while the representation x =
∑

〈x, S−1xn〉xn may not
be unique, it is in fact the “best” way to write x in terms of the {xn}.

The following theorem gives a necessary and sufficient condition for uniqueness
in frame representations.

Theorem 1.3. Given a frame {xn} in a Hilbert space H. Then the representations
x =

∑

〈x, S−1xn〉xn are unique for every x ∈ H if and only if there exists an
orthonormal basis {en} and an isomorphism U of H such that xn = Uen for all n.

2. Weyl-Heisenberg frames with lattice size 1.

In this section we consider the problem of determining when an arbitrary g ∈ L2(R)
will generate a W-H frame if a, b > 0 are such that ab = 1. Recall that a W-H
frame has the form {gmn}m,n∈Z, where gmn(t) = e2πimbtg(t−na). If one considers
the lattice of points {(mb, na)}m,n∈Z in the plane, then the value ab is the area
of the rectangles in the plane determined by this lattice. It can be shown that
the value ab = 1 is a “critical value” for W-H frames in that it is impossible to
construct a W-H frame if ab > 1. We will see in this section that it is possible
to construct W-H frames when ab = 1, and, moreover, such W-H frames have the
desirable feature that the frame representations are unique. Unfortunately, we will
also find that only “bad” functions g can generate W-H frames for this critical
value, bad in the sense of either not being smooth or not having good decay.
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A crucial tool in this analysis is what has come to be called the Zak transform.
This transform has been introduced independently by many groups in many dif-
ferent areas of pure and applied mathematics; in fact, a discrete version was used
by Gauss [S]. J. Zak investigated it for quantum mechanical reasons beginning in
the 1960s [Z]; recent work includes that of A. J. E. M. Janssen [J1; J2]. Proofs of
the theorems in this section can be found in [J1] and [HW].

Definition 2.1. The Zak transform of a function f ∈ L2(R) is (formally)

Zf(t, ω) = a1/2
∞
∑

k=−∞

f(ta + ka) e2πikω

for t, ω ∈ R, and where a > 0 is a fixed parameter.

The following facts about Z are easily proved.

Theorem 2.2.

(1) Zf is quasiperiodic, i.e.,

Zf(t + 1, ω) = e−2πiωZf(t, ω)

Zf(t, ω + 1) = Zf(t, ω)

Thus Zf is completely determined by its values on the unit rectangle Q =
[0, 1] × [0, 1].

(2) The series defining Zf converges in an L2-sense on Q. Z is an unitary
map of L2(R) onto L2(Q), i.e., it is a norm-preserving isomorphism.

(3) Zgmn = Emn · Zg, where

Emn(t, ω) = e2πimte2πinω.

Now, since Z is unitary, {gmn} will form a frame for L2(R) if and only if
{Zgmn} forms a frame for L2(Q). But from Theorem 2.2, Zgmn = Emn ·Zg, which,
combined with the fact that {Emn} is an orthonormal basis for L2(Q), places great
restrictions on the function Zg. In particular, we can prove the following theorem.

Theorem 2.3. Given g ∈ L2(R) and a, b > 0 with ab = 1. Then {gmn} forms a
frame if and only if there exist constants A, B such that

0 < A ≤ |Zg(t, ω)|2 ≤ B < ∞
for almost every (t, ω) ∈ Q.

This theorem implies that the frame representations provided by {gmn} will be
unique. For, if {gmn} is a frame then Zg will be essentially constant by Theorem
2.3, so the mapping U defined on L2(Q) by UF = F · Zg is an isomorphism of
L2(Q). Since UEmn = Emn ·Zg = Zgmn and {Emn} is an orthonormal basis, this
implies by Theorem 1.3 that the frame representations are unique. This, of course,
is a desirable feature. Unfortunately, we can show that only “bad” functions can
have Zak transforms which are essentially constant in the sense of Theorem 2.3.
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Theorem 2.4. If Zg is continuous, then it has a zero.

Proof. Assume Zg was continuous but nonvanishing. Then we can find (see [RR])
a continuous function ϕ(t, ω) such that

Zg(t, ω) = |Zg(t, ω)| eiϕ(t,ω)

for (t, ω) ∈ Q. Using the quasiperiodicity of Zg, it is not difficult to show that
there must then exist integers k, l such that

ϕ(t + 1, ω) = ϕ(t, ω) − 2πω + 2πk

ϕ(t, ω + 1) = ϕ(t, ω) + 2πl

for all (t, ω) ∈ Q. Hence,

0 = ϕ(0, 0) − ϕ(1, 0)

+ ϕ(1, 0)− ϕ(1, 1)

+ ϕ(1, 1)− ϕ(0, 1)

+ ϕ(0, 1)− ϕ(0, 0)

= −2π,

a contradiction. �

It is shown in [H1] that if g is continuous and satisfies the mild decay condition

∞
∑

k=−∞

ess sup
t∈[k,k+1]

|g(t)| < ∞,

then Zg must be continuous, and therefore g cannot generate a W-H frame. Thus,
for example, no smooth function with compact support, in fact, no Schwartz func-
tion, can generate a W-H frame at the critical value ab = 1. In particular, the

Gaussian function g(t) = e−πt2 will not generate a frame. A similar criteria is the
following.

Theorem 2.5. If g ∈ L2(R) and
(

∫

R

|t g(t)|2 dt

)(
∫

R

|γ ĝ(γ)|2 dγ

)

< ∞,

(where ĝ is the Fourier transform of g) then g cannot generate a W-H frame when
ab = 1.

See [Bal], [Bat], [L], [D3], [DJ], [BHW] for discussions and proofs of this theorem.

3. Existence of W-H frames for smaller lattices.

As mentioned in Section 2, the value ab = 1 is a critical value for W-H frames, in
that there are no W-H frames when ab > 1. Moreover, we showed that W-H frames
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for ab = 1 all have unique representations, but unfortunately can only exist when
g is either not smooth or has bad decay. In this section, we examine the effect of
taking a smaller lattice size, i.e., of considering ab < 1. It can be shown that the
frame representations in this case will not be unique, but on the other hand we will
see that very good functions g will generate W-H frames if we allow ab to be small.
Our goal is to prove existence theorems of the following form: given g ∈ L2(R)
(the mother wavelet) and a > 0, find conditions under which there is an interval
(0, b0) such that {gmn} is a W-H frame for L2(R) for every b ∈ (0, b0).

The following theorem, which is a straightforward generalization of a theorem
of Daubechies ([D3]), is a very general existence theorem and will be examined
carefully in subsequent pages.

Theorem 3.1. Let g ∈ L2(R) and a > 0 satisfy:

(3.1.1) there exist constants A, B > 0 such that for almost every x ∈ R we have

A ≤
∑

n

|g(x − na)|2 ≤ B,

(3.1.2) limb→0

∑

j 6=0 βa(j/b) = 0, where

βa(s) = ess sup
x∈R

∑

n

|g(x − na) g(x− s − na)|.

Then there exists b0 > 0 such that {gmn} is a frame for L2(R) for all b ∈ (0, b0).

A proof of this theorem can be found in [D3] and [HW]. Condition (3.1.1) is
necessary in order that {gmn} form a frame. This condition can be thought of as
an “overlapping” condition on the mother wavelet g. The existence of the lower
bound A means that the successive shifts of the function |g|2 cover the entire real
line and leave no “gaps”. If there were such a gap, then any function supported
in the gap would not be recognized by any of the wavelets gmn. That is, we could
find a non-zero function f such that 〈f, gmn〉 = 0 for all m and n, which would
imply that {gmn} was not a frame.

The existence of the bound B says that g must at least be bounded in order for
it to generate a frame. The bound B is required to have good control over the size
of the wavelet coefficients over all the functions f ∈ L2(R).

If g vanishes outside an interval I of length at most 1/b then βa(s) = 0 if
|s| ≥ 1/b. In this case, the form of the frame operator is particularly simple, in
fact,

Sf =
∑

m,n

〈f, gmn〉gmn(x) = f(x) · b−1
∑

n

|g(x− na)|2.

Thus, S is an isomorphism if and only if
∑

|g(x − na)|2 is bounded above and
below, i.e., if and only if (3.1.1) is satisfied. In this case, then, (3.1.1) is both
necessary and sufficient in order that {gmn} form a frame.

The condition (3.1.2) can be replaced by the simpler condition of the following
theorem. The proof can be found in [HW].



449

Theorem 3.2. Let g ∈ L2(R) and a > 0 satisfy condition (3.1.1) and also

∞
∑

n=−∞

ess sup
x∈[n,n+1)

|g(x)| < ∞. (3.2.1)

Then there exists b0 > 0 such that {gmn} is a frame for L2(R) for all b ∈ (0, b0).

Condition (3.2.1) means that the sequence of maximum values of the function |g|
on successive intervals is summable. There are many examples of such functions,

such as the Gaussian g(x) = e−πx2

, and more generally any function g for which
there exists a C > 0 and an ε > 0 such that

|g(x)| ≤ C(1 + |x|)−(1+ε)

for all x ∈ R.
Theorem 3.2 is proved by showing that a function which satisfies condition

(3.2.1) must also satisfy condition (3.1.2). This makes Theorem 3.2 less general
than Theorem 3.1. However, that (3.2.1) implies (3.1.2) shows that condition
(3.1.2) is a condition governed by the growth of the function g at ∞. Also, (3.2.1)
is a much easier condition to verify than (3.1.2).

4. Affine Systems.

In this section, we give a brief introduction to some aspects of wavelet decomposi-
tions of functions in L2(R). As in Sections 2 and 3, we will address the question of
the existence of such decompositions and give an indication of why such decompo-
sitions might be useful in signal processing or image analysis by giving a physical
interpretation to the expansion coefficients. As usual, the theory of frames in
Hilbert spaces will be used as a criterion to determine whether arbitrary signals
can be written down in terms of such a collection of functions.

Definition 4.1. Let ϕ ∈ L2(R) and a > 1, b > 0 be given. Then the (affine)
wavelet system generated by ϕ, a, and b is the set of functions {ϕmn}m,n∈Z,
where

ϕmn = an/2 ϕ(ant − mb).

We always assume that the function ϕ, the mother wavelet satisfies the con-
dition

∫

R

ϕ(t) dt = 0.

This means that ϕ (if it is real valued) has as much area above the axis as below,
which gives the function a resemblance to a “wave”. This is why the term “wavelet”
was coined.
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The functions making up an affine system all arise from a single function under
the action of a collection of norm-preserving transformations, namely, dilations and
translations. Recall that the dilation operator Dα is defined by

Dαf(t) = α1/2f(αt).

The factor α1/2 means that Dα preserves the L2-norm of the functions it acts upon,
that is,

∫

R

|Dαf(t)|2 dt =

∫

R

|f(t)|2 dt.

If α > 1 then Dα has the effect of concentrating a function at the origin by making
it narrower and (in order to perserve L2-norm) taller. If α < 1 then Dα spreads
the function out and decreases the amplitude. If we use the notation Tβ to denote
translation by β (as defined in Section 1), then we can write our affine system as

ϕmn = DanTmbϕ.

In order to give an interpretation of the physical meaning of the set of wavelet
coefficients of a particular signal f , let us consider, for a fixed n > 0, the collection
of coefficients

cmn(f) = 〈f, ϕmn〉 = an/2

∫

f(t) ϕ(ant − mb) dt.

The coefficients cmn(f) represent comparisons of f with successive shifts by a−nmb
of the function an/2ϕ(ant). Since n > 0 and a > 1 we have an > 1 and consequently
this dilated function is highly concentrated at 0. Intuitively, then, it should be the
case that these comparisons pick out the high frequency behavior or fine detail of
the signal f in a small time interval around a−nmb. This type of transform is often
referred to as a scaling transform because the coefficients cmn(f) where n is fixed,
pick out those features of f which exist on a time-scale of about a−nb, so that as n
becomes large, the coefficients for that n pick out smaller and smaller scale features
of the signal. Features on a scale much smaller than a−nb are not noticed because
they are averaged out when the coefficients are computed. Features on a scale
much larger than a−nb are not noticed because of the shape of the mother wavelet
ϕ, i.e., because

∫

ϕ = 0. That is, if f were nearly constant in a neighborhood of
a−nmb, then the value of the corresponding coefficient cmn(f) should be nearly
zero. In language suggestive of image processing, these scales are often referred to
as levels of resolution, and the wavelet transform as a multiresolution transform.
Thus it is accurate to say that the coefficients cmn(f) essentially pick out only the
high frequency behavior present in the signal f at the given resolution level which
was not present at the previous resolution level. For an image, one would say that
these coefficients contain only the additional detail in the signal f at this level of
resolution which was not detectable at the previous level of resolution.
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We shall give a more precise mathematical formulation of the above rather
vague statements by looking at the following simple example. Let ϕ be a square-
integrable function (let us for convenience assume integrability as well) such that
ϕ̂ vanishes outside an interval of the form [`, L], where `, L > 0, and in fact is
non-zero everywhere inside the interval. Since ϕ̂ is continuous, this means that ϕ̂
is bounded and that it is bounded below on subintervals of [`, L]. Let b > 0 be
such that b−1 = L− ` and a > 1 such that a < L/`. Let us consider the collection
{ϕmn} for this ϕ and the sum

∑

m,n

〈f, ϕmn〉ϕmn.

Notice that under the action of the Fourier transform, dilations on the time side
go into dilations in the opposite sense on the frequency side, that is,

(Dαϕ)∧(γ) = Dα−1 ϕ̂(γ).

Using this fact, the fact that translations on the time side go into modulations on
the frequency side, and Parseval’s formula, we can prove the following identity (for
details, see [HW]):

(

∑

m

〈f, ϕmn〉ϕmn

)∧

(γ) = f̂(γ) · b−1 |ϕ̂(a−nγ)|2.

Now, since ϕ̂ vanishes outside the interval [`, L], the function |ϕ̂(a−nγ)|2 is sup-
ported in [an`, anL]. Thus the sum

∑

m

〈f, ϕmn〉ϕmn

represents a band-filtered version of f where the band is [an`, anL]. If n > 0 then
these contain the high frequencies of f and if n < 0, the low frequencies of f .

It should be noted here that since ϕ̂ is supported on the right half-line in the
frequency domain, only positive frequencies of f will be measured by the wavelet
coefficients and hence such a collection of wavelets can never be a frame for L2(R).
There are several ways of handling this situation. If one is dealing with only real-
valued signals f (which is usually the case in practice) then it is enough to know

f̂ on the right (or left) half-line in order to completely determine f . Another
possibility is to consider an additional function ϕ̃ which has the same properties as
ϕ only transferred to the left half-line in the frequency domain. For this purpose, it
is enough to take ϕ̃(t) = ϕ(−t). Finally, it is possible to find a function ϕ whose
Fourier transform is supported on both halves of the frequency axis such that the
{ϕmn} are a frame for L2(R). We shall see that the wavelet orthonormal basis of
Y. Meyer is of this type. For details on such frame constructions see [HW].
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The above example also gives some insight into the notion of the frame operator
associated to a collection of wavelets as a “deblurring” operator. For fixed M and
ϕ as before, arguing as above gives

(

∑

n≤M

∑

m

〈f, ϕmn〉ϕmn

)∧

(γ) = f̂(γ) · b−1
∑

n≤M

|ϕ̂(a−nγ)|2.

The function
∑

n≤M |ϕ̂(a−nγ)|2 is supported in [0, aML] and in fact does not vanish
on this interval. Thus one can see that the above sum is a low-pass filtered or
“blurred” version of f . The effect of increasing M to infinity is to add more and
more of the high frequency characteristics (one might say “finer and finer details”)
of f into the sum until finally a complete reconstruction is achieved.

We are now able to state and prove an existence theorem for affine frames for
L2(R). This theorem appears in [DGM].

Theorem 4.2. Let ϕ ∈ L2(R) and a > 1, b > 0 satisfy

(4.2.1) ϕ̂ is supported in [`, L] where L > ` > 0, b−1 ≤ L − ` and 1 < a ≤ l/`,

(4.2.2) there exist constants A, B > 0 such that for almost every γ ∈ R̂ we have

A ≤
∑

n

|ϕ̂(anγ)|2 ≤ B.

Then {ϕmn, ϕ̃mn} is a frame for L2(R), where ϕ̃(t) = ϕ(−t).

Proof. The same type of Fourier series argument as before gives

∑

m,n

|〈f, ϕmn〉|2 =

∫ ∞

0

|f̂(γ)|2 b−1
∑

n

|ϕ̂(anγ)|2 dγ.

Therefore,
∑

m,n

|〈f, ϕmn〉|2 +
∑

m,n

|〈f, ϕ̃mn〉|2

=

∫ ∞

0

|f̂(γ)|2 b−1
∑

n

|ϕ̂(anγ)|2 dγ +

∫ 0

−∞

|f̂(γ)|2 b−1
∑

n

| ˆ̃ϕ(anγ)|2 dγ.

Hence,

A

∫ ∞

−∞

|f(t)|2 dt = A

∫ ∞

−∞

|f̂(γ)|2 dγ

≤
∑

m,n

|〈f, ϕmn〉|2 +
∑

m,n

|〈f, ϕ̃mn〉|2

≤ B

∫ ∞

−∞

|f̂(γ)|2 dγ

= B

∫ ∞

−∞

|f(t)|2 dt,
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from which the result follows. �

Finally, we state some results on the existence of affine systems which are actu-
ally orthonormal bases for L2(R). The differences in the theorems come from the
smoothness and decay properties that the mother wavelets can have. In each case
we take a = 2 and b = 1.

Theorem 4.3. The Haar system {D2nTmϕ} is an orthonormal basis of compactly
supported wavelets for L2(R). The Haar system is defined by taking a = 2, b = 1,
and

ϕ(t) =











1, if 0 ≤ t < 1/2,

−1, if 1/2 ≤ t < 1,

0, otherwise.

Theorem 4.4 (Meyer). There exists a function ϕ ∈ L2(R) such that

(1) ϕ̂ is infinitely differentiable and the support of ϕ̂ is contained in the compact
set [−4/3,−1/3]∪ [1/3, 4/3] so that in particular, ϕ is a Schwartz function,
that is, it and all of its derivatives are continuous and decay faster than
any polynomial.

(2)
∫

ϕ(t) tk dt = 0 for every integer k.
(3) {D2nTmϕ} is an orthonormal basis for L2(R).

Theorem 4.5 (Lemarie). Given N > 0, there is a function ϕ ∈ L2(R) such
that

(1) ϕ has N continuous derivatives, and

|ϕ(t)| ≤ C e−αt

for some C, α > 0.
(2)

∫

ϕ(t) tk dt = 0 for k = 0, 1, 2, . . . , N + 1.
(3) {D2nTmϕ} is an orthonormal basis for L2(R).

Theorem 4.6 (Daubechies). Given a number N > 0, there is a function ϕ ∈
L2(R) such that

(1) ϕ has N continuous derivatives, and ϕ has compact support.
(2)

∫

ϕ(t) tk dt = 0 for k = 0, 1, 2, . . . , N − 1.
(3) {D2nTmϕ} is an orthonormal basis for L2(R).
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