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Abstract. The paper presents a novel method for the extraction of facial features based on
the Gabor-wavelet representation of face images and the kernel partial-least-squares discrimina-
tion (KPLSD) algorithm. The proposed feature-extraction method, called the Gabor-based kernel
partial-least-squares discrimination (GKPLSD), is performed in two consecutive steps. In the first
step a set of forty Gabor wavelets is used to extract discriminative and robust facial features, while
in the second step the kernel partial-least-squares discrimination technique is used to reduce the
dimensionality of the Gabor feature vector and to further enhance its discriminatory power. For op-
timal performance, the KPLSD-based transformation is implemented using the recently proposed
fractional-power-polynomial models. The experimental results based on the XM2VTS and ORL
databases show that the GKPLSD approach outperforms feature-extraction methods such as prin-
cipal component analysis (PCA), linear discriminant analysis (LDA), kernel principal component
analysis (KPCA) or generalized discriminant analysis (GDA) as well as combinations of these
methods with Gabor representations of the face images. Furthermore, as the KPLSD algorithm is
derived from the kernel partial-least-squares regression (KPLSR) model it does not suffer from the
small-sample-size problem, which is regularly encountered in the field of face recognition.

Keywords: Gabor features, Kernel partial-least-squares, face recognition, XM2VTS database,
ORL database.

1. Introduction

Face recognition (verification or identification) is one of the most active research areas in
the field of biometrics. Among the numerous feature-extraction methods that have been
proposed for face recognition, appearance-based methods, such as principal component
analysis (PCA) or linear discriminant analysis (LDA), have been the dominant feature-
extraction techniques for years.

The PCA or Eigenface technique, introduced by Turk and Pentland (1991), applies the
Karhunen–Loève transform to a set of training images and derives a number of projection
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axes (or eigenfaces), which act as the basis vectors for the PCA subspace. Each face image
is represented as a vector of projection coefficients in this subspace, in which information
compression, dimensionality reduction and de-correlation of the pixel values of the face
images is achieved.

Unlike PCA, which strives to find a subspace that contains as much of the variance
of the training samples as possible, LDA aims at constructing a linear subspace where
the discriminative information between different classes of face images is emphasized.
The objective is met through the maximization of the ratio of the between-class scatter
matrix to the within-class scatter matrix, which serves as a criterion for class separability.
It is generally believed that the incorporation of class-membership information into the
feature-extraction technique improves the discrimination abilities of the extracted fea-
tures. Thus, LDA is regularly found to out-perform PCA (see (Kittler et al., 1999) for
example).

However, due to the small number of available training images per subject the within-
class scatter matrix of the training data is usually singular and LDA in its basic form is
not applicable. This so-called small-sample-size problem (SSSP) demands a modification
of the original LDA approach and is one of the most challenging problems in the field
of face recognition. The traditional way of overcoming the SSSP in LDA is to project
the training data into a lower-dimensional PCA subspace where the within-class scatter
matrix is non-singular and then to perform the LDA in the reduced space. The described
approach (often called the Fisherface approach (Belhumeur et al., 1996)) provides an
elegant solution to the SSSP and effectively uses the class-membership information to
derive discriminative features for face recognition.

It is clear that PCA- and LDA-based approaches exhibit some fundamental differ-
ences that are crucial to the design of a face-recognition system. For example, PCA-based
feature-extraction techniques do not suffer from the SSSP, but usually result in lower
recognition rates than LDA-based techniques. LDA-based methods, on the other hand,
ensure relatively high recognition rates, but even in their most elaborate form, require at
least two training images per subject to be applicable. From the presented discussion we
can see that an ideal feature-extraction technique should consider both the variability of
the training data as well as the class-membership information and should furthermore be
applicable in the most severe case of the SSSP, i.e., when only one training image per
subject is available.

In addition to the SSSP, appearance-based methods should also be able to cope with
nonlinear changes to face images that arise due to varying illumination, pose and facial
expression during the image-acquisition phase. To that end, linear feature-extraction tech-
niques such as PCA and LDA have been extended to their kernel (nonlinear) form by a
number of researchers. Popular kernel methods that can be found in the literature include
kernel principal component analysis (KPCA) (Schölkopf et al., 1998), kernel fractional-
step discriminant analysis (Dai et al., 2007), generalized discriminant analysis (GDA)
(Baudat and Anouar, 2000), kernel Fisher discriminant analysis (KFDA) (Yang, 2002)
and kernel partial-least-squares discriminant analysis (KPDA) (Štruc et al., 2008). All of
these techniques have been shown to be superior to their linear counterparts in terms of
face-recognition performance.
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In recent years, another class of feature-extraction techniques attracted the interest of
the face-recognition community – techniques based on the Gabor filter responses of face
images. Unlike appearance-based methods, most Gabor-filter-based techniques use local
characteristics of the face to derive discriminant features from the face image. This fact
makes them robust in terms of illumination, pose and facial expression, but simultane-
ously susceptible to errors in the localization of the facial landmarks.

One of the first procedures to incorporate Gabor filters into the feature-extraction
technique is the dynamic link architecture (DLA) introduced by Lades et al. in (Lades
et al., 1993). In DLA a rectangular graph is placed over the face image and a number
of Gabor features (called Gabor jets) are extracted at each of the graph’s nodes. Once a
face graph is built, a graph-matching procedure is employed for recognition. Based on the
dynamic link architecture, Wiskott et al. (1997) proposed a method called elastic bunch
graph matching (EBGM), which improved upon DLA by introducing a face graph with
nodes located at specific facial landmarks (fiducial points).

In contrast to the DLA and EBGM graph-based methods that consider only Gabor
features extracted at a number of characteristic points, Liu and Wechsler (2002) proposed
to use the whole face image for extraction of Gabor-based features. In their method a
set of forty Gabor filters is employed to derive a high-dimensional feature vector and
a variant of the multivariate linear discriminant analysis is used to reduce the vector’s
dimensionality. The presented approach, called the Gabor–Fisher Classifier (GFC), com-
bined Gabor-filter-based methods with appearance-based techniques and proved to be
highly effective in ensuring better recognition rates than the classical appearance-based
or Gabor-based feature-extraction techniques on their own.

Researchers tried to improve upon the GFC technique by substituting the employed
appearance-based method of the GFC with a more elaborate one. Liu (2004), for exam-
ple, used kernel principal component analysis rather than LDA to derive the final facial
features. Shen et al. (2007), on the other hand, applied the kernel form of LDA, i.e.,
generalized discriminant analysis, for the computation of the feature vectors. Although
the listed methods exhibit some advantages over the GFC technique, they inherited the
shortcomings intrinsic to the PCA- and LDA-based approaches.

To avoid the difficulties encountered when using (linear or nonlinear) PCA- and LDA-
based feature-extraction techniques, we propose in this paper to employ a nonlinear vari-
ant of the partial-least-squares regression technique (called kernel partial-least-squares
discrimination – KPLSD) for dimensionality reduction of the Gabor feature vector. As
will be shown in the remainder of the paper, KPLSD has several advantages over the tra-
ditionally employed appearance-based methods. For example, like LDA-based methods,
the KPLSD technique considers the class-membership information of the training data,
while (like PCA-based approaches) it does not suffer from the SSSP, i.e., it is applicable
even if only one training image per subject is available for training. Furthermore, experi-
mental results on the XM2VTS and ORL databases show that the proposed approach, the
Gabor-based kernel partial-least-squares discrimination (GKPLSD) method, outperforms
similar methods described in the literature.

The rest of the paper is organized as follows. In Section 2, the theory behind Gabor
wavelets and Gabor-based feature extraction is reviewed. The kernel partial-least-squares



118 V. Štruc, N. Pavešić

discrimination algorithm is presented in Section 3, and the novel Gabor-based KPLSD
approach is detailed in Section 4. Experimental results based on the XM2VTS and ORL
databases are given in Section 6 and 7. The paper concludes with some final comments
in Section 8.

2. Gabor Feature Extraction

2.1. Gabor Wavelets

Since the discovery of the resemblance of Gabor wavelets (filters, kernels) and the 2D
receptive field profiles of mammalian simple cells in the primary visual cortex, Gabor
wavelet-based methods have been successfully employed in many computer-vision prob-
lems, ranging from fingerprint enhancement (Hong et al., 1996) and texture segmentation
(Bashar et al., 2003) to face (Wiskott et al., 1997) and palmprint recognition (Kong et al.,
2003). In addition to the similarity with the human visual system, Gabor wavelets also
exhibit desirable characteristics of spatial locality and orientation selectivity, and are op-
timally localized in the space and frequency domains (Žibert and Mihelič, 2002). All of
these properties make them a suitable choice for image decomposition and representation
when the goal is to derive local and discriminating features (Liu, 2004).

In the spatial domain, a 2D Gabor wavelet is a Gaussian kernel function modulated
by a complex plane wave (Daugman, 1985; Kyrki et al., 2004):

ψΠ(f,θ,γ,η) =
f2

πγη
e−( f2

γ2 x2
t+ f2

η2 y2
t )ej2πfxt ,

xt = x cos θ + y sin θ,

yt = −x sin θ + y cos θ, (1)

where x and y denote the pixel coordinates, f denotes the frequency of the complex
sinusoid, θ defines the orientation of the wavelet, γ is the spatial width of the wavelet
along the sinusoidal plane wave and η is the wavelet’s spatial width perpendicular to the
wave.

To obtain an appropriate feature vector from an image, a bank of forty Gabor wavelets
(five frequencies and eight orientations) is commonly created using the following param-
eters (Shen and Bai, 2006):

ψg,h(x, y) = ψΠ(fg,θh,γ,η),

fg = fmax/
(√

2
)g

,

θh =
h

8
π, (2)

where γ = η =
√

2, fmax = 0.25, g ∈ {0, . . . , 4} and h ∈ {0, . . . , 7}.
Fig. 1 shows the real parts of Gabor wavelets for five scales g ∈ {0, . . . , 4} and eight

orientations h ∈ {0, . . . , 7}.
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Fig. 1. Real parts of the Gabor wavelets for five scales and eight orientations.

2.2. Gabor Feature Representation of Face Images

The Gabor feature representation of a grey-scale face image I(x, y) ∈ R
a×b, where a

and b are image dimensions (in pixels), is derived by convolving the image with the bank
of Gabor wavelets, i.e.,

Og,h(x, y) = I(x, y) ∗ ψg,h(x, y), (3)

where Og,h(x, y) ∈ R
a×b denotes the output of the convolution of a face image I(x, y)

with a Gabor wavelet ψg,h(x, y) at scale g; (g ∈ {0, . . . , 4}) and orientation h; (h ∈
{0, . . . , 7}).

After convolving a face image I(x, y) with all the Gabor wavelets ψg,h(x, y) from
the bank, the Gabor feature vector x is obtained by downsampling the magnitudes of
Og,h(x, y) for all scales and orientations by a factor ρ, normalizing the results to have zero
mean and unit variance, turning them into row vectors oρ

g,h and finally concatenating them
into the feature vector x (Liu and Wechsler, 2002; Liu, 2004; Shen and Bai, 2006), i.e.,

x =
(
oT
0,0 oT

0,1 · · · oT
4,7

)T ∈ R
N , (4)

where N = 40ab/ρ.
It should be noted that the Gabor feature vector (4) consists only of the magnitudes of

the convolution outputs, while the phase outputs have been discarded. Fig. 2 shows the
magnitudes of the convolution outputs of a sample image from the XM2VTS database
with the bank of Gabor wavelets whose real parts are presented in Fig. 1.

Despite the downsampling of the magnitudes of Og,h(x, y); (g ∈ {0, . . . , 4}, h ∈
{0, . . . , 7}), the resulting Gabor feature vector still resides in a very high-dimensional
space. To further reduce its dimensionality and to enhance its discriminatory power,
subspace projection techniques are commonly employed (Liu and Wechsler, 2002; Liu,
2004; Shen and Bai, 2006). One such technique, which has not previously been consid-
ered for the purposes of face recognition, is introduced in the following section.
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Fig. 2. Outputs of the convolution of a sample image from the XM2VTS database with the Gabor wavelets
(Fig. 1) from the bank. (a) Sample image. (b) Magnitudes of the convolution outputs.

3. Partial-Least-Squares Regression

Partial-least-squares regression (PLSR), first introduced by Wold (1966) and later ex-
tended to its kernel form (KPLSR) by Rosipal and Trejo (2001), is a powerful statistical
regression technique that can be used for relating several dependent variables (responses)
to a large number of independent variables (predictors). PLSR models the relationship
between the dependent and the independent variables by creating latent vectors (compo-
nents, factors) in such a way that these vectors account for as much of the covariance
between the dependent and independent variables as possible.

3.1. Kernel Partial-Least-Squares Regression

The PLSR model Y = XA + B, where A is the matrix of the regression coefficients and
B stands for the matrix of residuals, is constructed from a training set consisting of n

observations (objects) with N x-variables (inputs), and M y-variables (responses).
Let X represent a n × N matrix of n N -dimensional inputs x and similarly let Y

represent a n × M matrix of the corresponding n M -dimensional responses y. PLSR is
based on the decomposition of the matrices X and Y into the following form (Rosipal,
2003):

X = TPT + E,

Y = UQT + F, (5)

where T and U are n × r matrices containing r latent vectors for n inputs, P and Q denote
N ×r and M ×r matrices of weights (used to determine the linear combinations of inputs
and responses, respectively) and the n×N and n×M matrices E and F represent matrices
of residuals.

The parameters of the decomposition (5) are commonly determined by using the non-
linear iterative partial-least-squares (NIPALS) algorithm (Wold, 1966), which calculates
the latent vectors t and u as well as the weight vectors p and q in such a way that the
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covariance between the X and Y matrices is maximized. (Note that the vectors t, u, p and
q are columns of the matrices T, U, P and Q, respectively.)

To extend the PLSR model (which accounts only for the second-order statistics in the
data) to its nonlinear form (kernel partial-least-squares regression or KPLSR), Rosipal
and Trejo (2001) proposed a modification of the NIPALS algorithm based on the “kernel
trick”, which avoids the calculation of the potentially computationally expensive non-
linear transformation Φ (where Φ denotes a nonlinear mapping of the N -dimensional
input variable x from the input space R

N to a high-dimensional feature space F , i.e., Φ:
x ∈ R

N → Φ(x) ∈ F ), and constructs the KPLSR model using the n × n kernel matrix

K =
[
Φ(xi)Φ(xj)T

]
=

[
K(xi, xj)

]
; ∀i, j. (6)

The NIPALS algorithm can be modified for use with such kernel matrices in two
different ways: the first, in detail presented in (Rosipal and Trejo, 2001), is based on the
same methodology as that used for deriving kernel PCA (Schölkopf et al., 1998) and
the second, introduced in (Bennett and Embrechts, 2003), uses direct factorization of the
kernel matrix to produce its low-rank approximation. Considering the latter approach, the
NIPALS algorithm is modified as follows (Bennett and Embrechts, 2003):

Input: Matrices Kc and Y
Output: r n-dimensional latent vectors t and u

1. Randomly initialize the y-latent vector u (usually the first column of Y).
2. Calculate the x-latent vector:

t = KcKT
c u, t ← t/‖t‖.

3. Update the y-latent vector:

u = KcKT
c t, u ← u/‖u‖.

4. Repeat Steps 2–3 until convergence (i.e., vector u in two consecutive iterations
does not change).

5. Deflate the matrices Kc and Y:

Kc = Kc − ttT Kc, Y = Y − ttT Y.

6. Orthonormalize the matrix Y: Y = Y(YT Y)−1/2.
7. Continue with Step 2. using the new matrices Kc and Y.

Here Kc denotes the centered version of the kernel matrix K, i.e., (Schölkopf et al.,
1998),

Kc =
(

I − 1
n

1n1T
n

)
K

(
I − 1

n
1n1T

n

)
, (7)

where I represents an n-dimensional identity matrix and 1n stands for a vector of all ones,
with length n.
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The algorithm is repeated until a sufficient number of latent vectors r is found. As
stated in (Rosipal and Trejo, 2001), cross-validation should be employed to determine
the optimal number of latent vectors r that ensures good generalization capabilities of the
resulting KPLSR model.

After the matrices T and U are calculated, the predictions on N -dimensional inputs
from the training set (matrix X) are made by

Ŷ = KcA, (8)

where Kc denotes the centered kernel matrix of the training data, Ŷ denotes the matrix of
the corresponding response estimates and

A = KT
c U(TT KcKT

c U)−1TT Y (9)

represents the n × M matrix of the regression coefficients of the KPLS regression model.
Similarly, the predictions on the (new, test, query) inputs X∗ are computed using

Ŷ
∗

= K∗
cA, (10)

where

K∗
c =

(
K∗ − 1

n
1n∗ 1T

n K
)(

I − 1
n

1n1T
n

)
(11)

is the centered version of the kernel matrix K∗ of the inputs X∗, n∗ denotes the number
of (new) inputs (i.e., the number of columns in X∗) and 1n∗ stands for a n∗-dimensional
vector of all ones.

In this paper three kinds of kernels are considered for the construction of the KPLSR
model, i.e., the Gaussian or rbf kernel (12), the polynomial kernel (13) and the recently
proposed fractional-power-polynomial model (fppm) (14) (Liu, 2004), which has been
shown to be particularly successful when deriving discriminative features from Gabor
filtered images:

K(xi, xj) = e(‖xi −xj ‖2/2σ2), (12)

K(xi, xj) = (xT
i xj)d, (13)

K(xi, xj) = sign(xT
i xj)(|xT

i xj |)z, (14)

where σ > 0, d ∈ N
+ and 0 < z < 1.

3.2. Kernel Partial-Least-Squares Discrimination

PLSR and KPLSR can also be used for the classification of the independent variables
if the matrix containing the dependent variables encodes the class membership of the
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independent variables. In this case, the matrix Y takes the following form (Barker and
Rayens, 2003; Rosipal, 2003; Baek and Kim, 2004)

Y =

⎡
⎢⎢⎢⎣

1m1 0m1 · · · 0m1

0m2 1m2 · · · 0m2

...
...

. . .
...

0mM
0mM

· · · 1mM

⎤
⎥⎥⎥⎦ , (15)

where M represents the number of classes in the set of n N -dimensional inputs (matrix
X), mi represents the number of inputs in class Ci, 1mi (i = 1, 2, . . . , M ) denotes a
mi × 1 vector of all ones and 0mi (i = 1, 2, . . . , M ) is a mi × 1 vector of all zeros.

Each of the rows in the matrix Y represents the desired regression response for the
corresponding independent variable. The first m1 rows, for example, define the desired
regression responses for class C1, the next m2 rows define the regression responses for
class C2 and so forth. Thus, if the matrix in (15) is used for the computation of the
KPLSR transformation matrix defined by (9), then the response estimates matrix Ŷ in (8)
serves as the foundation for constructing prototype models for all of the Ci classes (i =
1, 2, . . . , M ). Here, each class is represented by the mean vector of the corresponding
response estimates (features). Thus, the prototype model2 for the ith class is computed as
follows:

ȳi =
1

mi

n∑
j=1

ŷj , ∀ŷj ← Ci, (16)

where i = 1, 2, . . . , M ; j = 1, 2, . . . , n; ŷj stands for the jth row of the response esti-

mates (i.e., feature) matrix Ŷ and the expression ŷj ← Ci indicates that only the response-
estimate vectors ŷj that correspond to class Ci should be used for the calculation of the
ith prototype model ȳi.

When a new (test) input X∗ needs to be classified, its regression-response estimate
(i.e., its feature vector) Ŷ

∗
is first computed and then matched to the appropriate class

prototype. Depending on the outcome of the matching procedure the input is ultimately
classified into the adequate class (a more detailed description of the matching procedure
will be given in Section 5).

As the goal of the presented technique is classification rather than regression, it is
usually referred to as kernel partial-least-squares discrimination (KPLSD).

4. The Gabor-Based Kernel Partial-Least-Squares Discrimination
Feature-Extraction Algorithm

In this section we present the novel facial-feature-extraction method that combines the
Gabor feature-extraction approach described in Section 2 with the kernel partial-least-

2In the field of biometrics usually called template or client model
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squares discrimination (KPLSD) algorithm presented in Section 3. Our proposal is based
on the following three facts:

• the Gabor wavelet representation of a face image contains discriminative informa-
tion that is considered to be robust against changes in illumination, pose and facial
expression (Liu, 2004; Shen and Bai, 2006),

• KPLSD does not suffer from the small-sample-size problem (i.e., it is specifically
designed to deal with situations where the number of training samples n is smaller
than the dimensionality of the samples N ),

• like discriminative methods, such as LDA or GDA, KPLSD uses the class-
membership information of the training data for the derivation of the facial features
and is therefore expected to outperform expressive feature-extraction techniques
such as PCA or KPCA.

4.1. The GKPLSD Algorithm

The GKPLSD algorithm can be summarized as follows:

Input: A database of face images containing images from three sets: training X , evalu-
ation E and test T .

Output: A set of low-dimensional face-feature vectors Y = {ŷi ∈ R
M : i = 1, 2, . . .}.

1. Convolve a face image from the given database with the set of forty Gabor
wavelets (3).

2. Downsample the magnitudes of the convolution outputs by the factor ρ.
3. Normalize the downsampled magnitudes of the convolution outputs to have zero

mean and unit variance.
4. Combine the normalized and downsampled magnitudes of the convolution out-

puts (4).
5. Repeat Steps 1–4 for each face image in the database.
6. Compose matrices K (6), Kc (7) and Y (15) using the Gabor feature vectors from

the training set.
7. Compute r latent vectors t and u using the modified NIPALS algorithm.
8. Compute the transformation matrix A (9).
9. Compute the matrix of low-dimensional face-feature vectors Ŷ (8).

10. Compute the kernel matrices K∗ (6) and K∗
c (11) using the Gabor feature vectors

of the face images from the evaluation and test sets of the database.
11. Compute the matrix of low-dimensional face-feature vectors Ŷ

∗
(10).

4.2. Computational Complexity of the GKPLSD Algorithm

To analyze the computational complexity of the proposed GKPLSD algorithm, we will
treat the Gabor filtering and the KPLSD algorithm as two separate techniques. This will
ensure that the presented computational cost will be easy to compare with that of other
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techniques that combine Gabor-based features with appearance-based methods (e.g., the
GFC method). Moreover, as most of the computational complexity of the GKPLSD tech-
nique falls into the training stage, we will focus primarily on this part of the method.
The cost for applying GKPLSD to a test sample, can, however, be deduced from the
discussion in the remainder of this section.

It is known that image filtering can be performed in two different ways: either with
the help of expression (3), i.e., by convolving the image with the given filter in the spatial
domain, or by a simple pixel-wise multiplication in the Fourier domain. For a P × P

image and a F × F filter the first way results in a computational complexity of O(F 2)
for each image pixel. Hence, for the whole image O(P 2F 2) multiplications and/or addi-
tions (MADDs) are needed. If we assume that the available training set comprises n such
images, the total computational cost for performing Gabor filtering with all 40 filters in
the spatial domain is O(40nP 2F 2). For the second option, i.e., filtering in the frequency
domain, the computational complexity is independent of the size of the applied filter, but
depends heavily on the dimensions of the image to be filtered. In this case the cost of per-
forming a filtering operation on the image is O(P 2 log2 P ), thus, for the total training set
and the whole filter bank it equals O(40nP 2 log2 P ) (Fialka and Cadik, 2006). It should
be noted that for large filter kernels, such as the Gabor filters, the second option is much
faster and should be preferred to the first one.

As already mentioned above, most of the computational complexity of the proposed
GKPLSD technique falls into the training stage, mainly due to the need for computing
the KPLSD transformation matrix (9), which requires calculating the kernel matrix and
employing the NIPALS algorithm. Computing the kernel matrix has a complexity of at
least O(Nn2), where n again denotes the number of training samples (e.g., images) in
the training set and N represents the number of elements (e.g., pixels) in each of the
samples (Yang et al., 2004). Applying the NIPALS algorithm, on the other hand, requires
O(rn3) operations, where r represents the number of desired latent vectors. As stated in
(Nicolai et al., 2007), each iteration of the NIPALS algorithm has a complexity of O(n3),
while the total cost is also directly proportional to the number of desired latent vectors
r. Once the KPLSD model is built (i.e., the NIPALS algorithm has been applied to the
training data) each of the training samples (or test samples) is projected into the KPLSD
subspace – a procedure that requires O(nN + nM) operations, where M denotes the
number of classes in the training data (i.e., O(nN) operations are required to construct
the test kernel matrix for the given sample and O(nM) operations for the computation of
the final features – the KPLSD projection).

As all kernel methods require the computation of at least one kernel matrix and some
kind of eigen-analysis, the overall computational cost of KPLSD is comparable to that of
other kernel methods such as KPCA or GDA.

4.3. Discussion of the GKPLSD Algorithm

An important factor when choosing a feature-extraction approach for a face-recognition
system is the computational characteristics of the employed technique. In this section
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we will compare the characteristics of the proposed method with those of some similar
approaches found in the literature. As Gabor filtering is a well-studied topic (see, for
example, (Liu and Wechsler, 2002; Liu, 2004; Kyrki et al., 2004; Shen and Bai, 2006;
Shen et al., 2007)), we will confine ourselves to a comparison of the second part of
the proposed Gabor-based kernel partial-least-squares discrimination method, i.e., the
KPLSD algorithm.

So far we have pointed out several times that, like the PCA-based feature-extraction
techniques, the proposed KPLSD method does not suffer from the SSSP, while it still
(like the discriminative approaches) considers the class-membership information of the
training data and should therefore result in better recognition performance than PCA-
based methods. However, a couple of questions arise from the above statement: first,
why should the class-membership information be incorporated into the feature-extraction
technique, and second, do the PLSD and KPLSD methods improve upon the traditionally
used discriminative methods such as LDA or GDA?

To answer the first question, we have to analyze the expressive methods (e.g., PCA)
in more detail. The goal of PCA is to find a subspace whose basis vectors correspond to
the maximum variance directions present in the training data. Each training sample can
be projected into this subspace and again reconstructed with minimum error. As stated in
(Draper et al., 2003), PCA is an optimal compression scheme that minimizes the mean
squared error between the original training data and its reconstruction for any given level
of compression. From this point of view, it is obvious that PCA is tailored towards data
representation and reconstruction rather than classification (similar observations could
also be made for the kernel form of PCA – KPCA). Thus, for a feature-extraction tech-
nique to be suitable for the recognition task, classification-specific information, such as
the class-membership of the training data, should be incorporated into the technique.

To answer the second question, we have to examine the shortcomings of the tradition-
ally used discriminative methods, LDA and GDA, and analyze our findings with respect
to the KPLSD approach. The LDA and GDA techniques seek projection directions, either
in the original data space or in the high-dimensional Hilbert space, which discriminate
well between training samples of the different classes. However, as they accomplish this
task through an eigen-analysis of the scatter matrices (or the kernel forms of the scatter
matrices), they are susceptible to the SSSP, which results in the (kernel) within-class scat-
ter matrix being singular. Hence, the LDA and GDA methods, which require an inverse
of the (kernel) within-class scatter matrix to be applicable, need modifications to handle
the SSSP and consequently result in sub-optimal projection directions with respect to the
original discrimination criterion. KPLSD, on the other hand, requires no inversion of any
kernel matrix; instead it considers the class-membership information implicitly through
the predesigned response matrix Y in (15). Furthermore, as pointed out in (Loog et al.,
2001) and (Dai et al., 2007), LDA and GDA tend to overemphasize inter-class distances
between classes that are already well separated in the original data space. Of course, this
is at the expense of the classes that are close to each other. This usually leads to a large
overlap of the last-mentioned classes in the final LDA and GDA feature spaces. Again,
KPLSD avoids the presented difficulty with the help of the predesigned response ma-
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trix Y, which ensures that the projections (i.e., the feature vectors) of the training data
from different classes are distanced equally, one from the other, in the KPLSD subspace.

5. Matching, Decision and Errors

The proposed feature-extraction technique (GKPLSD) was tested within a face-recogni-
tion system in the verification and identification modes.

In the verification mode the claim of the identity (the entry of the person’s name or the
person’s identification number) of a person presented to the system results in the acquired
face image being transformed into the “live” feature vector, and matched with the claimed
person’s prototype model (in our case the mean feature vector of the face images acquired
during enrolment). If the person’s “live” feature vector and the mean feature vector of the
claimed identity have a degree of similarity that is higher than the system threshold, then
the claim is accepted; otherwise, the claim is rejected (or vice versa if a dissimilarity
measure is used). Hence, a face-recognition system operating in verification mode aims
at verifying the validity of the identity claim (Chen et al., 2007).

In the identification mode the person currently presented to the system does not have
to explicitly claim an identity; instead, the system performs a comparison of the “live”
feature vector and the prototype models of all the enrolled users to find a match. In prac-
tice, the system establishes a person’s identity by searching for the prototype model that
best matches the “live” feature vector (i.e., in the case that dissimilarity measures are used
for the matching-score calculation, the system searches for the prototype model that re-
sults in the lowest matching score among all the examined prototypes) and consequently
assigns the identity corresponding to that prototype model to the “live” feature vector.

Obviously, a face-recognition system (operating in verification or identification mode)
requires a scoring function to be able to perform feature matching. To that end, three
commonly used dissimilarity measures are considered for the calculation of the matching
scores in this paper, namely:

• the L1 distance

dL1(ŷ, ȳi) = |ŷ − ȳi|, (17)

• the L2 distance

dL2(ŷ, ȳi) = (ŷ − ȳi)
T (ŷ − ȳi), (18)

• the cosine distance

dcos(ŷ, ȳi) = 1 − ŷT ȳi/‖ŷ‖ ‖ȳi‖, (19)

where ŷ denotes a face-feature vector, ȳi denotes the mean feature vector of the system
client Ci, (i = 1, 2, . . . , M), and M denotes the number of system clients.
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To measure the effectiveness of the proposed feature-extraction technique and to as-
sess its impact on the system’s verification and identification performance, several stan-
dard error and recognition rates (presented in the remainder of the section) are used in
this paper.

For each series of verification experiments three error rates are computed. The first,
called the false acceptance rate (FAR), indicates the number of incorrectly accepted im-
postors, while the second, called the false rejection rate (FRR), indicates the number of
incorrectly rejected clients (Su, 2007). The last error rate – the total error rate (TER =
FAR + FRR) – is used as a comparison metric for different verification experiments
(Mihelič and Žibert, 2006).

For the identification experiments the results are presented in terms of the rank-one
recognition rate, which measures the percentage of tested face images that were correctly
identified, i.e., the prototype models corresponding to the assigned identity resulted in the
best match with the “live” feature vector.

6. Verification Experiments

6.1. The XM2VTS Database and Experimental Setup

The verification experiments were performed on frontal face images from the multi-
modal XM2VTS database (Messer et al., 1999), which contains audio and video data
as well as color images of 295 individuals, captured in four separate sessions. As two
recordings were made during each session, a total of 2360 frontal face images (8 per
subject) were available for the training and the testing of the GKPLSD feature-extraction
algorithm.

All the face images from the database were appropriately pre-processed and normal-
ized. The pre-processing included converting the input color images into 8-bit grey-scale
images, manually locating the eyes, geometrically normalizing (rotating and scaling) the
images in such a way that the centers of the eyes were located at predefined positions,
cropping the face parts of the images to a standard size of 128 × 128 pixels, and finally
photometrically normalizing the face images by removing their mean and scaling their
pixels to unit variance (Ribarić et al., 2008). Some examples of the normalized images
from the database are shown in Fig. 3.

The first configuration of the Lausanne protocol (LP1) (Luettin and Maitre, 1998)
was used to divide the 295 subjects of the XM2VTS database into groups of clients (200
subjects) and impostors (95 subjects), and to distribute their images among three sets that
were employed for training (3 images per subject), evaluating and testing the feature-
extraction method GKPLSD in face-verification experiments.

The pre-processed and normalized face images from the XM2VTS database were
subjected to the GKPLSD feature-extraction method, as described in Section 4. In all
experiments the down-sampling factor was set to 32 (ρ = 32), and the number of features
in the low-dimensional feature vectors was set to its maximal value, i.e., to the number
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Fig. 3. Examples of pre-processed images from the XM2VTS database.

of client classes (M = 200). Note that in contrast to the feature-extraction methods
presented in (Liu and Wechsler, 2002; Liu, 2004), where the down-sampling factor was
set to 64, a two-times smaller down-sampling factor was used in this paper to retain more
discriminative information in the Gabor feature vectors.

6.2. Tuning the KPLSD Model’s Parameters

The goal of the first set of verification experiments was to determine the number of latent
vectors r (see Section 3 for details) that would ensure optimal generalization abilities
of the KPLSD model and to select the most appropriate kernel function to be used in
conjunction with the proposed GKPLSD feature-extraction method. Five types of kernel
functions were considered for comparison, i.e., the Gaussian or rbf kernel (12) for σ =
200, polynomial kernels (13) for d =1, 2 and 3, and the fppm kernel (14) for z = 0.9
(note that the parameters σ and z were chosen empirically). The verification performance
of the GKPLSD with each of the listed kernels was tested for four different numbers of
latent vectors r (i.e., r = 50, r = 150, r = 250 and r = 350). The results (error rates
FAR, FRR and TER) presented in Table 1 were obtained using the the evaluation images
set and the L2 distance measure as the scoring function.

It is clear from Table 1 that the lowest verification error (TER) for all the tested ker-
nel functions was obtained when 250 latent vectors were used for construction of the the
KPLSD model. The reason for such behavior is that models considering only 50 or 150
latent vectors could not capture enough of the information contained in the Gabor feature
vectors (4), whereas 350 latent vectors resulted in an overfitted KPLSD model. Among
the tested kernel functions, the fppm (z = 0.9) performed slightly better than the rbf

(σ = 200) and the first-degree polynomial kernel. Using second- or third-degree poly-
nomial kernels led to a reduced performance of the proposed feature-extraction method
when compared to the fppm, rbf or first-degree polynomial kernels.

The presented findings suggest that fractional-power-polynomial models and 250 la-
tent vectors should be used with the GKPLSD method to achieve optimal verification
performance.

6.3. Comparison of Different Distance Measures

The second series of verification experiments assessed the performance of the GKPLSD
feature-extraction method with different distance measures at the matching stage. As
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Table 1

Verification performance of the GKPLSD for different numbers of latent vectors and different kernel functions
(evaluation set)

Kernel function
No. of loadings Error rate

poly 1 poly 2 poly 3 rbf fppm

FAR(%) 4.62 4.90 10.37 4.20 4.99

r = 50 FRR(%) 4.50 4.83 9.83 4.00 4.67

TER(%) 9.12 9.73 20.20 8.20 9.66

FAR(%) 5.22 8.18 12.56 5.58 5.22

r = 150 FRR(%) 5.17 8.17 12.17 5.50 5.17

TER(%) 10.39 16.35 24.73 10.08 10.39

FAR(%) 3.21 3.82 4.36 3.07 2.78

r = 250 FRR(%) 3.00 3.50 4.33 2.83 2.67

TER(%) 6.21 7.32 8.69 5.90 5.45

FAR(%) 4.26 5.68 6.36 4.50 4.39

r = 350 FRR(%) 4.17 5.67 6.17 4.59 4.33

TER(%) 8.43 11.35 12.53 9.09 8.72

mentioned in Section 5, the distance measure dL1 (17), the distance measure dL2 (18)
and the cosine distance measure dcos (19) were used in the comparison. The KPLSD al-
gorithm was implemented with a fractional-power-polynomial model (for z = 0.9) and
250 latent vectors.

A comparison of the generated ROC curves for the tested distance measures is shown
in Fig. 4. From the graphs it is clear that the cosine distance measure performed the
best, followed in order by the distance measures dL2 and dL1 . Similar results were also
obtained on face images from the test set (see Table 2), where dcos outperformed the
other two measures by a large margin.

Based on the results we can conclude that the optimal distance (or dissimilarity) mea-

Fig. 4. ROC curves of the GKPLSD feature-extraction method for different distance measures (evaluation set).
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Table 2

Verification performance of the GKPLSD feature-extraction method with
different distance measures (test set)

Distance measure FAR(%) FRR(%) TER(%)

dL1 8.21 13.75 21.96

dL2 3.08 2.25 5.33

dcos 0.76 1.50 2.26

sure to be used in conjunction with the proposed GKPLSD feature-extraction method is
the cosine distance measure.

6.4. Comparison with Other Face-Feature-Extraction Methods

In the last set of our face-verification experiments we compared the performance of
the proposed GKPLSD method with that of other, popular techniques widely used for
face verification. Specifically, the following methods were implemented for comparison:
PCA (Turk and Pentland, 1991), LDA or Fisherfaces (Belhumeur et al., 1996), KPCA
(Schölkopf et al., 1998), GDA (Baudat and Anouar, 2000), KPLSD (presented in this
paper), Gabor-based PCA, Gabor-based KPCA (Liu, 2004), Gabor-based GDA (Shen et
al., 2007) and the Gabor-based LDA method presented in (Liu and Wechsler, 2002)3.
The parameters (i.e., the number of features, the kernel function, the threshold, etc.) of
the listed methods were all optimized to yield the lowest possible total error rate.

The results of the verification experiments are shown in Table 3. It is clear that the
proposed Gabor-based KPLSD method performed best, followed in order by the Gabor-
based GDA, Gabor-based LDA, the KPLSD, the GDA, the Fisherface, the Gabor-based
KPCA, the Gabor-based PCA, the KPCA and the PCA methods. Generally, all the sub-
space techniques (linear and nonlinear) performed better when they were implemented
on Gabor-filtered images instead of the original ones. An improvement in the total error
rate of at least 30% was observed for all the methods.

Another interesting observation regarding the performance of the linear (LDA) and
nonlinear discriminative (KPLSD and GDA) methods can be made with regard to the
error rates in Table 3. While the total verification error of these methods is almost the
same if the features are extracted from the original input images, the difference increases
if Gabor-filtered images are used for the derivation of the final feature vectors. Here,
the KPLSD feature-extraction technique seems to be particularly successful, as the total
error rate is reduced by almost 50% when compared to the LDA approach. The reason
for such behavior can be found in the fact that KPLSD is specifically designed to handle

3Note that unlike the KPLSD, KPCA and GDA (which are nonlinear kernel methods) techniques, LDA
and PCA represent linear methods and usually serve as baseline techniques when comparing the verification
performance of different feature-extraction approaches.
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Table 3

Verification performance comparison for the different methods (test set)

Method FAR(%) FRR(%) TER(%)

PCA 9.30 6.75 16.05

LDA 3.86 3.00 6.86

KPCA 7.65 6.25 11.13

GDA 3.52 2.75 6.27

KPLSD 3.37 2.75 6.12

GaborPCA 5.04 4.25 9.29

GaborLDA 1.91 2.50 4.41

GaborKPCA 3.84 5.00 8.84

GaborGDA 1.92 1.75 3.67

GaborKPLSD 0.76 1.50 2.26

over-determined problems (or small sample-size problems, where n 	 N )4. In contrast,
LDA struggles with its generalization ability when only a small number of samples are
available for training (Martinez and Kak, 2001).

7. Identification Experiments

7.1. The ORL database and experimental setup.

For our second class of face-recognition experiments, i.e., the identification experiments,
we used the ORL database acquired at the Olivetti Research Laboratory in Cambridge,
U.K. The database is made up of 400 face images that correspond to 40 distinct subject.
Thus, each subject in the database is represented with 10 facial images that exhibit vari-
ations in terms of illumination, pose and facial expression. The images are stored at a
resolution of 92 × 112 and 8-bit grey levels (Samaria and Harter, 1994).

Like the images from the XM2VTS database, the ORL images were subjected to our
pre-processing procedure that, based on the manually marked eye locations, normalized
(geometrically and photometrically) and cropped the face regions of all the face images
to a standard size of 64 × 64 pixels.

For the identification experiments presented in Sections 7.2 to 7.3 the database was
divided into two separate parts. The first part comprised three face images of each of the
40 subjects and was used for training, while the second part comprised the remaining
seven images of the database’s subjects and was used for testing. This setup resulted in a
total of 120 face images available for training and 280 images that had to be identified.
For the last series of identification experiments, however, a different setup was used and
will be described in detail in Section 7.4.

4Note that the dimension of a Gabor feature vector for a 128 × 128 input image and a down-sampling
factor of ρ = 32 is equal to N = 20 480, while the dimensionality of the input vector derived from the original
images is “only” 128 × 128 = 16 384.
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Table 4

Rank-one recognition rates (in %) of the GKPLSD for different numbers of latent vectors
and different kernel functions

Kernel function
No. of loadings

poly 1 poly 2 poly 3 rbf fppm

r = 30 83.6 68.2 46.8 83.6 84.3

r = 50 91.8 82.5 87.9 91.9 92.5

r = 70 97.5 93.2 90.0 97.8 97.9

r = 90 95.4 92.1 88.9 95.3 96.1

7.2. KPLSD Model Parameter Tuning

Although face identification and verification are related problems we cannot simply gen-
eralize our findings presented in Section 6 and use the same model parameters for the
identification case. Our first series of experiments aimed, therefore, at optimizing the pa-
rameters of the KPLSD model for the identification problem. Like with the verification
experiments in Section 6 five kernel functions, i.e., the first-, second- and third-degree
polynomial kernel functions, the rbf kernel (this time for σ = 1000) and the fppm ker-
nel for z = 0.9, were tested for their identification performance in conjunction with four
different numbers of latent vectors, i.e., r = 30, r = 50, r = 70 and r = 90. The results
of the experiments with the dL2 distance as a scoring function are presented in Table 4.

From the results we can see that the best identification performance, i.e., 97.8%, was
achieved with the KPLSD model constructed with a fractional power polynomial model
and 70 latent components. This model should, therefore, be used for the following assess-
ments of the GKPLSD approach on the ORL database.

7.3. Comparison of Different Scoring Functions

To assess the impact of different distance measures on the performance of the GKPLSD
approach in the identification scenario our second series of identification experiments
employed the three scoring functions presented in Section 5 for the matching-score calcu-
lation. From the results presented in Table 5 it is clear that like with the verification case,
the cosine measure performed the best, followed in order by the dL2 (18) and dL1 (17)
distance measures.

Table 5

Rank-one recognition rates (in %) of the GKPLSD feature-extraction method
with different dissimilarity measures

Dissimilarity measure dL1 dL2 dcos

Rank one recognition rate (%) 97.4 97.9 98.2
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Interestingly, while still being superior to the other two measures, the cosine mea-
sure only slightly improves the recognition rate when compared to the verification case.
Nevertheless, the results suggest that the cosine dissimilarity measure should be used in
conjunction with the GKPLSD approach in the final comparative assessment.

7.4. Comparison with Popular Feature-Extraction Techniques

In our last series of identification experiments the performance of the proposed KPLSD
technique was compared to that of some popular feature-extraction techniques found
in the literature. Again, the first two techniques were linear methods, i.e., PCA and
LDA, which served as baseline approaches in the comparison. However, as the proposed
KPLSD technique is a nonlinear (kernel) approach, two additional kernel methods, i.e.,
KPCA and GDA, were also implemented to allow for a fair comparison with our ap-
proach. All the listed methods were applied to the original as well as to the Gabor-filtered
images.

For this set of experiments a different experimental setup was used than in the previ-
ous two sections. Here, the number of training images per subject was increased from one
to nine, while the remaining images were used for testing. For example, if two training
images per subject were used in the training stage, eight images were left available for de-
termining the rank-one recognition rate of the given feature-extraction technique. Clearly,
this setup resulted in more identification experiments being performed when fewer train-
ing images were used and, vice versa, fewer identification experiments were performed
when more images were used for the training. Furthermore, as the recognition rate de-
pends on the choice of the training and test sets, the experiments were repeated five times
for a given number of training images (each time the training set was chosen randomly).
The recognition rates presented in Table 6 represent, therefore, the average recognition
rates over five repetitions of the identification experiments.

Table 6

Comparison of the average rank-one recognition rates (in %) of different feature-extraction techniques

Number of training images
Method

1 2 3 4 5 6 7 8 9

PCA 50.7 66.2 72.0 76.1 78.8 80.1 81.7 82.0 82.1

LDA n/a 69.8 90.2 93.4 94.7 97.1 97.2 98.4 99.5

KPCA 51.9 67.6 75.6 79.3 82.4 81.6 83.0 84.0 86.0

GDA n/a 82.0 91.1 94.4 95.2 97.8 97.3 98.5 99.0

KPLSD 65.2 82.1 91.5 95.4 95.0 98.2 98.0 98.8 100

GaborPCA 58.1 73.2 82.4 86.6 91.2 92.8 93.5 95.3 95.5

GaborLDA n/a 77.4 95.1 98.0 98.9 99.5 99.7 100 100

GaborKPCA 68.4 84.5 89.7 92.2 95.3 98.1 97.7 97.5 99.5

GaborGDA n/a 92.0 95.7 98.5 99.4 99.8 100 100 100

GaborKPLSD 75.9 92.4 97.7 99.2 99.3 99.8 100 100 100
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The results show the true strength of the proposed GKPLSD approach. We can see
that when only one face image per subject is available for training neither LDA nor GDA
is applicable (denoted as n/a in Table 6). The KPLSD algorithm, on the other hand, is
not only applicable, but also ensures significantly higher recognition rates than PCA or
KPCA on the original as well as the Gabor-filtered images. If we consider the overall
results, i.e., across different numbers of training images, we can see that again the pro-
posed GKPLSD performed the best in almost all cases, while the relative ranking of the
compared techniques is similar as in the comparative assessment for the face-recognition
system operating in verification mode.

8. Conclusion

In this paper we have presented a novel Gabor-based KPLSD algorithm for extracting
discriminative features from frontal face images. The effectiveness of the proposed al-
gorithm was demonstrated in a series of face-recognition (verification and identification)
experiments, performed on the XM2VTS and ORL databases. The best results were ob-
tained when fractional-power-polynomial models were used for the implementation of
the KPLSD part of the proposed feature-extraction method, and the cosine distance mea-
sure was employed at the matching stage for the calculation of the matching scores. In
a comparative assessment, where in addition to the proposed GKPLSD method, widely
used feature-extraction techniques such as PCA, LDA, KPCA, GDA and combinations of
these techniques with Gabor-based features were tested for their verification and identi-
fication performances, the GKPLSD achieved the best results, while effectively avoiding
the small sample size problem regularly encountered in the field of face recognition. Our
future work with respect to the GKPLSD technique, more precisely the KPLSD algo-
rithm, will be focused on examining the mathematical relations between KPLSD and
other nonlinear discriminative techniques such as GDA.
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Gabor bangelėmis pagr ↪isti branduolio dalini ↪u mažiausi ↪uj ↪u kvadrat ↪u
atskyrimo bruožai veidams atpažinti

Vitomir ŠTRUC, Nikola PAVEŠIĆ

Straipsnis siūlo nauj ↪a metod ↪a veido bruožams išskirti, pagr↪ist ↪a veido vaizd ↪u atvaizdavimu Ga-
bor bangelėmis ir branduolio dalini ↪u mažiausi ↪uj ↪u kvadrat ↪u atskyrimo algoritmu. Pasiūlytas metodas
bruožams išskirti atliekamas dviem nuosekliais žingsniais. Pirmajame žingsnyje keturiasdešimties
Gabor bangeli ↪u aibė naudojama išskirti skiriamiesiems patikimiems veido bruožams, o antrajame
– branduolio dalini ↪u mažiausi ↪uj ↪u kvadrat ↪u atskyrimas naudojamas Gabor bruož ↪u vektoriaus mat-
men ↪u skaičiui sumažinti ir skiriamumui padidinti. Eksperimento rezultatai rodo, kad pasiūlytas
būdas yra efektyvesnis už pagrindini ↪u komponenči ↪u analiz ↪e, tiesin ↪e diskriminantin ↪e analiz ↪e, bran-
duolio pagrindini ↪u komponenči ↪u analiz ↪e, apibendrint ↪a diskriminantin ↪e analiz ↪e ir j ↪u kombinacijas
su veido vaizd ↪u Gabor atvaizdavimu.


