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Gabor meets Littlewood–Paley:
Gabor expansions in Lp(Rd)

by

Karlheinz Gröchenig (Storrs, CT) and
Christopher Heil (Atlanta, GA)

Abstract. It is known that Gabor expansions do not converge unconditionally in Lp

and that Lp cannot be characterized in terms of the magnitudes of Gabor coefficients.
By using a combination of Littlewood–Paley and Gabor theory, we show that Lp can
nevertheless be characterized in terms of Gabor expansions, and that the partial sums of
Gabor expansions converge in Lp-norm.

1. Introduction. The analysis of Lp-spaces on Rd traditionally employs
Littlewood–Paley theory and, more recently, wavelet theory (which is the
discrete manifestation of Littlewood–Paley theory). In this context, Lp(Rd)
can be characterized in terms of an appropriate function-space norm of the
absolute value of the Haar wavelet transform. More generally, wavelet bases
are actually unconditional bases for Lp(Rd) (see [15]).

By contrast, phase-space methods (appearing under the labels of time-
frequency analysis, Gabor analysis, coherent state transforms, etc.) are typ-
ically deemed to be inappropriate tools for analyzing Lp (see, e.g., [3]). This
opinion is supported by the fact that the orthonormal bases associated with
phase-space methods (the Wilson bases) are not unconditional bases for
Lp(Rd). As a consequence of this fact, Lp(Rd) cannot be characterized in
terms of the absolute value of the short-time Fourier transform or the ab-
solute values of the coefficients in a Gabor expansion (to be precise, this is
proved in [7] for the specific case of twice-redundant Gabor frames, but we
would be extremely surprised if it was not valid for all Gabor frames).

Our aim in this paper is to show that Lp(Rd) can, in fact, be characterized
by the coefficients in a Gabor expansion, though not solely in terms of
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the absolute values of those coefficients. This result is in the spirit of the
Littlewood–Paley characterization of Fourier series in Lp(Td) in terms of
their Fourier coefficients. Indeed, we will make use of this characterization,
and it is exactly the point where the theory of Gabor expansions meets
the classical Littlewood–Paley theory. As an unexpected outcome of this
analysis, we show that the partial sums of a Gabor expansion converge in
Lp. The ordering in the Gabor series is, of course, important, because it
can be inferred from known results that these series can at best converge
conditionally in Lp. However, the fact that Gabor series converge at all in
Lp has not been observed before.

For the proof of this characterization of Lp, we develop a theory of Gabor
analysis on the amalgam space W∼ = (L1, `∞), which is of independent
interest. This seems to be the largest Banach function space isometrically
invariant under translations on which Gabor analysis is possible. Moreover,
Gabor analysis on this space is possible using the largest feasible window
class, the amalgam space W = (L∞, `1). In particular, we show that the
Walnut representation of the Gabor frame operator is valid in a weak sense
on W∼.

In the course of writing this paper we learned that L. Grafakos and
C. Lennard have simultaneously obtained results on the Lp-properties of
Gabor expansions that are similar to some of ours in certain respects [10].
However, their approach is radically different, relying on an impressive ar-
senal of inequalities from “hard analysis” rather than on Littlewood–Paley
theory. Additionally, their results require some restrictive conditions on the
allowable windows.

2. Background and discussion of results

2.1. The STFT and window classes. The Fourier transform of f ∈L1(Rd)
is f̂(ω) =

�
Rd f(t) e−2πit·ω dt. The Fourier transform is an isomorphism of

the Schwartz space S(Rd) onto itself, and extends to the space S ′(Rd) of
tempered distributions by duality.

Translation and modulation of a function f are defined, respectively, by

Txf(t) = f(t− x) and Myf(t) = e2πiy·t f(t).

The short-time Fourier transform (STFT) of a function f with respect to a
window g is

Sgf(x, y) = 〈f,MyTxg〉 = �
Rd
e−2πiy·t g(t− x) f(t) dt

whenever the integral makes sense. Analogously to the Fourier transform,
the STFT extends in a distributional sense to f, g ∈ S ′(Rd) (cf. [8,
Prop. 1.42]).
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For our purposes, we will usually require that the window g lies in the
Wiener algebraW = W (Rd) = (L∞, `1), which is the amalgam space defined
by the norm

‖f‖W =
∑

k∈Zd
ess sup
x∈[0,1]d

|f(x+ k)| =
∑

k∈Zd
‖f · Tkχ[0,1]d‖∞.

Since W (Rd) ⊆ Lp(Rd) for all 1 ≤ p ≤ ∞, the STFT Sgf with respect to
g ∈ W is well defined for all f ∈ Lp. It was shown in [18] that the Wiener
algebra is a convenient and general class of windows for Gabor analysis.

If we let Qα denote the cube

Qα = [0, α]d,

and write

‖m‖p,E = ‖m · χE‖p =
( �
E

|m(x)|p dx
)1/p

for the local Lp-norm over a set E, then it is easy to see that

(1) ‖f‖W,α =
∑

k∈Zd
‖f · TαkχQα‖∞ =

∑

k∈Zd
‖f‖∞,αk+Qα

is an equivalent norm for W for each α > 0 (cf. [13, Prop. 4.1.7]).
The Köthe dual of W is the amalgam space

W∼ = W∼(Rd) = (L1, `∞)

= {f measurable : fh ∈ L1(Rd) for all h ∈W (Rd)},
with norm

‖f‖W∼ = sup
‖h‖W=1

|〈f, h〉| = sup
k∈Zd

�
[0,1]d

|f(x+ k)| dx = sup
k∈Zd

‖f · Tkχ[0,1]d‖1.

By [1, Thm. 1.2.9], W∼ is a closed, norm-fundamental subspace of the dual
space W ∗ of W .

Both W and W∼ are invariant under the translation operators Tx, and
the corresponding operator norms are uniformly bounded in x. In fact,
translations are isometries for W and W∼ under the equivalent norms�
Rd ‖f · Txχ[0,1]d‖∞ dx and supx ‖f · Txχ[0,1]d‖1, respectively.

Note that with g ∈ W , the STFT Sgf is well defined as a function on
R2d for every f ∈W∼. Since

‖f‖pW∼ = sup
k∈Zd

‖f · Tkχ[0,1]d‖p1

≤ sup
k∈Zd

‖f · Tkχ[0,1]d‖pp ≤
∑

k∈Zd
‖f · Tkχ[0,1]d‖pp = ‖f‖pp,
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we see that Lp is embedded in W∼ for 1 ≤ p ≤ ∞. In our interpretation
W∼ is the correct function space on which the operators of Gabor theory
can be defined in a meaningful way within the context of Lp-theory.

2.2. Gabor frames and the modulation spaces. Given a window g ∈
L2(Rd) and given α, β > 0, we say that the collection

G(g, α, β) = {MβnTαkg : k, n ∈ Zd}
is a Gabor frame for L2(Rd) if there exist constants A, B > 0 (called frame
bounds) such that

∀f ∈ L2(Rd), A‖f‖22 ≤
∑

k,n∈Zd
|〈f,MβnTαkg〉|2 ≤ B‖f‖22.

In this case, there exists a dual window γ ∈ L2(Rd) such that G(γ, α, β) is
also a Gabor frame for L2(Rd) and such that

f =
∑

k,n∈Zd
〈f,MβnTαkγ〉MβnTαkg(2)

=
∑

k,n∈Zd
〈f,MβnTαkg〉MβnTαkγ

for all f ∈ L2(Rd). The series in (2) converge unconditionally in L2, and by
the frame definition, the `2-norm of the sequence (〈f,MβnTαkg〉) of Gabor
coefficients is an equivalent norm for L2. For detailed discussion of frames,
we refer to [3], [13].

Under stronger assumptions on g, the expansions in (2) are valid not
only in L2 but in the entire class of function spaces known as the modulation
spaces. For detailed discussion of these spaces we refer to [11], [6], [12]. The
appropriate window class is the Feichtinger algebra

(3) M1(Rd) = {f ∈ S ′(Rd) : Sff ∈ L1(R2d)},
which is a subspace of the Wiener algebra W .

Suppose g ∈M1. Then the modulation space Mp,q is

(4) Mp,q(Rd) = {f ∈ S ′(Rd) : Sgf ∈ Lp,q(R2d)}
with norm

‖f‖Mp,q =
( �
Rd

( �
Rd
|Sgf(x, y)|p dx

)q/p
dy
)1/q

.

Mp,q is independent of the choice of g ∈ M 1 in the sense of equivalent
norms. M1 defined by (3) coincides with M 1,1 defined by (4).

Suppose G(g, α, β) is a Gabor frame for L2 with window g ∈M1. In this
case the dual window γ will lie in M 1 as well [6] (the analogous statement
requiring only g ∈W fails in general). Further, the expansions (2) are valid
in each space Mp,q with unconditional convergence of the series in the norm
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of Mp,q if 1 ≤ p, q < ∞ and unconditional weak∗ convergence otherwise.
Moreover, the `p,q norm of the sequence of Gabor coefficients of f is an
equivalent norm for Mp,q, i.e.,

‖f‖Mp,q � ‖(〈f,MβnTαkg〉)‖`p,q =
(∑

n∈Zd

(∑

k∈Zd
|〈f,MβnTαkg〉|p

)q/p)1/q
.

The remarks above can be extended to the case of weighted modulation
spaces. The space M2,2 coincides with L2 (and more generally, the Sobolev
space Hs coincides with a weighted modulation space), but Lp does not
coincide with any modulation space when p 6= 2.

2.3. Discussion of results: Gabor analysis on Lp and W∼. Our goal is
to show that the Gabor expansions in (2) are valid in some sense on Lp

even though Lp is not a modulation space when p 6= 2. Furthermore, we
will define an appropriate sequence space sp such that membership of f in
Lp is characterized by membership of the corresponding sequence of Gabor
coefficients in sp. The precise definition of sp is given in Section 3.2 below via
an application of Littlewood–Paley theory. With that definition, our main
result can be stated as follows.

Theorem 1. Let g, γ ∈W (Rd) be such that G(g, α, β) is a Gabor frame
for L2(Rd) with dual frame G(γ, α, β). Let 1 < p < ∞. Then for f ∈ W∼,
the following statements are equivalent :

(a) f ∈ Lp(Rd),
(b) Cgf = (〈f,MβnTαkg〉)k,n∈Zd ∈ sp,
(c) Cγf = (〈f,MβnTαkγ〉)k,n∈Zd ∈ sp.

Moreover , in case any one of these holds, we have the following norm equiv-
alences:

(5) ‖f‖p � ‖(〈f,MβnTαkg〉)‖sp � ‖(〈f,MβnTαkγ〉)‖sp .
Remark 1. When the definition of sp is considered, it is clear that if

p = 1 or p = ∞ then the right-hand side of (5) fails to characterize L1 or
L∞. We remarked in a preprint version of this paper that it is likely that
‖c‖s1 characterizes some type of Hardy-like space on Rd, and indeed such a
result has recently been obtained by Gilbert and Lakey [9].

The proof of Theorem 1 is achieved by a careful examination of the fol-
lowing analysis and synthesis operators. Many questions about Gabor frames
can be answered by studying the boundedness properties of these operators
on appropriate function spaces, and indeed this will be our approach to
proving the convergence of Gabor frame expansions in Lp.

Definition 1. For a window function g and given α, β > 0, the synthesis
operator or reconstruction mapping is the operator Rg which maps sequences
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c = (ckn)k,n∈Zd to functions on Rd according to the formal definition

(6) Rgc =
∑

k,n∈Zd
cknMβnTαkg.

The formal adjoint of Rg is the analysis operator or coefficient mapping Cg,
which maps a function f to its corresponding sequence of Gabor coefficients
according to the definition

(7) Cgf(k, n) = 〈f,MβnTαkg〉, k, n ∈ Zd.
With the above terminology, the Gabor expansions in (2) amount to a

factorization of the identity on L2 as

(8) I = RgCγ = RγCg.

With g ∈M1, the series (6) defining Rgc converges unconditionally in Mp,q

when c ∈ `p,q (weak∗ unconditionally if p =∞ or q =∞), and the synthesis
operator is a bounded mapping Rg : `p,q →Mp,q with adjoint Cg : Mp,q →
`p,q. Moreover, the factorizations in (8) are valid on M p,q (see [6], [12]).

In considering Lp-spaces, several additional difficulties arise. First, be-
cause we are now outside the modulation space setting, the series in (6)
cannot converge unconditionally, and part of the difficulty is simply to as-
sign meaning to the formal series (6). We will see that it is most appropriate
to define Rgc in terms of an iterated series rather than the double sum ap-
pearing in (6). Further, we will define a sequence space sp on which Rg is
defined and which it maps boundedly into Lp.

Second, in addition to deriving the boundedness properties of Rg, Cg,
we must show that the factorization of the identity (8) is valid on Lp. In
order to obtain this result for the broadest feasible window class (the Wiener
algebra W ), it is necessary to understand the mapping properties of Rg, Cg
on as large a function space as possible. This leads us to consider Cg as a
mapping on W∼. We determine the appropriate sequence space w such that
Cg : W∼ → w and Rg : w → W∼ and show that the factorization of the
identity (8) holds on the large space W∼. We obtain this by demonstrating
that the Walnut representation of RγCg is valid on W∼ in a weak sense.

While we view the above-mentioned results on W∼ as being of inde-
pendent interest, we note that they could be omitted if we were content
to restrict the class of windows. At the same time, the validity of Theo-
rem 1 would extend to larger spaces than W∼. For instance, if we require
g, γ ∈ M1, then Rg is defined on `∞ and the series (6) defining Rgc con-
verges unconditionally in the weak∗-topology on M∞ = (M1)∗ (cf. [12]).
Further, the identity RγCg = I holds on M∞. Consequently, if g, γ ∈ M1,
then the equivalent conditions of Theorem 1 hold whenever f ∈M∞. While
M∞ is a strictly larger Banach space than W∼, it includes distributions as
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well as functions. In a similar way, if we restrict g, γ still further to lie in
the Schwartz space S, then Theorem 1 holds for f ∈ S ′.

However, restricting the window class beyond W is in some sense unnat-
ural for analysis on Lp. In particular, one natural window in this case (and
indeed, the inspiration for our results) is χ[0,1]d , which does not lie in M 1

or S. For Gabor analysis on Lp, the natural window class seems to be the
space W .

3. Results

3.1. An estimate. In this section we prove an estimate that will play a
key role in our analysis. We first require the following elementary fact.

Lemma 1. Let α, β > 0 be given. Let K be the maximum number of
(1/β)Zd-translates of Q1/β required to cover any αZd-translate of Qα, i.e.,

(9) K = max
k∈Zd

#
{
l ∈ Zd :

∣∣∣∣
(
l

β
+Q1/β

)
∩ (αk +Qα)

∣∣∣∣ > 0
}
.

Then given 1 ≤ p < ∞ we have, for any 1/β-periodic function m ∈
Lp(Q1/β) and any k ∈ Zd,

‖m‖pp,αk+Qα ≤ K‖m‖
p
p,Q1/β

.

The estimate we require is as follows. We will use the letter C to denote
a constant whose value may differ from occurrence to occurrence.

Proposition 1. Fix 1 ≤ p < ∞ and α, β > 0. Let g ∈ W (Rd). Then
there exists a constant C = C(p, α, β) > 0 such that if {mk}k∈Zd is any
sequence of 1/β-periodic functions in Lp(Q1/β) with

∑
k ‖mk‖pp,Q1/β

<∞,

then
∑
kmk · Tαkg converges unconditionally in Lp(Rd) and satisfies

(10)
∥∥∥
∑

k∈Zd
mk · Tαkg

∥∥∥
p
≤ C‖g‖W

(∑

k∈Zd
‖mk‖pp,Q1/β

)1/p
.

Proof. If F is a finite subset of Zd, then
∥∥∥
∑

k∈F
mk · Tαkg

∥∥∥
p

=
∥∥∥
∑

k∈F

∑

l∈Zd
mk · Tαkg · Tα(k+l)χQα

∥∥∥
p

(11)

≤
∑

l∈Zd
‖g · TαlχQα‖∞

∥∥∥
∑

k∈F
|mk| · Tα(k+l)χQα

∥∥∥
p
.

We need to estimate the local pieces in (11). Since the translates of χQα are
disjoint, we have
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∥∥∥
∑

k∈F
|mk| · Tα(k+l)χQα

∥∥∥
p

p
= �
Rd

(∑

k∈F
|mk(x)|χα(k+l)+Qα(x)

)p
dx(12)

=
∑

k∈F
�

α(k+l)+Qα

|mk(x)|p dx

≤ K
∑

k∈F
‖mk‖pp,Q1/β

,

where K is defined by (9). Since (1) is an equivalent norm for W , there is
a constant B depending only on α such that ‖g‖W,α ≤ B‖g‖W . Combining
this with (11) and (12), we obtain

∥∥∥
∑

k∈F
mk · Tαkg

∥∥∥
p
≤
∑

l∈Zd
‖g · TαlχQα‖∞

(
K
∑

k∈F
‖mk‖pp,Q1/β

)1/p

≤ BK1/p‖g‖W
(∑

k∈F
‖mk‖pp,Q1/β

)1/p
,

with B and K depending only on α and β. Thus the series
∑
mk · Tαkg is

unconditionally Cauchy in Lp-norm, hence converges unconditionally, and
furthermore (10) holds by passing to the limit.

Remark 2. A similar argument can be applied when p < 1 if g is in the
amalgam space (L∞, `p) defined by the norm (

∑
k∈Zd ‖f · TkαχQα‖p∞)1/p.

3.2. Gabor meets Littlewood–Paley. The intuitive meaning of Gabor
sums is easy to understand and provides the main idea for our subsequent
characterization of Lp(Rd) in terms of the Gabor coefficients 〈f,MβnTαkg〉.
For motivation, assume that g has essentially compact support in a neigh-
borhood of 0. Summing over the frequencies βn in the Gabor expansion (2)
first, we obtain formally for each k ∈ Zd a trigonometric series

mk(x) =
∑

n∈Zd
〈f,MβnTαkγ〉e2πiβnx

with period 1/β. We can then recast (2) formally as

(13) f =
∑

k∈Zd
mk · Tαkg,

and mk can be interpreted as the expansion into a Fourier series of that piece
of f that is supported in a neighborhood of αk. It is now plausible that the
entire Lp-norm of f can be controlled by summing these local Lp-norms.
The key ingredients in making this idea precise are Proposition 1 and the
classical theorem of Littlewood and Paley.
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Let 1 < p <∞. Then a 1/β-periodic function mk lies in Lp(Q1/β) if and
only if it can be written as a Fourier series

mk(x) =
∑

n∈Zd
ckne

2πiβnx

in the sense that the square partial sums

sNmk =
∑

|n|≤N
ckne

2πiβnx, |n| = max
j
|nj |,

converge to mk in Lp-norm (cf. [14], [19]). The convergence is conditional;
other sequences of partial sums need not converge. Littlewood–Paley theory
allows us to write the Lp-norm of mk in terms of the coefficients ckn in the
Fourier series of mk. Define

Λ0 = {(n1, . . . , nd) ∈ Zd : |ni| ≤ 1},
and let Λj be the corona

Λj = {(n1, . . . , nd) ∈ Zd : |ni| ≤ 2j} \ {(n1, . . . , nd) ∈ Zd : |ni| ≤ 2j−1}.
Then for 1 < p <∞ we have the following norm equivalence (cf. [17, Section
3.4.4] or [4, Chapter 7]):

(14) ‖mk‖p,Q1/β �
( �
Q1/β

( ∞∑

j=0

∣∣∣
∑

n∈Λj
ckne

2πiβnx
∣∣∣
2)p/2

dx
)1/p

.

This equivalence fails if p = 1 or p =∞.
Motivated by (13) and (14), we introduce a sequence space sp defined

by the following norm:

‖c‖sp :=
(∑

k∈Zd
�

Q1/β

( ∞∑

j=0

∣∣∣
∑

n∈Λj
ckne

2πiβnx
∣∣∣
2)p/2

dx
)1/p

.

In particular, if c ∈ sp, then mk(x) =
∑
n ckne

2πiβnx converges for each k
(as a limit of square partial sums) and is in Lp(Q1/β). By (14), we therefore
have

‖c‖sp �
(∑

k∈Zd
‖mk‖pp,Q1/β

)1/p
,

so sp is isomorphic to the Banach space `p(Lp(Q1/β)).
A discussion similar to the above leads us to a suitable definition of the

synthesis operator acting on sp.

Definition 2. Given c ∈ sp, we define Rgc by the iterated series

(15) Rgc =
∑

k∈Zd
mk · Tαkg, where mk(x) =

∑

n∈Zd
ckne

2πiβnx.
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In most of the standard situations occurring in Gabor theory the double
sum defining Rgc in (6) converges unconditionally. However, for the Lp-
theory it is essential to consider iterated sums as in (15) and conditional
convergence of these series. In particular, Proposition 1 implies immediately
that Rgc is well defined as the iterated sum in (15) and is an element of Lp,
and that Rg : sp → Lp is bounded. We formalize this as the following result.

Corollary 1. If g ∈ W (Rd) and 1 < p <∞, then the synthesis oper-
ator Rg defined by (15) is a bounded mapping from sp into Lp(Rd). Specifi-
cally ,

‖Rgc‖p ≤ C‖g‖W ‖c‖sp ,
where C depends only on α, β, and p.

This corollary leaves open the question of whether the double sum in (6)
converges for c ∈ sp. Addressing this issue requires using the convergence
properties of Fourier series, which we will do in Section 3.6.

By the duality theorem for Banach space valued `p-spaces [2], we have
`p(Lp(Q1/β))∗ = `p

′
((Lp

′
(Q1/β)), where 1/p′ + 1/p = 1. Consequently, the

dual space of sp is (sp)∗ = sp
′
. By considering finite sequences (which are

dense in sp), it is not difficult to show that Cg defined by (7) is indeed the
adjoint of Rg : sp → Lp defined by (15). Applying duality to Corollary 1,
we therefore obtain the following estimate for the analysis operator.

Corollary 2. If g ∈ W (Rd) and 1 < p <∞, then the analysis opera-
tor Cg defined by (7) is a bounded mapping from Lp(Rd) into sp. Specifically ,

‖Cgf‖sp = ‖(〈f,MβnTαkg〉)‖sp ≤ C‖g‖W‖f‖p,
where C depends only on α, β, and p.

The combination of Corollaries 1 and 2 implies that RγCg maps Lp

into itself. Hence, if f is, say, a function in W∼ whose sequence of Gabor
coefficients Cgf lies in sp, then f̃ = RγCgf ∈ Lp. However, we cannot yet
prove Theorem 1. In order to conclude from this that f ∈ Lp, we need to
know that the factorization of the identity RγCg = I is valid in some sense
on the space W∼. This is accomplished in the following section by extending
the Walnut representation of RγCg to W∼.

3.3. Gabor analysis on W∼. We first require the following lemma due
to Walnut [18, Lemma 2.1]. The form of this lemma as given below is proved
in [12, Lemma 6.3.1].

Lemma 2. Given g, γ ∈W , define for each n ∈ Zd the correlation func-
tion

Gn(x) =
∑

k∈Zd
g(x− n/β − αk)γ(x− αk) =

∑

k∈Zd
Tαk+n/βg(x)Tαkγ(x).
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Then ∑

n

‖Gn‖∞ ≤ (1/α+ 1)d(2β + 2)d‖g‖W‖γ‖W .

Given a sequence of functions fk ∈W∼, we will say that the series
∑
k fk

converges unconditionally in the σ(W∼,W )-topology if
∑
k〈fk, h〉 converges

unconditionally for each h ∈W . By [1, Cor. 1.5.3], W∼ is a closed subspace
of W ∗ and is σ(W∼,W )-complete.

We can now prove the following estimate for W∼ analogous to the esti-
mate proved in Proposition 1 for Lp.

Proposition 2. Fix α, β > 0 and g ∈ W (Rd). Then there exists a
constant C = C(α, β) > 0 such that if {mk}k∈Zd is any sequence of 1/β-
periodic functions in L1(Q1/β) with sup ‖mk‖1,Q1/β <∞, then

∑
kmk ·Tαkg

converges unconditionally in the σ(W∼,W )-topology and satisfies∥∥∥
∑

k∈Zd
mk · Tαkg

∥∥∥
W∼
≤ C‖g‖W ( sup

k∈Zd
‖mk‖1,Q1/β ).

Proof. Let h ∈W and define Gk(x) =
∑
n Tαk+n/βg ·Tn/βh. Then using

the periodicity of mk and applying Lemma 2 (with the roles of α and 1/β
interchanged), we obtain
∑

k∈Zd
|〈mk · Tαkg, h〉| =

∑

k∈Zd

∣∣∣ �
Rd
mk(x)Tαkg(x)h(x) dx

∣∣∣

≤
∑

k∈Zd
�

Q1/β

|mk(x)|
∣∣∣
∑

n∈Zd
Tαk+n/βg(x)Tn/βh(x)

∣∣∣ dx

≤
∑

k∈Zd
‖mk‖1,Q1/β‖Gk‖∞

≤ C( sup
k∈Zd

‖mk‖1,Q1/β )‖g‖W‖h‖W ,

with C depending only on α and β. The partial sums of
∑
kmk · Tαkg are

therefore Cauchy in the σ(W∼,W )-topology, hence converge since W∼ is
σ(W∼,W )-complete.

While Fourier series do not converge in general in L1(Q1/β), it is still
true that Fourier coefficients are unique. The preceding proposition there-
fore suggests that the synthesis operator may be defined on the following
sequence space.

Definition 3. We denote by w the space of all sequences c = (ckn) for
which there exist functions mk ∈ L1(Q1/β) such that the Fourier coefficients
of mk are ckn, i.e.,

m̂k(n) = βd �
Q1/β

mk(x)e−2πiβnx dx = ckn,
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and such that
‖c‖w = sup

k∈Zd
‖mk‖1,Q1/β <∞.

Clearly, sp ⊆ w for 1 < p <∞.

Definition 4. We extend the definition of the synthesis operator to w
by defining Rgc for c ∈ w by

(16) Rgc =
∑

k∈Zd
mk ·Tαkg, where mk ∈ L1(Q1/β) satisfies m̂k(n) = ckn,

By Proposition 2, the series (16) converges unconditionally in the
σ(W∼,W )-topology, and we have the following result.

Corollary 3. If g ∈W (Rd), then the synthesis operator Rg defined by
(16) is a bounded mapping from w into W∼(Rd). Specifically ,

‖Rgc‖W∼ ≤ C‖g‖W ‖c‖w,
where C depends only on α and β.

Remark 3. If c ∈ sp then

mk(x) =
∑

n

ckn e
2πiβnx ∈ Lp(Q1/β) ⊂ L1(Q1/β).

Consequently, for such c the definitions of Rgc given by (15) and (16) coin-
cide.

To prove the boundedness of the analysis operator on W∼, it is more
convenient to argue directly than by duality; this also provides an explicit
expression for the functions mk.

Proposition 3. If g ∈ W (Rd), then the analysis operator Cg defined
by (7) is a bounded mapping from W∼(Rd) into w. Specifically , there exists
C = C(α, β) such that

‖Cgf‖w = ‖(〈f,MβnTαkg〉)k,n∈Zd‖w ≤ C‖g‖W‖f‖W∼ .
Moreover , the functions mk ∈ L1(Q1/β) which satisfy

m̂k(n) = Cgf(k, n)

are given by

(17) mk(x) = β−d
∑

n∈Zd
(f · Tαkg)(x− n/β).

Proof. Fix f ∈ W∼. Then since g ∈ W we have f · Tαkg ∈ L1(Rd) for
every k ∈ Zd, and therefore the functions mk given by (17) are well defined
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elements of L1(Q1/β). Further,

m̂k(n) = βd �
Q1/β

mk(x)e−2πiβnx dx

= �
Q1/β

∑

l∈Zd
(f · Tαkg)(x− l/β) e−2πiβn(x−l/β) dx

= �
Rd

(f · Tαkg)(x) e−2πiβnx dx = 〈f,MβnTαkg〉

= Cgf(k, n),

and

‖mk‖1,Q1/β = β−d �
Q1/β

∣∣∣
∑

l∈Zd
(f · Tαkg)(x− l/β)

∣∣∣ dx

≤ β−d �
Rd
|(f · Tαkg)(x)| dx ≤ β−d‖f‖W∼‖Tαkg‖W

≤ C‖f‖W∼‖g‖W .
Therefore Cgf ∈ w and ‖Cgf‖w = supk ‖mk‖L1(Q1/β) ≤ C‖f‖W∼‖g‖W .

The Walnut representation of the Gabor frame operator was introduced
in [18]. We next show that the Walnut representation of the Gabor frame
operator is valid on W∼.

Proposition 4 (Walnut’s representation). Let g, γ ∈W (Rd) and let Gn
be the associated sequence of correlation functions as defined in Lemma 2.
Then for f ∈W∼(Rd) we have

(18) RγCgf = β−d
∑

n∈Zd
Gn · Tn/βf,

where the right-hand series converges absolutely in W∼-norm and uncondi-
tionally in the σ(W∼,W )-topology.

Proof. By Lemma 2 we have
∑ ‖Gn‖∞ <∞. Hence

∑

n∈Zd
‖Gn · Tn/βf‖W∼ ≤

∑

n∈Zd
‖Gn‖∞‖Tn/βf‖W∼ ≤ C‖f‖W∼

∑

n∈Zd
‖Gn‖∞,

so the right-hand side of (18) converges absolutely.
Now let mk be defined by (17). Then RγCgf =

∑
kmk ·Tαkγ, where this

series converges in the σ(W∼,W )-topology. Therefore, for h ∈W ,

〈RγCgf, h〉 =
∑

k∈Zd
�
Rd
mk(x)Tαkγ(x)h(x) dx

= β−d
∑

k∈Zd
�
Rd

∑

n∈Zd
Tn/βf(x)Tαk+n/βg(x)Tαkγ(x)h(x) dx
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= β−d
∑

n∈Zd
�
Rd

∑

k∈Zd
Tn/βf(x)Tαk+n/βg(x)Tαkγ(x)h(x) dx

= β−d
∑

n∈Zd
�
Rd
Tn/βf(x)Gn(x)h(x) dx = β−d

∑

n∈Zd
〈Gn · Tn/βf, h〉,

from which (18) follows. The interchanges of integration and summation are
justified by Fubini’s Theorem as follows. Let

G̃n(x) =
∑

k∈Zd
|g(x− n/β − αk)γ(x− αk)|

denote the correlation functions corresponding to |g|, |γ|. Since these func-
tions lie in W , by Lemma 2 we have

∑ ‖G̃n‖∞ <∞. Therefore,
∑

n∈Zd
�
Rd

∑

k∈Zd
|Tn/βf(x)Tαk+n/βg(x)Tαkγ(x)h(x)| dx

=
∑

n∈Zd
�
Rd
|Tn/βf(x)h(x)G̃n(x)| dx

≤
∑

n∈Zd
‖G̃n‖∞ �

Rd
|Tn/βf(x)h(x)| dx

≤ C‖f‖W∼‖h‖W
∑

n∈Zd
‖G̃n‖∞ <∞.

Corollary 4. Let g, γ ∈ W (Rd) be such that G(g, α, β) is a Gabor
frame for L2(Rd) with dual frame G(γ, α, β). Then RγCg = RgCγ = I holds
as an identity on W∼.

Proof. Restricted to `2 = s2, the definitions of the synthesis operator
given by (15) and (16) coincide. The frame hypothesis implies that the
identity RγCg = I holds on L2. This then implies by [12, Thm. 7.3.1] that

β−dG0 = 1 a.e. and Gn = 0 a.e. for n 6= 0.

Consequently, for f ∈ W∼ we obtain RγCgf = β−d
∑
nGn · Tn/βf = f , as

desired.

3.4. Proof of Theorem 1. Now we can prove Theorem 1, characterizing
Lp in terms of Gabor coefficients.

Proof of Theorem 1. (a)⇒(b). Assume first that f ∈ L2∩Lp. Then since
G(g, α, β) is a frame for L2(Rd), we have f = RγCgf . With C denoting the
larger of the constants appearing in Corollaries 1 and 2, we therefore have

‖f‖p = ‖RγCgf‖p ≤ C‖γ‖W ‖Cgf‖sp ≤ C2‖g‖W ‖γ‖W ‖f‖p.
Since L2∩Lp is dense in Lp, this inequality then extends to all of Lp, yielding
the first norm equivalence in (5).
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(b)⇒(a). Assume that f ∈ W∼ is such that Cgf ∈ sp. Then by Corol-
lary 1, the function f̃ = Rγ(Cgf) is in Lp. On the other hand, by Corollary 4
we have RγCgf = f . Thus f = f̃ ∈ Lp.

(a)⇔(c). This is similar to (a)⇔(b), using the factorization I = RgCγ .

3.5. Characterization via the square function. We briefly present in this
section some other approaches to characterizing Lp.

Example 1. Consider the case α = 1/β. Given a sequence c = (ckn) ∈
sp, define mk(x) =

∑
n ckne

2πiβnx. Then, since the cubes αk + Qα have
overlaps of measure zero, we have the following norm equivalences for the
space sp:

‖c‖sp �
(∑

k∈Zd
‖mk‖pp,Qα

)1/p

=
(∑

k∈Zd
�
Rd
|mk(x)|pTαkχQα(x) dx

)1/p

=
( �
Rd

(∑

k∈Zd
|mk(x)TαkχQα(x)|2

)p/2
dx
)1/p

=
∥∥∥
(∑

k∈Zd

∣∣∣
∑

n∈Zd
cknMβnTαkχQα

∣∣∣
2)1/2∥∥∥

p
.

This resembles very much the characterization of Lp in terms of the square
function of the coefficients in the Haar basis (or in any wavelet basis; cf.
[15, Ch. 6.2, Thm. 2]), and is more in the spirit of the approach of [10]. In
this regard, it is interesting to note that Lp can be easily characterized by
using a continuous analog of the square function for the short-time Fourier
transform, as in the following proposition.

Proposition 5. Let 0 < p ≤ ∞ and 1 ≤ r ≤ ∞, and fix g ∈ L2r(Rd)
and h ∈ L2r′(Rd) such that gh 6≡ 0. Then for f ∈ Lp(Rd),

(19) ‖f‖p = ‖gh‖−1
2

∥∥∥
( �
Rd

∣∣∣ �
Rd
Sgf(x, y)MyTxh dy

∣∣∣
2
dx
)1/2∥∥∥

p
.

Proof. Assume first that f , g, and h all lie in the Schwartz class. In this
case Sgf(x, y) = (f · Txg)∧(y) ∈ L1(Rd). Hence the inversion formula for
the Fourier transform is valid pointwise in the following calculation:

�
Rd
Sgf(x, y)MyTxh(t) dy = �

Rd
(f · Txg)∧(y) e2πiyth(t− x) dy

= f(t)g(t− x)h(t− x).

Therefore, the integral over the “square function” can be spelled out as
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follows:
∥∥∥
( �
Rd

∣∣∣ �
Rd
Sgf(x, y)MyTxh dy

∣∣∣
2
dx
)1/2∥∥∥

p

p

= �
Rd

∣∣∣ �
Rd
|f(t)g(t− x)h(t− x)|2 dx

∣∣∣
p/2

dt = ‖f‖pp ‖gh‖p2.

By Hölder’s inequality,

� |g(x)|2|h(x)|2 dx ≤ ‖g‖22r ‖h‖22r′ <∞.

Therefore identity (19) extends to all f ∈ Lp(Rd), g ∈ L2r(Rd), and h ∈
L2r′(Rd) by density and continuity.

3.6. Convergence of Gabor expansions in Lp. The partial sums of
Fourier series converge in Lp-norm (a “classical” result) and almost every-
where (the deepest result in harmonic analysis). We can apply this knowl-
edge to obtain similar statements for the partial sums of Gabor expan-
sions.

Given a sequence c = (ckn) ∈ sp, let us write

SK,N c =
∑

|k|≤K

∑

|n|≤N
cknMβnTαkg,

with the understanding that

SK,∞c =
∑

|k|≤K

∑

n∈Zd
cknMβnTαkg =

∑

|k|≤K
mk · Tαkg

and

S∞,∞c = Rgc.

Note that in the context of Fourier series in higher dimensions it is impor-
tant to interpret the norm | · | as the maximum norm on Rd, i.e., |n| =
maxj=1,...,d |nj |.

The following statement, that Gabor expansions converge in Lp, is per-
haps surprising in light of the known facts that Gabor expansions converge
unconditionally in the modulation spaces but cannot converge uncondition-
ally in Lp. On the other hand, the convergence indicated is clearly “condi-
tional” in the sense that the order of summation is critical.

Proposition 6. Let 1 < p < ∞ be fixed. Assume that G(g, α, β) is a
Gabor frame for L2(Rd) with dual frame G(γ, α, β), and suppose that g, γ ∈
W (Rd).
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(a) If c = (ckn) ∈ sp, then the partial sums SK,Nc converge to Rgc in
Lp-norm.

(b) If f ∈ Lp(Rd), then the partial sums

SK,N (〈f,MβnTαkγ〉) =
∑

|k|≤K

∑

|n|≤N
〈f,MβnTαkγ〉MβnTαkg,

SK,N (〈f,MβnTαkg〉) =
∑

|k|≤K

∑

|n|≤N
〈f,MβnTαkg〉MβnTαkγ,

of the Gabor expansions given in (2) converge in Lp-norm to f .

Proof. (a) Assume that c ∈ sp, and write

sNmk =
∑

|n|≤N
ckne

2πiβnx

for the partial sums of the Fourier series of mk. We know (see e.g. [14], [19])
that {e2πiβnx}n∈Zd forms a basis for Lp(Q1/β). Consequently,

lim
N→∞

‖sNmk −mk‖p,Q1/β = 0

and
sup
N
‖sNmk‖p,Q1/β ≤ C1‖mk‖p,Q1/β

for some constant C1 > 0. Now, given ε > 0, we can find K0 such that

∀K ≥ K0,
( ∑

|k|≥K
‖mk‖pp,Q1/β

)1/p
< ε.

Then we can find N0 such that

∀N ≥ N0, sup
|k|≤K0

‖sNmk −mk‖p,Q1/β <
ε

(2K0 + 1)d/p
.

Write the remainder term Rgc− SK,N c as

S∞,∞c−SK,N c = (S∞,∞c−SK0,∞c)+(SK0,∞c−SK0,N c)+(SK0,Nc−SK,N c).
Let C2 = C‖g‖W , where C = C(p, α, β) is the constant introduced in Propo-
sition 1. Then for any K ≥ K0 and N ≥ N0, we estimate

‖Rgc− SK,N c‖p ≤
∥∥∥
∑

|k|>K0

mk · Tαkg
∥∥∥
p

+
∥∥∥
∑

|k|≤K0

(mk − sNmk) · Tαkg
∥∥∥
p

+
∥∥∥

∑

K0<|k|≤K
sNmk · Tαkg

∥∥∥
p

≤ C2

( ∑

|k|>K0

‖mk‖pp,Q1/β

)1/p
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+ C2

( ∑

|k|≤K0

‖mk − sNmk‖pp,Q1/β

)1/p
+ C2

( ∑

K0<|k|≤K
‖sNmk‖pp,Q1/β

)1/p

≤ C2ε+ C2ε+ C1C2ε,

where we have applied Proposition 1 several times.
(b) If f ∈ Lp(Rd) then (〈f,MβnTαkγ〉) ∈ sp and (〈f,MβnTαkg〉) ∈ sp by

Corollary 2, so the result follows from part (a).

Example 2. We give one example of a conditionally convergent Gabor
expansion in Lp(Rd). We know that while {e2πiβnx} does form a basis for
Lp(Q1/β) for all 1 < p < ∞, it is a conditional basis when p 6= 2 (cf.
[14]). Fix p 6= 2 and let m ∈ Lp(Q1/β) be any particular function whose
Fourier series converges conditionally. That is, for this m we have sNm→ m
in Lp(Q1/β), but there exist other sequences of partial sums that do not
converge. Therefore, if we set α = 1/β, g = χQ1/β , and f = m · χQ1/β ,
then the partial sums SK,N = sNm · χQ1/β in the Gabor expansion for f
will converge to f in Lp(Rd), but there will exist other sequences of partial
sums that will not converge. Thus, the Gabor expansion of this f converges
conditionally in Lp(Rd).

3.7. Almost everywhere convergence. Finally, we consider the pointwise
convergence of Gabor expansions. For simplicity, we will restrict to the case
where the window g is compactly supported.

Proposition 7. Let 1 < p < ∞ be fixed. Assume that G(g, α, β) is
a Gabor frame for L2(Rd) with dual frame G(γ, α, β), and suppose that g
is compactly supported and ĝ ∈ L1(Rd). Then for any f ∈ Lp(Rd), the
partial sums SK,N (x) =

∑
|k|≤K

∑
|n|≤N 〈f,MβnTαkγ〉MβnTαkg(x) converge

to f(x) for a.e. x.

Proof. The assumption on g guarantees that both g and γ are in W
(see [6]).

Let ckn = 〈f,MβnTαkγ〉. Then (ckn) ∈ sp by Theorem 1, and therefore
mk ∈ Lp(Q1/β) for each k. By the multidimensional Carleson–Hunt theorem
[5], there exists a set Z ⊆ Rd of measure zero such that if x 6∈ Z then
sNmk(x) → mk(x) for all k. Fix x 6∈ Z, and let K0 be large enough that
Tαkg(x) = 0 for all |k| ≥ K0. Then

lim
K,N→∞

SK,N (x) =
∑

|k|≤K0

lim
N→∞

∑

|n|≤N
sNmk(x)Tαkg(x)

=
∑

|k|≤K0

mk(x)Tαkg(x) = f(x).

Thus the Gabor expansion converges almost everywhere.



Gabor meets Littlewood–Paley 33

Acknowledgments. We thank the anonymous referee for his careful
and insightful comments, which led us to extend the theory to W∼.

References

[1] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Boston,
1988.
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