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ABSTRACT 

Gabriel is a retargetable software system for the develop- 
ment of assembly code and microcode for single or multiple 
programmable DSPs. It is intended to ease code develop- 
ment even for processors that are not easy targets for con- 
ventional compilers. Code generation for the Motorola 
DSP56001 is emphasized. A Thor-based simulator supplies 
a variety of target multi-DSP architectures based on the 
DSP56001. The top-level algorithm description is a large 
grain data frow graph, and a graphical interface using 
OCT and VEM provides a natural representation of the 
high level structure of the algorithm. 

1. INTRODUCTION 
At the highest level, Gabriel applications are 

described as block diagrams (equivalent to large-grain data 
flow graphs [Bab84]). Feedback is efficiently supported, as 
are changes in sample rates. Blocks can have arbitrary 
granularity, and may come from a standard library or be 
generated by the user. A static (compile time) schedule is 
devised, and code generated to implement the functionality 
represented by the blocks. Each block is a parametrized 
code generator written in Lisp; this approach appears to be 
flexible enough to support target processors, such as the 
fastest DSP chips or VLSI core processors, for which tradi- 
tional high level language compilers are not practical. To 
permit static scheduling, blocks must fit the synchronous 
data $0~ model CLee87a]&ee87bl. This implies some 
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significant limitations on the algorithms that can be 
represented, although we are working to overcome these 
limitations. 

Synchronous data flow is a special case of data flow 
where the number of tokens produced or consumed by an 
actor when it fires is specified ahead of time. The number 
cannot be data dependent. This implies that SDF graphs 
cannot have data-dependent firing of actors, a significant 
limitation for many applications. Although we have 
developed more general scheduling strategies, they are not 
yet implemented in our software, so they will not be 
described here. 

Gabriel is the second generation of DSP design 
environments at Berkeley, the first generation being Blosim 
[Mes84a][Mes84b], a simulation program also based on 
block diagrams. One consequence of this heritage is that 
some of the Blosim terminology survives in the new sys- 
tem. Specifically, function blocks in the block diagram, 
also called actors in the data flow literature, are called stars 
in Gabriel. The block diagram can be hierarchical, with a 
cluster of stars being called a galaxy. A galaxy can be 
manipulated as if it were a star, and can itself contain 
galaxies. An entire application is called the universe. Blo- 
sim, however, is a DSP simulation environment, whereas 
Gabriel is a real-time implementation environment. Some 
of the generality of Blosim had to be sacrificed in order to 
get efficient implementations. 

A number of other block-diagram systems for DSP 
have appeared in recent years. Three commercially avail- 
able programs are BOSS [Sha87] from the University of 
Kansas, DSPlay from Burr-Brown, and the Signal Process- 
ing Worksystem from Corndisco. BOSS and the Comdisco 
system are both currently strictly simulation systems, not 
aimed at real-time implementations. BOSS is particularly 
distinguished for its project management facilities. DSPlay 
is a PC based system for both simulation and code genera- 
tion (for the AT&T DSP32). In the opinion of the authors, 
all three systems suffer from not using synchronous data 
flow techniques. 

Two important non-commercial block-diagram sys- 
tems aimed at real-time implementations on TMS320 sys- 
tems are a prototype program from Lincoln Labs [Zis86] 
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and Gospl [Cov87]. By not using synchronous d.ata flow 
techniques, however, both systems are constrained ID single 
sample-rate appIications. Gospl does not attempt to paral- 
lelize the code. Techniques for fine-grain parallel real-time 
implementations have been investigated at Georgia Insti- 
tute of Technology [Sch85][Sch86]. 

Block diagram languages for simulation #actually 
have a long and distinguished history; this testifies to their 
attractiveness to the DSP community. A number of sys- 
tems were proposed or built in the 1960s 
[Der69][Go169] [I&65] [Ke161] and 1970s 
[Cry74][Kor77][Hen75]. Since all of these systems were 
aimed at simulation, not implementation, they did not 
exploit one of the principle advantages of block diagram 
descriptions, which is the ability to automatically parallel- 
ize the implementation using data flow techniques. 

2. THE USER MODEL 
Gabriel runs as two concurrent Unix processes, a 

VEM process handling the graphical interface, and a Lisp 
process handling the code generation. It is possible to 
bypass the graphical interface and interact directly with the 
Lisp process. This is useful if a graphics workstation is not 
available. 

Graphical representation of computer programs is a 
controversial topic. For general-purpose programming, 
many experimental systems have been disappointing. An 
interesting experiment is Pitt [Gli84], a visual program- 
ming system in which entire programs are built graphically. 
However, many such systems go to the extreme of attempt- 
ing to express everything graphically, and the result is 
severe limitations in the complexity of programs, and. cryp- 
tic and arbitrary symbols representing concepts that have 
no natural visualization. Gabriel uses graphics to represent 
the high-level structure of the program, leaving many 
details to the textual definition of the stars. The graphical 
representation of a data flow organization is appealing, and 
complexity is easily handled using hierarchy. While we 
make no claim that a graphical representation of this type is 
suitable for all applications, we are convinced it is s&able 
for signal processing. 

The Gabriel graphical interface is built using VEM, a 
graphical editor designed at UC Berkeley for CAD. A 
sample screen is shown in figure 1. The interconnection of 
icons represents the system topology and is stored by IOCT, 
a design manager associated with VEM. Using VEM and 
X windows commands, the user can pan, zoom, resize:, and 
move windows. Icons can be moved, copied, or dragged 
(dragging preserves connections, moving does not). Com- 
mands are all menu driven and have single-key accelera- 
tors. 

Stars are collected into libraries organized around 
Unix directories and represented in palettes in the graphical 
interface. A separate library is used for each target proces- 
sor. Gabriel currently has libraries for non-real time opera- 
tion on the local workstation and for real-time operation on 
the Motorola DSP56000. A small library has also been 
built for the AT&T DSP32, demonstrating retargetab.ility. 

The user can easily create star libraries and peruse them. 

2.1. Creating Stars 
Even the best designed star library wil1 not satisfy the 

needs of most users. The Gabriel system attempts to make 
the creation of new stars as easy as possible. If a C com- 
piler is available for the target processor {as it is for the 
DSP56001), then the functionality of a new star can be 
defined in C. Otherwise it must be written in the assembly 
language or microcode of the target. The most flexible 
mechanism available for doing this in Gabriel is to define a 
code generator in Lisp. A less flexible mechanism is also 
provided that requires no Lisp coding, but we will not 
describe it here. 

The definition of a star is best illustrated with a trivial 
example, the adder represented by the plus sign icon in 
figure 1: 

(defstar 56add 
(descriptor “DSP56000 - 2-Input Adder”) 
(param saturation “yes”} 
(input in1 (type dsp56000)) 
(input in2 (type dsp56000)) 
(output sum (type dsp56000)) 
(function 56add) 

) 

Gabriel keywords are shown in bold. The name of the star 
is “56add”. The descriptor provides a short summary of 
the functionality of the star. The param entry defines a 
parameter named “saturation” with default value “yes”. 
Two inputs named “inl” and “in2” and one output named 
“sum” are defined. The type designator prevents the user 
from accidentally connecting this star to an incompatible 
star, such as a code generator for the AT&T DSP32. 
Finally a function named “56add” is associated with the 
star. The function is a Lisp routine defined as follows: 

(def-cg function 56add () 
(emit-code ” move x:” in1 “~0”) 
(emit-code ” move x:” in2 “,a”) 
(emit code ” add xO,a”) 
(if (e&al saturation “no”) 
then 

(emit-code ” move al ,x:” sum) 
else 

(emit-code ” move a,x:” sum) 
1 

1 

This function begins by issuing two move: instructions to 
get the inputs from memory and load them into registers. 
The inputs are referenced symbolically (by name), and 
Gabriel will supply the memory locations using an efficient 
and flexible static buffering scheme [Lee87b]. Then an add 
instruction is issued. Finally an instruction is issued to 
move the sum to the output memory location, where 
Gabriel again will supply the memory locations. There are 
two possibilities for the last instruction, depending on the 
value of the “saturation” parameter. That parameter 
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specifies how to handle overflow conditions in the adder. If 
the parameter has value “yes” (the default), then an 
overflow will result in the DSP56001 writing to memory 
the largest number consistent with the sign of the result that 
can be represented in the 24 bit format. The code segment 
generated is: 

;code for star3 -- ako of 56add 
move x:0,x0 
move x: 1,a 
add xO,a 
move a,x:2 

Otherwise, the overflow will be ignored and wraparound 
permitted. 

A number of comments are in order. 
. Fixed point processors often have arithmetic proper- 

ties (such as saturation arithmetic) that are difficult or 
impossible to represent in conventional high level 
languages such as C. The Gabriel mechanism, by 
contrast, has no such difficulty, as illustrated in the 
above example. 

. Depending on the schedule generated by Gabriel, it 
is possible that the code immediately following the 
above code segment would move data from memory 
back into a register. For example, Gabriel may pro- 
duce the following wasteful code segment at the 
boundary between two stars: 

move a,x:2 
move x:28 

Our plan is to eliminate such wasteful code segments 
with a post-optimizer, but this has not been done. 

. No star can retain ownership of any registers. In 
other words, the star can make no assumption about 
the data in any register on entry. The entire context 
of the star must be stored in memory. Although this 
certainly leads to some inefficiency, maintaining 
modularity would be very difficult without this 
assumption. 

. Because of the above inefficiencies, Gabriel pro- 
duces more efficient code when the granularity of the 
stars is large than when it is small. However, Gabriel 
makes no attempt to exploit concurrency within a 
star, so large granularity means less concurrency to 
exploit in a multi-processor target. 

In addition to the capabilities illustrated by the above 
example, Gabriel supports the following: 
. A star may allocate memory in the target processor 

for storage of context information from one invoca- 
tion to the next. 

. A star may have a parameterized number of inputs 
and outputs. 

. A star can have an initialization routine and termina- 
tion routine. The initialization routine can manipu- 
late or compute parameters (for instance digital filter 
coefficients) and can write assembly code that will 

appear before the main loop. This is useful for ini- 
tializing memory locations and setting up I/O. The 
termination routine is invoked after the main loop 
has been written and is useful for defining subrou- 
tines. 

Large algorithms will be difficult to represent at the 
finest level of granularity, so the hierarchical capabil- 
ity of Gabriel should be used. A galaxy is a collec- 
tion of stars that can be treated as a star. Inputs, out- 
puts, and parameters of a galaxy are bound to inputs, 
outputs, and parameters of its component stars. 

2.2. Multiple Sample Rates and Block Pro- 
cessi ng 

Unlike most block diagram environments, Gabriel 
easily and efficiently supports multiple sample rates and 
block processing. This is accomplished using the princi- 
ples of synchronous data flow &ee87a]&ee87b]. The user 
model is simple - the number of samples that the star pro- 
duces or consumes each time it is invoked is defined as a 
property of each input and output. For example, the defs- 
tar command for an FFT would be: 

(defstar fft 
(descriptor “Computes the FFI of the input.“) 
(param order 128) 
(input in (no-samples-used order)) 
(output out (no-samples-made (* 2 order))) 
(memory twiddle-factors x (* 2 order)) 
(init compute-twiddle-factors) 
(function fft)) 

The order of the FFT is a parameter. The star is not 
invoked until the number of samples given by the value 
order has accumulated on the input buffer. Gabriel knows 
to do this because of the no-samples-used property of the 
input. It gives the number of samples required for the star 
to fire. For most stars, this number is not specified and is 
assumed to be unity. In the run-time function, samples on 
the input are accessed using the format name@number, 
where the number gives the position of the sample relative 
to the most recent one. When the fft star fires, it will pro- 
duce twice as many samples as it consumes, because this 
particular implementation outputs the real and imaginary 
parts sequentially using the same output port. Memory is 
allocated for the storage of the twiddle-factors, which are 
computed by Lisp code (at compile time) in the initializa- 
tion routine. The run-time function is calledflt. 

Consider a universe consisting of a signal source 
connected to the above F’FT star connected to a signal out- 
put star. Suppose the signal source produces one sample on 
each invocation. Gabriel will automatically determine that 
the signal source must be invoked 128 times before the the 
FFT can be invoked once. In the current release of Gabriel, 
the 128 invocations are accomplished by in-line code, i.e. 
128 repetitions of the code for the signal source. This is 
obviously seriously wasteful of code space, and we are 
investigating methods for eliminating this waste. 
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3. REAL-TIME I/O 
Suppose that the signal source in the above example 

is an A/D converter connected to the FFT star. It is 
assumed that the target architecture has an A/D cclnverter 
connected to at least one of its processors. In Gabriel, an 
A/D star has one output and no inputs. In other words, in 
accordance with the data flow model, the A/D star is just a 
source of data that can be scheduled at any time. Suppose 
now that the FFT is used to implement an FIR filter in real 
time, and hence will be invoked repeatedly. Using the 
data-flow model the scheduler simply schedules the A/D 
star 128 times in a row, then schedules the FFT star once. 
With periodic repetitions of this schedule, the invocations 
of the A/D star are far from regular. If on each invocation 
of the A/D star it waits for input, then most of the time the 
processor will be idle, waiting for an input. Clearly this 
approach is not desirable. 

We have implemented a simple and familiar solution, 
double buffering. The A/D star generates code for two rou- 
tines, an interrupt service routine and a run-time routine. 
The interrupt service routine is invoked by the hardware 
independent of the Gabriel scheduler. It collects an input 
sample and stores it in a buffer. Each location in the buffer 
has a semaphore to indicate whether it is full or empty. 
The run-time routine collects data from the buffer, setting 
the semaphore to indicate that it is empty, and halting to 
wait for an interrupt only if the buffer is entirely empty. 
The interrupt service routine will be invoked at regular 
intervals, while the run-time routine can be invoked at arbi- 
trary intervals. It is easy to determine the precise size of 
the buffer required by determining the total number of 
times the A/D star is invoked in one cycle of the periodic 
schedule. 

4. TARGET ARCHITECTURES 
Gabriel is intended to be retargetable both in the 

selection of component processors and in their multi- 
processor interconnection. The system is new enough that 
we have only been able to test this on a limited number of 
configurations, but we expect it to be most useful for mod- 
est parallelism, on the order ten or fewer processors. Our 
lab is equipped with two target systems, a single-processor 
system and a four-processors system. The latter system is a 
prototype provided by Dolby Laboratories, of San Fran- 
cisco. We have concentrated on the Motorola DSP.56001 
as the component DSP for several technical reasons 
&ee89]. Perhaps most importantly, Motorola provides a 
simulator that can easily be linked to hardware simmation 
programs. We have linked this simulator to Thor [VLS86], 
a functional hardware simulator from Stanford, permitting 
us to construct a variety of multi-DSP systems in software 
and produce and test code for them. The salient features of 
each target architecture, such as the number of processors 
and the interprocessor communications mechanism, are 
specified as attributes of the target architecture. The intent 
is that Gabriel should make as few assumptions as possible. 

5. WHY NOT USE C? 
C compilers are available for many programmable 

DSPs, so why do we need Gabriel? Although the 
efficiency of the code generated by these compilers is often 
not. adequate for cost-competitive, real- time applications, 
significant improvements are expected as optimizers are 
developed. Therefore, C compilers might be an attractive 
long term solution. Furthermore, critical sections of code 
can be written in assembly language, or better yet, imple- 
mented using efficient subroutines from a subroutine 
library. Also, many engineers have experience with C, so 
little additional time is required before code development 
can begin. Finally, writing applications in C ensures porta- 
bility, so that little code conversion is required when new 
generations of DSPs are introduced. 

These are compelling arguments, and for certain 
applications, we concur with the conclusion. Programm- 
able DSPs, especially the recent generation of floating- 
point architectures, are used in non-real-time signal pro- 
cessing. Such applications often use elaborate data styuc- 
tures and have a high percentage of control code (vs. signal 
processing code). Control code tends to be large and typi- 
cally involves much decision making. However, for many 
real-time signal processing applications, a.nd for many high 
performance architectures, we do not beheve that C com- 
piiers provide a complete solution. We expect them to be 
useful tools, but only if used as part of a more sophisticated 
development environment such as Gabriel. Our reasons 
follow. 

C is not a particularly appealing language for 
describing signal processing algorithms, while block 
diagrams are. For instance, there is no clean way to 
express a delay (z-l) in C. Furthermore, there are no 
“stream” data types, so signals are not naturally represented 
in the language. Finally, many of best features of C, such 
as the flexibility of its data structures, are irrelevant for 
many signal processing algorithms. 

Subroutine libraries are in some ways similar to 
Gabriel’s star libraries. They can be efficiently coded in 
assembly language, and can provide many of the basic sig- 
nal processing functions, some of which are awkward to 
express in C. Both approaches involve some overhead. 
However, stars need not be passed their parameters at run 
time, only their data. Subroutines can only evaluate their 
parameters at run time. In fact, in Gabriel, the code gen- 
erated can depend on the value of the parameters! Conse- 
quently, the code can be tuned not just to the function 
desired, but to its parameters. For example, a Gabriel FFT 
star may have the FFT order as a parameter without penalty 
because the twiddle factors can be computed at code gen- 
eration time. If a C subroutine has the FFT order as a 
parameter, it has no choice but to compute the twiddle fac- 
tors at run time. 

There is a strong trend towards increased functional- 
ity in DSP architectures, a trend that makes writing 
efficient C compilers easier. However, the DSPs with the 
fastest performance (such as the AT&T DSP16, the Hitachi 
DSPi, and numerous proprietary microcoded DSP cores) do 
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not have C compilers, and do not have the functionality that 
makes it easier to write C compilers. Gabriel provides a 
high level interface that can be used with very high perfor- 
mance devices of limited functionality. The star library is 
customized for the processor, while the C language is fixed. 

6. PARALLEL GABRIEL 
The scheduling algorithm used in the current version 

of Gabriel is given in &ee87a]. It assumes that the run- 
time of each star is known reasonably accurately. The less 
accurate the run-times, the less optimal the schedule. The 
scheduler also assumes that communicating between any 
two processors is equally easy, and that the time required is 
not much greater than what is required to communicate 
between two stars within one processor. This model is rea- 
sonable for shared memory machines with small numbers 
of DSPs. Fortunately, as long as communication between 
any pair of processors is possible, Gabriel produces code 
that is robust in the sense that it will work, although possi- 
bly not at the predicted speed. 

The Gabriel parallel scheduler is invoked before 
code generation to determine which processor each invoca- 
tion of each star should be mapped to. The parallel 
schedule is displayed as shown in figure 1. 

The interprocessor communication mechanism is 
defined as an attribute of the target architecture. For 
retargetability, it is not built into Gabriel. However, in 
order to produce robust code, GabrieI assumes handshaking 
is done when two processor communicate. Note that is a 
shared memory architecture there is no need for an indivisi- 
ble test-and-set operation, often required when semaphores 
are used in shared memory. The reason such a mechanism 
is often required is that if a processor tests a semaphore and 
sets it in separate cycles, then it is possible for another pro- 
cessor to set the semaphore between the test and set opera- 
tions of the first processor. However, because of the data 
flow structure, the use of the semaphores is sufficiently dis- 
ciplined that this is not a problem. Specifically, only one 
processor will ever write to each buffer, and only one pro- 
cessor will ever read from each buffer. The writing proces- 
sor will not write unIess it reads an “empty” semaphore, 
and the reading processor will not read unless it detects a 
“full” semaphore. Each processor busy-waits for the sema- 
phore to reach the proper state (it is up to the scheduler to 
ensure that time is not wasted busy-waiting). 

The parallel code generation mechanism has been 
tested with a four-processor parallel architecture donated 
by Dolby Labs of San Francisco. It has four DSP56OOls, 
each with private memory, plus a shared memory accessed 
using bus arbitration. The code generated by Gabriel takes 
a minimum of about 12 instruction cycles to send or 
receive data from the shared memory, including the over- 
head of processing semaphores. While this is lean com- 
pared to many interprocessor communication mechanisms 
on parallel machines, it is high enough to preclude effective 
exploitation of fine-grain parallelism. We think it can (and 
should) be improved through architectural modifications to 
the DSP. Modest reductions can also be obtained with 

different organizations of the multiprocessor architecture. 
For example, using our Thor-based simulation we have 
tested an architecture that uses a multi-ported shared 
memory, and hence does not require interaction with a bus 
arbitrator. The reduction in interprocessor communication 
time is about 25%, but clearly the hardware cost would be 
significantly increased. 

7. CONCLUSION 
The synchronous data flow techniques used in 

Gabriel provide a high level application development 
environment that can target architectures for which conven- 
tional compilers are not suitable. However, there are still 
significant inefficiencies and limitations. Many of the 
inefficiencies can be removed, in principle, using a post- 
optimizer. More fundamental work is required, however, 
in order to broaden the domain of algorithms and multi- 
processor target architectures that can be supported. 
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Figure 1. A Gabriel screen showing an application in the bottom window, a palette of functional blocks in the middle window, a 
two processor schedule at the upper left, and a signal display at the upper right. The application at the bottom (an FM-based 
music synthesis system) is built using blocks from the palette immediately above it. Code is generated and run in real time on 
a Motorola OSP56001 system. The menu at the bottom is the Gabriel command menu. 
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