Gabriel triangulations and angle-monotone graphs : local routing and recognition

Citation for published version (APA):

Bonichon, N., Bose, P., Carmi, P., Kostitsyna, I., Lubiw, A., \& Verdonschot, S. (2016). Gabriel triangulations and angle-monotone graphs : local routing and recognition. In Y. Hu, \& M. Nöllenburg (Eds.), Graph Drawing and Network Visualization : 24th International Symposium., GD 2016, Athens, Greece, September 19-21, 2046. Revised Selected Papers (pp. 519-531). (Lecture Notes in Computer Science; Vol. 9801). Springer.
https://doi.org/10.1007/978-3-319-50106-2_40

DOI:

10.1007/978-3-319-50106-2_40

Document status and date:
Published: 01/01/2016

Document Version:

Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25 fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Gabriel Triangulations and Angle-Monotone Graphs: Local Routing and Recognition

Nicolas Bonichon ${ }^{1}$, Prosenjit Bose ${ }^{2}$, Paz Carmi ${ }^{3}$, Irina Kostitsyna ${ }^{4}$, Anna Lubiw ${ }^{5}$, and Sander Verdonschot ${ }^{6}$
${ }^{1}$ LaBRI, Univ. Bordeaux, France. bonichon@labri.fr
${ }^{2}$ School of Computer Science, Carleton University, Ottawa, Canada. jit@scs.carleton.ca
${ }^{3}$ Department of Computer Science, Ben-Gurion University of the Negev, Israel. carmip@cs.bgu.ac.il
${ }^{4}$ Université Libre de Bruxelles. irina.kostitsyna@ulb.ac.be
${ }^{5}$ David R. Cheriton School of Computer Science, University of Waterloo, Canada. alubiw@uwaterloo.ca
${ }^{6}$ School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada. sander@cg.scs.carleton.ca

Abstract

A geometric graph is angle-monotone if every pair of vertices has a path between them that-after some rotation-is x - and y monotone. Angle-monotone graphs are $\sqrt{2}$-spanners and they are increas-ing-chord graphs. Dehkordi, Frati, and Gudmundsson introduced anglemonotone graphs in 2014 and proved that Gabriel triangulations are an-gle-monotone graphs. We give a polynomial time algorithm to recognize angle-monotone geometric graphs. We prove that every point set has a plane geometric graph that is generalized angle-monotone-specifically, we prove that the half- θ_{6}-graph is generalized angle-monotone. We give a local routing algorithm for Gabriel triangulations that finds a path from any vertex s to any vertex t whose length is within $1+\sqrt{2}$ times the Euclidean distance from s to t. Finally, we prove some lower bounds and limits on local routing algorithms on Gabriel triangulations.

1 Introduction

A geometric graph has vertices that are points in the plane, and edges that are drawn as straight-line segments, with the weight of an edge being its Euclidean length. A geometric graph need not be planar. Geometric graphs that have relatively short paths are relevant in many applications for routing and network design, and have been a subject of intense research. A main scenario is that we are given a point set and must construct a sparse geometric graph on that point set with good shortest path properties.

If the shortest path between every pair of points has length at most t times the Euclidean distance between the points, the geometric graph is called a t spanner, and t is called the spanning ratio. Since their introduction by Paul Chew in 1986 [9], spanners have been heavily studied [16].

Besides the existence of short paths, another issue is routing-how to find short paths in a geometric graph. One goal is to find paths using local routing where the path is found one vertex at a time using only local information about the neighbours of the current vertex plus the coordinates of the destination. A main example of such a method is greedy routing: from the current vertex u take any edge to a vertex v that is closer (in Euclidean distance) to the destination than u is. The geometric graphs for which greedy routing succeeds in finding a path are called greedy drawings. These have received considerable attention because of their potential ability to replace routing tables for network routing, and because of the noted conjecture of Papadimitriou and Ratajczak 17 (proved in 4,14$]$) that every 3 -connected planar graph has a greedy drawing. One drawback is that a path found by greedy routing may be very long compared to the Euclidean distance between the endpoints. Of course this is inevitable if the graph has large spanning ratio.

When a graph is a t-spanner, we can ideally hope for a local routing algorithm that finds a path whose length is at most k times the Euclidean distance between the endpoints, for some k, where, of necessity, $k \geq t$. The ratio, k, of path length to Euclidean distance is called the routing ratio. For example, the Delaunay triangulation, which is a t-spanner for $t \leq 1.998$ [19], permits local routing with routing ratio $k \leq 5.90[6]$. It is an open question whether the spanning ratio and routing ratio are equal, though there is a provable gap for L_{1}-Delaunay triangulations [6] and TD-Delaunay triangulations [8].

Other "good" paths. Recently, a number of other notions of "good" paths in geometric graphs have been investigated. Alamdari et al. 2] introduced selfapproaching graphs, where any two vertices s and t are joined by a self-approaching path-a path such that a point moving continuously along the path from s to any intermediate destination r on the path always gets closer to r in Euclidean distance. In an increasing-chord graph, this property also holds for the reverse path from t to s. The self-approaching path property is stronger than the greedy path property in two ways, because the greedy property only requires that each subsequent vertex gets closer to the final destination t. The significance of the stronger property is that self-approaching and increasing-chord graphs have bounded spanning ratios of 5.333 13] and 2.094 18], respectively. An important characterization is that a path is self-approaching if and only if at each point on the path, there is a 90° wedge that contains the rest of the path 13 .

Angelini et al. 3 introduced monotone drawings, where any two vertices s and t are joined by a path that is monotone in some direction. This is a natural desirable property, but not enough to guarantee a bounded spanning ratio.
Angle-monotone paths. In this paper we explore properties of another class of geometric graphs with good path properties. These are the angle-monotone graphs which were first introduced by Dehkordi, Frati, and Gudmundsson 11] as a tool to investigate increasing-chord graphs. (We note that Dehkordi et al. 11] did not give a name to their graph class.)

A polygonal path with vertices $v_{0}, v_{1}, \ldots, v_{n}$ is β-monotone for some angle β if the vector of every edge $\left(v_{i}, v_{i+1}\right)$ lies in the closed 90° wedge between
$\beta-45^{\circ}$ and $\beta+45^{\circ}$. (In the terminology of Dehkordi et al. 11 this is a θ-path.) In particular, an $x-y$-monotone path (where x and y coordinates are both nondecreasing along the path) is a β-monotone path for $\beta=45^{\circ}$ (measured from the positive x-axis). A path is angle-monotone if there is some angle β for which it is β-monotone. To visualize this, note that a path is angle-monotone if and only if it can be rotated to be x - y-monotone. An angle-monotone path is a special case of a self-approaching path where the wedges containing the rest of the path all have the same orientation. See Figure 1. This implies that an angle-monotone path is also angle-monotone when traversed in the other direction, and thus, has the increasing-chord property. Observe that angle-monotone paths have spanning ratio $\sqrt{2}$ - this is because x - y-monotone paths do.

Fig. 1. The difference between a self-approaching st path (left) with 90° wedges each containing the rest of the path, and an angle-monotone path (right) where the 90° wedges all have the same orientation β.

A geometric graph is angle-monotone if for every pair of vertices u, v, there is an angle-monotone path from u to v. Note that the angle β may be different for different pairs u, v. Dehkhori et al. 11] introduced angle-monotone graphs, and proved that they include the class of Gabriel triangulations (triangulations with no obtuse angle). Their main goal was to prove that any set of n points in the plane has a planar increasing-chord graph with $O(n)$ Steiner points and $O(n)$ edges. Given their result that Gabriel graphs are increasing chord, this follows from a result of Bern et al. 5 that any point set can be augmented with $O(n)$ points to a point set whose Delaunay triangulation is Gabriel.

The notion of angle-monotone graphs can be generalized to wedges of angle γ different from 90°. (A precise definition is given below.) We call these anglemonotone graphs with width γ, or generalized angle-monotone graphs. For $\gamma<$ 180°, they still have bounded spanning ratios.

Results. The main themes we explore are: Which geometric graphs are anglemonotone? Can we create a sparse (generalized) angle-monotone graph on any given point set? Do angle-monotone graphs permit local routing?

Our first main result is a polynomial time algorithm to test if a geometric graph is angle-monotone. This is significant because it is not known whether increasing chord graphs can be recognized in polynomial time (or whether the prob-
lem is NP-hard). Our algorithm extends to generalized angle-monotone graphs for any width $\gamma<180^{\circ}$.

Our next result is that for any point set in the plane, there is a plane geometric graph on that point set that is angle-monotone with width 120°. In particular, we prove that the half- θ_{6}-graph has this property. Width 90° cannot always be achieved because it would imply spanning ratio $\sqrt{2}$ which is known to be impossible for some point sets.

The rest of the paper is about local routing algorithms, where we concentrate on a subclass of angle-monotone graphs, namely the Gabriel triangulations. We give a local routing algorithm for Gabriel triangulations that achieves routing ratio $1+\sqrt{2} \approx 2.41$. This is better than the best known routing ratio for Delaunay triangulations of 5.90 [6]. Also, our algorithm is simpler. The algorithm works on any triangulation and we prove that it has a bounded routing ratio for triangulations with maximum angle less than 120°. Finally, we give some lower bounds on the routing ratio of local routing algorithms on Gabriel triangulations, and we prove that no local routing algorithm on Gabriel triangulations can find self-approaching paths.

As is clear from this outline, we leave many interesting open questions, some of which are listed in the Conclusions section.

Further Background. The standard Delaunay triangulation is not self-approaching in general [2], and therefore not angle-monotone.

The Gabriel graph of point set P is a graph in which for every edge (u, v) the circle with diameter $u v$ contains no points of P. A Gabriel graph that is a triangulation is called a Gabriel triangulation. Any Gabriel triangulation is a Delaunay triangulation. Observe that a triangulation is Gabriel if and only if it has no obtuse angles.

There are several results on constructing self-approaching/increasing-chord graphs on a given set of points. Alamdari et al. [2] constructed an increasing chord network of linear size using Steiner points, and Dehkordi et al. 11 improved this to a plane network. It is an open question whether every point set admits a plane increasing-chord graph without adding Steiner points. However, for the more restrictive case of angle-monotone graphs, the answer is no: any angle-monotone graph has spanning ratio $\sqrt{2}$ but there is a point set (specifically, the vertices of a regular 23-gon) for which any planar geometric graph has spanning ratio at least 1.4308 [12. An earlier example was given by Mulzer 15.

Preliminaries and Definitions. A polygonal path with vertices $v_{0}, v_{1}, \ldots, v_{n}$ is β-monotone with width γ for some angles β and γ with $\gamma<180^{\circ}$ if the vector of every edge $\left(v_{i}, v_{i+1}\right)$ lies in the closed wedge of angle γ between $\beta-$ $\frac{\gamma}{2}$ and $\beta+\frac{\gamma}{2}$. When we have no need to specify β, we say that the path is angle-monotone with width γ, or "generalized angle-monotone". A path that is generalized angle-monotone is a generalized self-approaching path [1 and thus has bounded spanning ratio depending on $\gamma[1]$. But in fact, we can do better (proof in Appendix A):

Observation 1 The spanning ratio of an angle-monotone path with width $\gamma<$ 180° is at most $1 / \cos \frac{\gamma}{2}$.

A geometric graph is angle-monotone with width γ if for every pair of vertices u, v, there is an angle-monotone path with width γ from u to v. When we have no need to specify γ we say that the graph is "generalized angle-monotone".

Note that in an angle-monotone path (with width 90°) the distances from v_{0} to later vertices form an increasing sequence. Furthermore, any β-monotone path from u to v lies in a rectangle with u and v at opposite corners and with two sides at angles $\beta \pm 45^{\circ}$, and the union of such rectangles over all β forms the disc with diameter $u v$. This implies:

Lemma 1. Any angle-monotone path from u to v lies inside the disc with diameter uv.

2 Recognizing Angle-monotone Graphs

In this section we give an $O\left(n m^{2}\right)$ time algorithm to test if a geometric graph with n vertices and m edges is angle-monotone. The general idea is to look for angle-monotone paths from a node s to all other nodes, and then repeat over all choices of s. For a given source vertex s, the algorithm explores nodes u in non-decreasing order of their distance from s. At each vertex u we store enough information to capture all the possible angles β for which there is a β-monotone path from s to u. We show how to propagate this information along an edge from u to v.

We begin with some notation. We will measure angles counterclockwise from the positive x-axis, modulo 360°. To any ordered pair u, v of vertices (points) of our geometric graph we associate the vector $v-u$ and we denote its angle by $\alpha(u, v)$. If S is a set of angles that lie within a 90° wedge, then we define the minimum of S to be the most clockwise angle, and the maximum of S to be the most counter-clockwise angle.

Although there may be exponentially many angle-monotone paths from s to u, each such path has two extreme edges. More precisely, if P is an anglemonotone path from s to u, then the angles, $\alpha(e), e \in P$, lie in a 90° wedge, and so this set has a minimum and maximum that differ by at most 90°. We will store a list of all such min-max pairs with vertex u. Each pair defines a wedge of at most 90°. Since each pair is defined by two edges, there are at most $O\left(\mathrm{~m}^{2}\right)$ such pairs (though we will show below that we only need to store $O(m)$ of them).

The algorithm starts off by looking at every edge (s, u) and adding the pair $(\alpha(s, u), \alpha(s, u))$ to u 's list. Then the algorithm explores vertices $u \neq s$ in nondecreasing order of their distance from s. To explore vertex u, consider each edge (u, v) and each pair $(\alpha(e), \alpha(f))$ stored with u, and update the list of pairs for vertex v as follows. If $\alpha(u, v)$ is within 90° of $\alpha(e)$ and within 90° of $\alpha(f)$ then add to v 's list the pair $(\min \{\alpha(u, v), \alpha(e)\}, \max \{\alpha(u, v), \alpha(f)\})$.

If ever the algorithm tries to explore a vertex that has no pairs stored with it, then halt and declare that the graph is not angle-monotone.

To justify correctness we prove:

Lemma 2. When the algorithm has explored all the vertices closer to s than v, then there exists an angle-monotone path from s to v with extreme edges e and f if and only if the pair $(\alpha(e), \alpha(f))$ is in v 's list.

Proof. The proof is by induction on the distance from s to v.
For the "only if" direction, let P be an angle-monotone path from s to v with extreme edges e and f, and let u be the penultimate vertex of P. The subpath of P from s to u is an angle-monotone path. Suppose its extreme edges are e^{\prime} and f^{\prime} where $e=e^{\prime}$ or $f=f^{\prime}$ or both. Now, u is closer to s so by induction the pair $\left(\alpha\left(e^{\prime}\right), \alpha\left(f^{\prime}\right)\right)$ is in u 's list. Because P is angle-monotone, $\alpha(u, v)$ is within 90° of $\alpha\left(e^{\prime}\right)$ and $\alpha\left(f^{\prime}\right)$. Thus the update step applies. During the update step we add the angle $\alpha(u, v)$ to the pair $\left(\alpha\left(e^{\prime}\right), \alpha\left(f^{\prime}\right)\right)$, which gives the pair $(\alpha(e), \alpha(f))$. Thus we add the pair $(\alpha(e), \alpha(f))$ to v 's list.

For the "if" direction, suppose that the pair $(\alpha(e), \alpha(f))$ is in v 's list. This pair was added to v 's list because of an update from some vertex u closer to s applied to some pair $\left(\alpha\left(e^{\prime}\right), \alpha\left(f^{\prime}\right)\right)$ in u 's list. By induction, there exists an angle-monotone path P from s to u with extreme edges e^{\prime} and f^{\prime}, and because the update is only performed when $\alpha(u, v)$ is within 90° degrees of $\alpha\left(e^{\prime}\right)$ and $\alpha\left(f^{\prime}\right)$ therefore the edge (u, v) can be added to P to produce an angle-monotone path with extreme edges e and f.

To improve the efficiency of the algorithm we make two observations:

1. The wedge of any pair $(\alpha(e), \alpha(f))$ stored with vertex v contains $\alpha(s, v)$. This is because there is some angle-monotone path from s to v whose edges all lie in the wedge of $(\alpha(e), \alpha(f))$. Then the sum of the edge vectors-which is $\alpha(s, v)$-also lies in the wedge.
2. It is redundant to store at a vertex v a pair whose wedge contains the wedge of another pair. In other words, we need only store the minimal pairs at each vertex. There are $O(m)$ minimal pairs.

Based on these observations, we only need to store $O(m)$ pairs at each vertex, at most one pair whose first element is $\alpha(e)$ for each edge e. Finally, observe that during the course of the algorithm, each edge (u, v) is handled once in an update step. With the refinements just mentioned, handling an edge costs $O(m)$. Therefore the algorithm runs in time $O\left(m^{2}\right)$ for a single choice of s, and in time $O\left(n m^{2}\right)$ overall.

The algorithm can be generalized to recognize angle-monotone graphs of width γ for fixed $\gamma \leq 180^{\circ}$. It is no longer legitimate to explore vertices in order of distance from s, since a generalized angle-monotone path will not necessarily respect this ordering. However, we can run the algorithm in phases, where phase i captures all the angle-monotone paths of width γ that start at s and have at most i edges. Since no angle-monotone can repeat a vertex, there are at most $n-1$ edges in any angle-monotone path. Thus we need $n-1$ phases. In each phase, for each directed edge (u, v) we update each pair $(\alpha(e), \alpha(f))$ stored at u
as follows. If $\alpha(u, v)$ is within γ of $\alpha(e)$ and within γ of $\alpha(f)$ then add to v 's list the pair $(\min \{\alpha(u, v), \alpha(e)\}, \max \{\alpha(u, v), \alpha(f)\})$.

We run the algorithm for n phases, and each phase takes time $O\left(m^{2}\right)$. The total run-time of the algorithm over all choices of s becomes $O\left(n^{2} m^{2}\right)$.

3 A Class of Generalized Angle-Monotone Graphs

In this section we will show that for every point set in the plane there is a plane geometric graph on that point set that is angle-monotone with width 120°. In particular, we will prove that the half- θ_{6}-graph has this property. As noted in the Introduction, there are point sets for which no plane graph is angle-monotone with width 90°. It is an open question to narrow this gap and find the minimum angle γ for which every point set has a plane graph that is angle-monotone with width γ (and thus spanning ratio $1 / \cos \frac{\gamma}{2}$).

We first define the half- θ_{6}-graph. For each point $u \in P$, partition the plane into 60 cones with apex u, with each cone defined by two rays at consecutive multiples of 60° from the positive x-axis. Label the cones $C_{0}, C_{1}, C_{2}, C_{3}, C_{4}$, and C_{5} in clockwise order around u, starting from the cone containing the positive y-axis. Let C_{i}^{u} denote the cone C_{i} with apex u.

Given two vertices u and v, we define the canonical triangle $T_{u v}$ to be the triangle bounded by the cone of u that contains v and the line through v perpendicular to the bisector of that cone. Notice that if v is in an even cone of u, then u is in an odd cone of v. We build the half θ_{6}-graph in the following way. For each vertex u, add the edge $u v$ provided that v is in an even cone of u and $T_{u v}$ is empty. For simplicity, we assume that no two points lie on a line parallel to a cone boundary, guaranteeing that each vertex connects to exactly one vertex in each even cone. Hence the graph has at most $3 n$ edges in total. The half- θ_{6}-graph is a type of Delaunay triangulation where the empty region is an equilateral triangle in a fixed orientation as opposed to a disk [7].

Fig. 2. (a) 6 cones originating from point u, (b) Canonical triangle $T_{u v}$ with regions A and B labelled, (c) For case (b), the A region for v, w (darkly shaded) is empty because $T_{u w}$ (lightly shaded) is empty.

In order to prove angle-monotonicity properties of the half- θ_{6}-graph graph, we need the following observation.

Observation 2 If the path $v_{0}, v_{1}, \ldots, v_{n}$ is β-monotone with width γ then the reverse path $v_{n}, v_{n-1}, \ldots, v_{0}$ is $\left(180^{\circ}-\beta\right)$-monotone with width γ.

Theorem 1. The half- θ_{6}-graph graph is angle-monotone with width 120°.
Proof. We must prove that for any points u and v, there is an angle-monotone path from u to v of width 120°. Assume without loss of generality that v is in C_{0}^{u}. Let $A=T_{u v} \cap C_{4}^{v}$ and let $B=T_{u v} \cap C_{2}^{v}$. See Figure 2. We will refer to A as "the A region for u, v ", and B similarly, which allows us to refer to "the A region" for a different pair of vertices.

We will prove by induction on the number of points in $T_{u v}$ that there is a $u v$ path that is β-monotone with width 120° for $\beta=60^{\circ}$ or 120°. Furthermore, if A is empty then there is a path with $\beta=120^{\circ}$, and if B is empty then there is a path with $\beta=60^{\circ}$.

Base Case: $T_{u v}$ is empty of points. Then $u v$ is an edge of the half- θ_{6}-graph, which gives the result immediately.

Inductive Step: Assume that $T_{u v}$ is not empty and that the inductive hypothesis holds for all canonical triangles with fewer points than $T_{u v}$. Let w be the point in $T_{u v}$ such that $T_{u w}$ is empty. We consider three cases depending on which cone of v contains w.

Case (a): w is in C_{3}^{v}. Then v is in C_{0}^{w}. Note that the canonical triangle $T_{w v}$ has fewer points. Thus, by induction, there is a β-monotone path P from w to v of width 120°, with $\beta=60^{\circ}$ or 120°. For either value of β, the edge uw can be added to the beginning of P to give a β-monotone path from u to v of width 120°, with the same β. We just need to check the conditions when A or B is empty. So suppose A is empty (the case for B is similar). Observe that the A region for w, v is a subset of A, and therefore is also empty. Thus, by induction, P can be chosen to be a 120°-monotone path, and the final $u v$ path is also a 120°-monotone path.

Case (b): w is in C_{4}^{v}. Then w is in A. We will show that there is a $60^{\circ}-$ monotone $u v$ path with width 120°. Observe that this will satisfy all our requirements: our path has the correct angle in case B is empty, and A cannot be empty since w is in it.

Observe that the canonical triangle $T_{v w}$ has fewer points than $T_{u v}$ since it is a subset. Also observe that the A region for $v w$ is empty, since it is a subset of $T_{u w}$. See Figure 2(c). By induction, there is a 240°-monotone path P from v to w with width 120°. By Observation 2, \bar{P}, the reverse of P, is a 60°-monotone path from w to v with width 120°. The edge $u w$ can be added to the beginning of \bar{P} to give a 60°-monotone path from u to v with width 120°, as required.

Case (c): w is in C_{2}^{v}. This is symmetric to the previous case.
Theorem 11 implies that the spanning ratio of the half- θ_{6}-graph graph is 2 , which was already known 10. The best routing ratio achievable for the half- θ_{6} graph is $5 / \sqrt{3} \approx 2.887$ 8. (This was the first such separation proved.)

4 Local Routing in Gabriel Triangulations

In this section we give a simple local "angle" routing algorithm that finds a path from s to t in any triangulation. Like previous algorithms, the path walks only along edges of triangles that intersect the line segment st. The novelty is that the next edge of the path is chosen based on angles relative to the vector st.

The details of the algorithm are in Section 4.1. In Section 4.2 we prove that the algorithm has routing ratio $1+\sqrt{2}$ on Gabriel graphs, and discuss its behaviour on Delaunay triangulations. In Section 4.3 we give lower bounds on the routing and competitive ratios of local routing algorithms on Gabriel graphs.

4.1 Local Angle Routing

Our algorithm is simple to describe: Suppose we want a route from s to t in a triangulation. Orient st horizontally, t to the right. Suppose we have reached vertex p. Consider the last (rightmost) triangle that is incident to p and intersects the line segment st. The triangle has two edges incident to p. Of these two edges, take the one that has the minimum angle to the horizontal ray from p to the right. See Figure 3 Pseudo-code can be found below in Algorithm 1. In the pseudo-code, the angle test is equivalently replaced by two tests, one on the position of the endpoint of the edge that does not cross $s t$, and the other based on slope.

Observe that the algorithm always succeeds in finding a route from s to t because it always advances rightward in the sequence of triangles that intersect line segment st. An example of a path computed by Algorithm 1 is given in Figure 4

Fig. 3. One step of the local angle routing algorithm in finding a route from s to t. The current vertex is p. Triangle $p a b$ is the rightmost triangle incident to p that intersects the line segment st. In both of the illustrated cases we route from p to a because the (unsigned) angle $a p r$ is less than angle bpr. In terms of the pseudo-code, a step of type A is shown on the left and a step of type B on the right.

4.2 Analysis of the Algorithm

In this section we will prove that the above algorithm has routing ratio exactly $1+\sqrt{2}$ on Gabriel triangulations, which have maximum angle at most $\leq 90^{\circ}$.

```
Algorithm 1: Local angle routing
    \(p \leftarrow s\)
    while \(p \neq t\) do
        Let \(T=p a b\) be the rightmost triangle containing \(p\) that intersects segment
        \(s t\), with \(p\) and \(a\) on the same side of line st.
        if \(a\) is closer to line st than \(p\) then /* step of type \(A * /\)
            \(p \leftarrow a\)
        else /* step of type \(B\) */
            if \(\mid\) slope \((p a)|\leq|\) slope \((p b) \mid\) then
                \(p \leftarrow a\)
            else
                \(p \leftarrow b\)
```


Fig. 4. Example of route computed by Algorithm 1 (heavy blue path). In dotted red, a longer route obtained by replacing each segment of the route by the most extreme angle. Both routes are within $(1+\sqrt{2})$ of $|s t|$.

In the last part of the section we generalize the analysis to triangulations with a larger maximum angle, and we show that the routing ratio is at least 5.07 on Delaunay triangulations.

The intuition for bounding the routing ratio on Gabriel triangulations is to replace each segment of the route by the most extreme segment possible. See Figure 4. Any step of type B is replaced by a 45° segment plus a horizontal segment. Any step of type A is replaced by a vertical segment plus a horizontal segment. Vertical segments are the bad ones, but each vertical must be preceded by 45° segments, which means that instead of travelling 1 unit horizontally (the optimum route) we have travelled $\sqrt{2}$ along a 45° segment plus 1 vertically, giving us the $1+\sqrt{2}$ ratio. We now give a more formal proof.

For each edge $e=\left(p_{i}, p_{i+1}\right)$ of the path, let $d_{x}(e)=\left\|x\left(p_{i}\right)-x\left(q_{p+1}\right)\right\|$ and $d_{y}(e)=\left\|y\left(p_{i}\right)-y\left(p_{i+1}\right)\right\|$. Let A (resp. $\left.B\right)$ be the set of edges of the path where the algorithm makes a step of type A (resp. type B). (Context will distinguish edge sets from steps.) Let $x_{B}=\sum_{e \in B} d_{x}(e)$ and $x_{A}=\sum_{e \in A} d_{x}(e)$.

Lemma 3. The path computed by Algorithm 1 is x-increasing.
Proof. Let us show that each step is x-increasing. Consider a step from p, with a and b as defined in Algorithm 1. Assume without loss of generality that p and a are above line st and b is below. Since T is the last triangle incident to p that intersects $s t$, the clockwise ordering of T is $p a b$. Refer to Figure 3 .

If the algorithm takes a step of type B then a is above p (in y coordinate) and b is below p. Since angle $(b p a) \leq 90^{\circ}$, thus $x(a)$ and $x(b)$ are greater than $x(p)$.

If the algorithm takes a step of type A then since b is below $s t$ and a is above st and angle $(b a p) \leq 90^{\circ}$, thus $x(a)$ is greater than $x(p)$.

Theorem 2. On Gabriel triangulations, Algorithm 1 has a routing ratio of $1+$ $\sqrt{2}$ and this bound is tight.

Proof. We first bound $\sum_{e \in B}\|e\|$. Observe that each edge in B forms an angle with the horizontal line through p that is at most 45°. Thus $\sum_{e \in B} d_{y}(e) \leq x_{B}$ and $\sum_{e \in B}\|e\| \leq \sqrt{2} x_{B}$.

We next bound $\sum_{e \in A}\|e\|$. Observe that edges in A move us closer to the line st, and must be balanced by previous steps (of type B) that moved us farther from the line st. This implies that $\sum_{e \in A} d_{y}(e) \leq \sum_{e \in B} d_{y}(e) \leq x_{B}$ (where the last step comes from the first observation). Since $\|e\| \leq d_{x}(e)+d_{y}(e)$, thus $\sum_{e \in A}\|e\| \leq x_{A}+\sum_{e \in A} d_{y}(e) \leq x_{A}+x_{B}$.

Putting these together, the length of the path is bounded by $\sum_{e \in A}\|e\|+$ $\sum_{e \in B}\|e\| \leq x_{A}+x_{B}+\sqrt{2} x_{B} \leq(1+\sqrt{2})\left(x_{A}+x_{B}\right)$. Finally, by Lemma 3 . $x_{A}+x_{B}=\|s t\|$, so this proves that the routing ratio is at most $(1+\sqrt{2})$.

An example to show that this analysis is tight is given in Appendix B
We conclude this section with two results on the behaviour of the routing algorithm on other triangulations. Proofs are deferred to Appendix B.

Theorem 3. In a triangulation with maximum angle $\alpha<120^{\circ}$ Algorithm 1 has a routing ratio of $\left(\sin \alpha+\sin \frac{\alpha}{2}\right) / \sin \frac{3 \alpha}{2}$ and this bound is tight.

How does Algorithm 1 perform on Delaunay triangulations? We first remark that the proposed algorithm is different from the the generalization of Chew's Routing Algorithm for Delaunay triangulations [9] (cf. the algorithm described in (6)). We prove that the routing ratio is at least 5.07 . We believe this to be an upper bound as well, but leave that as an open question.

Theorem 4. The routing ratio of the proposed algorithm on Delaunay triangulation is greater than 5.07.

4.3 Limits of Local Routing Algorithms on Gabriel Triangulations

In this section we prove some limits on local routing on Gabriel triangulations. Proofs are deferred to Appendix B, along with definitions of k-local and of competitive ratio.

Theorem 5. Any k-local routing algorithm on Gabriel triangulations has routing ratio at least 1.4966 and competitive ratio at least 1.2687.

Although Gabriel triangulations are angle-monotone 11], Theorem 5 shows that no local routing algorithm can compute angle-monotone paths since that would give routing ratio $\sqrt{2}$. The following theorem tells us that even less constrained paths cannot be computed locally:

Theorem 6. There is no k-local routing algorithm on Gabriel triangulations that always finds self-approaching paths.

5 Conclusions

We conclude this paper with some open questions.

1. What is the minimum angle γ for which every point set has a plane geometric graph that is angle-monotone with width γ (and thus has spanning ratio $\left.1 / \cos \frac{\gamma}{2}\right)$? We proved $\gamma \leq 120^{\circ}$, and it is known that $\gamma>90^{\circ}$.
2. Is there a local routing algorithm with bounded routing ratio for any anglemonotone graph? any increasing-chord graph?
3 . We bounded the routing ratio of our local routing algorithm on triangulations based on the maximum angle in the triangulation, but how does this relate to the property of being generalized angle-monotone? If a triangulation has bounded maximum angle is it generalized angle-monotone? The only thing known is that maximum angle 90° implies angle-monotone with width 90° 11].
3. Is the standard Delaunay triangulation generalized angle-monotone? In particular, proving that the Delaunay triangulation is angle-monotone with width strictly less than 120° would provide a different proof that the Delaunay triangulation has spanning ratio less than $2[19$. It is known that the Delaunay triangulation is not angle-monotone with width 90° (see Section 1).
4. How does our local routing algorithm behave on standard Delaunay triangulations? We proved a lower bound of 5.07 on the routing ratio. We believe the routing ratio is close to this value, but have no upper bound.

Acknowledgements

This work was begun at the CMO-BIRS Workshop on Searching and Routing in Discrete and Continuous Domains, October 11-16, 2015. We thank the other participants of the workshop for many good ideas and stimulating discussions.

Funding acknowledgements: A.L. thanks NSERC (Natural Sciences and Engineering Council of Canada). S.V. thanks the Ontario Ministry of Research and Innovation.

References

1. Aichholzer, O., Aurenhammer, F., Icking, C., Klein, R., Langetepe, E., Rote, G.: Generalized self-approaching curves. Discrete Applied Mathematics 109(1-2), 3-24 (2001)
2. Alamdari, S., Chan, T.M., Grant, E., Lubiw, A., Pathak, V.: Self-approaching graphs. In: Proc. Graph Drawing (GD), LNCS, vol. 7704, pp. 260-271. Springer (2013)
3. Angelini, P., Colasante, E., Battista, G.D., Frati, F., Patrignani, M.: Monotone drawings of graphs. J. Graph Algorithms Appl. 16(1), 5-35 (2012)
4. Angelini, P., Frati, F., Grilli, L.: An algorithm to construct greedy drawings of triangulations. J. Graph Algorithms Appl. 14(1), 19-51 (2010)
5. Bern, M., Eppstein, D., Gilbert, J.: Provably good mesh generation. In: Proc. 31st Symp. on Foundations of Computer Science (FOCS). pp. 231-241. IEEE (1990)
6. Bonichon, N., Bose, P., De Carufel, J.L., Perković, L., Van Renssen, A.: Upper and lower bounds for online routing on Delaunay triangulations. In: Proc. 23rd European Symp. on Algorithms (ESA). LNCS, vol. 9294, pp. 203-214. Springer (2015)
7. Bonichon, N., Gavoille, C., Hanusse, N., Ilcinkas, D.: Connections between thetagraphs, Delaunay triangulations, and orthogonal surfaces. In: Proc. 36th Int. Workshop Graph Theoretic Concepts in Computer Science (WG). LNCS, vol. 6410, pp. 266-278 (2010)
8. Bose, P., Fagerberg, R., van Renssen, A., Verdonschot, S.: Optimal local routing on Delaunay triangulations defined by empty equilateral triangles. SIAM J. Comput. 44(6), 1626-1649 (2015)
9. Chew, L.P.: There is a planar graph almost as good as the complete graph. In: Proc. 2nd Annual Symp. Computational Geometry (SoCG). pp. 169-177 (1986)
10. Chew, L.P.: There are planar graphs almost as good as the complete graph. J. Computer and System Sciences 39(2), 205-219 (1989)
11. Dehkordi, H.R., Frati, F., Gudmundsson, J.: Increasing-chord graphs on point sets. J. Graph Algorithms Appl. 19(2), 761-778 (2015)
12. Dumitrescu, A., Ghosh, A.: Lower bounds on the dilation of plane spanners (2015), http://arxiv.org/pdf/1509.07181v3.pdf
13. Icking, C., Klein, R., Langetepe, E.: Self-approaching curves. Math. Proc. Camb. Phil. Soc 125, 441-453 (1995)
14. Leighton, T., Moitra, A.: Some results on greedy embeddings in metric spaces. Discrete Comput. Geom. 44, 686-705 (2010)
15. Mulzer, W.: Minimum Dilation Triangulations for the Regular n-Gon. Master's thesis, Freie Universität Berlin (2004)
16. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University Press (2007)
17. Papadimitriou, C.H., Ratajczak, D.: On a conjecture related to geometric routing. Theor. Comput. Sci. 344, 3-14 (2005)
18. Rote, G.: Curves with increasing chords. Math. Proc. Cambridge Philosophical Society 115, 1-12 (1994)
19. Xia, G.: The stretch factor of the Delaunay triangulation is less than 1.998. SIAM J. Comput. 42(4), 1620-1659 (2013)

A Omitted Proofs for Section 1

Proof (Proof of Observation 1). In the worst case we travel the two equal sides of an isoceles triangle with base length 1 and two angles of $\gamma / 2$. If ℓ is the side length, the ratio is 2ℓ, and we have $\cos \frac{\gamma}{2}=\frac{1}{2} / \ell$. Thus the ratio is $1 / \cos \frac{\gamma}{2}$.

B Omitted Proofs for Section 4

Proof (Proof of Theorem 2). To complete the proof, we show an example for which our algorithm gives a routing ratio of $1+\sqrt{2}$. Consider the configuration shown in Figure 5 . It is a Gabriel triangulation and the route computed by the algorithm is as shown. Observe that the size of the leftmost circle can be made arbitrarily small compared to $\|s t\|$. Hence, when $s=(0,0)$ and $t=(1,0)$, the route can be arbitrarily close to the polyline $s \rightarrow(1,1) \rightarrow t$. Thus we can build a point set such that the length of the computed route is as close to $1+\sqrt{2}$ as we want.

Fig. 5. Example that gives a lower bound on the routing ratio of our routing algorithm on Gabriel triangulations. The route found by the algorithm is drawn as a heavy blue path.

Proof (Proof sketch for Theorem [3). Following the intuitive justification for the routing ratio of Algorithm 1 on Gabriel triangulations, lengthen the route by replacing each segment of the route by the most extreme segment possible. Any step of type B is replaced by a segment at angle $\frac{\alpha}{2}$ plus a horizontal segment. Any step of type A is replaced by a segment at angle α away from the forward horizontal plus a horizontal segment. See Figure 6. Segments of type A are the bad ones, but each such segment must be preceded by angle $\frac{\alpha}{2}$ segments, which
means that instead of travelling 1 unit horizontally (the optimum route) we have travelled on a segment of angle $\frac{\alpha}{2}$ and then on a segment of angle $-\alpha$ (both angles measured w.r.t the forward horizontal). Let these segments have lengths ℓ_{1} and ℓ_{2} respectively. In the triangle formed by these three segments, the ℓ_{1} segment is opposite angle α, the ℓ_{2} segment is opposite angle $\frac{\alpha}{2}$ and the unit horizontal is opposite angle $180^{\circ}-\frac{3 \alpha}{2}$. We need $180^{\circ}-\frac{3 \alpha}{2}>0$, i.e. $\alpha<120^{\circ}$. By the sine law, $\ell_{1}=\sin \alpha / \sin \frac{3 \alpha}{2}$ and $\left.\ell_{2}=\sin \frac{\alpha}{2}\right) / \sin \frac{3 \alpha}{2}$. Thus the distance travelled is $\ell_{1}+\ell_{2}=\left(\sin \alpha+\sin \frac{\alpha}{2}\right) / \sin \frac{3 \alpha}{2}$.

To show that the bound is tight, we generalize the example of Figure 5. The resulting example is shown in Figure 7

Fig. 6. Intuition for general routing.

Fig. 7. The worst case situation for general routing.

Proof (Proof of Theorem 4). Let us explain the example of Figure 8. This Delaunay triangulation is defined in the following way: The first triangle $\left(s p_{1} q_{1}\right)$ is such that the slope of line $s p_{1}$ is slightly smaller than the slope of $\left(s q_{1}\right)$, so we route to p_{1}. Let $q 2$ be a point on the empty circle C_{0} containing s, p_{1} and q_{1} that is slightly below x-axis. Let C_{1} be the circle that goes through p_{1} and q_{2} such that the tangent of C_{1} at q_{2} is horizontal. Let p_{2} be a point on C_{1} such that the slope of $\left(p_{1} p_{2}\right)$ is slightly smaller than the slope of $\left(p_{1} q_{2}\right)$. Point t is placed at the rightmost intersection of C_{1} and the x-axis and we place vertices densely on the arc of C_{1} between p_{2} and t. The route in the example of Figure 8 is about 5 time $|s t|$. Moving p_{1} closer and closer to s leads to 5.07 as a lower bound on the routing ratio of Algorithm 1 on Delaunay triangulations.

Fig. 8. Example that gives a 5.0 lower bound on the routing ratio of the proposed routing algorithm on Delaunay triangulations.

A routing algorithm on a geometric graph G has a competitive ratio of c if the length of the path produced by the algorithm from any vertex s to any vertex t is at most c times the length of the shortest path from s to t in G. (Recall that the routing ratio compares the length of the path produced by the algorithm to the Euclidean distance between the endpoints. Thus the competitive ratio is less than or equal to the routing ratio.) A routing algorithm is online (or k-local) if it makes forwarding decisions based on 1) the k-neighborhood in G (for some integer constant $k>0$) of the current position of the message and 2) limited information stored in the message header.

Proof (Proof of Theorem 5).
Let us consider the triangulation of Figure 9 . This triangulation is defined as follows: all the triangles intersecting the segment [st] are right triangles. The first one is isosceles and symmetric with respect to the x-axis. Then we have a fan of

Fig. 9. Example for lower bounds on the routing ratio and competitive ratio of any k-local routing algorithm on Gabriel triangulations.
$2 k-2$ triangles each having a horizontal and pointing alternately upward and downward. Let q and q^{\prime} be respectively the upper rightmost and lower rightmost points of this set of triangles. The next triangle $q q^{\prime} B$ is such that the angle $\left(q^{\prime} q B\right)=22.5^{\circ}$. The point t is on the intersection of the line $q^{\prime} B$ and the x-axis. We complete the triangulation with two triangles, $q B A$ and $A B t$ having common hypotenuse $[A B]$. Finally we make the fan of of $2 k-2$ triangles arbitrarily thin and we assume that $\left|q q^{\prime}\right|=2$.

Now let us consider any deterministic k-local routing algorithm. We consider two triangulations: The first is the one described above (and shown in Fig. 9) and the second one is obtained from the first by reflecting over the x-axis the part of the triangulation that lies to the right of $q q^{\prime}$. No deterministic k-local routing algorithm computing a path from s to t can distinguish between the two point sets until a vertex less than k hops away from q or q^{\prime} is reached. Let $q^{\prime \prime}$ be the vertex k hops away from q or q^{\prime} that is reached by the algorithm on either triangulation.

Since the fan is arbitrarily thin, $q^{\prime \prime}$ can be assumed to be arbitrarily close to q or to q^{\prime}.

Each case, q or q^{\prime}, leads to a non-optimal path for one of the point sets; we only consider the first case as the second will follow by symmetry. If $q^{\prime \prime}$ is arbitrarily close to q then, for the point set shown in Fig. 9, the shortest paths from $q^{\prime \prime}$ to t go through A or B and are of length $|q B|+|B t|=2|q B|=$ $4 \cos \left(22.5^{\circ}\right)$. Moreover $|s q|=\sqrt{2}$ and $|s t|=1+1 / \tan \left(22.5^{\circ}\right)$. Hence the length
of the complete path computed by the algorithm is at least $\frac{\sqrt{2}+4 \cos \left(22.5^{\circ}\right)}{1+1 / \tan \left(22.5^{\circ}\right)}|[s t]| \approx$ 1.496605761 , which proves the routing ratio lower bound. The shortest route from s to t goes through q^{\prime} and is of length $\left|s q^{\prime}\right|+\left|q^{\prime} B\right|+\left|q^{\prime} t\right|=\sqrt{2}+(1-$ $\left.\cos \left(45^{\circ}\right)\right) / \sin \left(22.5^{\circ}\right)+2 \cos \left(22.5^{\circ}\right)$. Thus a lower bound on the competitive ratio is $\frac{\sqrt{2}+4 \cos \left(22.5^{\circ}\right)}{\sqrt{2}+\left(1-\cos \left(45^{\circ}\right)\right) / \sin \left(22.5^{\circ}\right)+2 \cos \left(22.5^{\circ}\right)} \approx 1.268761101$.

Fig. 10. Example of Gabriel triangulation used to show that no k-local routing algorithm can compute self-approaching paths.

Proof (Proof sketch for Theorem (6). We apply reasoning as in the previous proof, but this time on the triangulation of Figure 10 where the fat segment $q q^{\prime}$ represents a fan of $2 k-2$ thin triangles. As before we assume that the algorithm is routing through q (if not we consider the symmetric triangulation with respect of x-axis). Moving from s to q the distance toward B is not decreasing. Hence a self approaching path that goes through the edge $s q$ cannot go through the vertex B. Hence once at vertex q the only possibility is to use the edge $q A$. But moving along the edge $q A$ the distance toward t is not decreasing. Hence, there is no self approaching path from s to t that goes through q.

So for any deterministic k-local routing algorithm, there exists a triangulation on which the algorithm will not find a self-approaching path.

