
GADDI: Distance Index based Subgraph Matching in
Biological Networks

Shijie Zhang, Shirong Li, and Jiong Yang
Dept. of Electrical Engineering and Computer Science

Case Western Reserve University
10900 Euclid Avenue, Cleveland, OH 44106

{shijie.zhang, shirong.li, jiong.yang}@case.edu

ABSTRACT
Currently, a huge amount of biological data can be naturally rep-
resented by graphs, e.g., protein interaction networks, gene reg-
ulatory networks, etc. The need for indexing large graphs is an
urgent research problem of great practical importance. The main
challenge is size. Each graph may contain thousands (or more) ver-
tices. Most of the previous work focuses on indexing a set of small
or medium sized database graphs (with only tens of vertices) and
finding whether a query graph occurs in any of these. In this paper,
we are interested in finding all the matches of a query graph in a
given large graph of thousands of vertices, which is a very impor-
tant task in many biological applications. This increases the com-
plexity significantly. We propose a novel distance measurement
which reintroduces the idea of frequent substructures in a single
large graph. We devise the novel structure distance based approach
(GADDI) to efficiently find matches of the query graph. GADDI
is further optimized by the use of a dynamic matching scheme to
minimize redundant calculations. Last but not least, a number of
real and synthetic data sets are used to evaluate the efficiency and
scalability of our proposed method.

1. INTRODUCTION
With the emergence of bioinformatics and social science applica-
tions, a large amount of data can be represented as graphs. Thus,
there is an increasing interest in developing fast indexing and match-
ing algorithms that operate on graphs. Graphs can be used to model
complex data objects in a number of applications, e.g., network in-
trusion detection [33, 26], the semantic web [2], behavioral model-
ing [43, 34], VLSI reverse engineering [49], link analysis [22, 25,
36], and chemical compound classification [9, 30, 15, 10]. In the
real world, graph models are constructed to capture the structural
and relational characteristics of a variety of datasets arising in other
areas such as physical sciences (e.g., chemistry, fluid dynamics, as-
tronomy, structural mechanics, and ecosystem modeling), life sci-
ences (e.g.,biological networks), and national defense (e.g., infor-
mation assurance, network intrusion, infrastructure protection, and
terrorist-threat prediction/identification).

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

Among many graph based applications, it is quite important to re-
trieve the occurrences of a query graph in database graphs effi-
ciently. To speed up this process, a number of algorithms have
been designed [5, 23, 38, 46, 51, 52, 53, 17, 18, 40, 44, 47, 48, 11,
41, 7, 28, 29, 39, 37, 3, 8]. Most of these techniques can only be
applied to small graphs (of tens or hundreds of vertices and edges)
in a database of multiple graphs. The databases are large in the
way of the number of database graphs. Some of these methods
deal with whether any database graph contains the query graph or
not, rather than finding all the matches of the query graph in the
database graph.

In real life applications, however, we need to not only deal with
large database graphs, but also find all the matches of the query
graph. For example, biological networks (protein-protein interac-
tion networks, and gene regulatory networks, etc.) are often much
larger than the graphs used in previous exact indexing methods. A
single biological network may contain thousands or tens of thou-
sands of vertices. Biologists may want to find all the occurrences
of a particular pattern (subgraph), e.g., protein type A interacts with
protein type B and C, and protein type C interacts with protein type
A and D. In different occurrences of the pattern, the exact proteins
involved may be different since multiple proteins may share the
same type. As a result, all occurrences of a particular pattern need
to be retrieved. Therefore, we want to solve the following problem
for the necessity of real life research—how to find all the matches
of a query graph in a large database graph? Namely, given a query
graph, possibly large, and a large database graph with thousands
or tens of thousands of vertices and edges, we want to find all sub-
graphs in the database graph that are isomorphic to the query graph.

Subgraph isomorphism test is believed to be an NP hard problem
and exact indexing huge graphs (e.g., of millions of vertices) is
practically infeasible. In fact, indexing a graph with thousands
of vertices is already very difficult. To the our best knowledge,
many previous methods only apply to graphs of tens of vertices.
In addition, most of biological networks, e.g., protein interaction
networks, are of thousands of vertices. Therefore, we restrict our
applications to biological networks or small social networks. Due
to the inherent differences of the characteristics of the underlying
datasets and the problem definition, algorithms developed for the
database of multiple graphs setting may not be used to solve this
single graph database problem. Thus, it is necessary to develop a
novel solution.

When the database is composed of a number of graphs, many of the
predominant methods are frequent-substructure based. Researchers
preprocess the database and adopt a filter-and-verification process

192

to speed up the subgraph search. False positives are removed by a
given pruning strategy. Then, a subgraph isomorphism algorithm is
performed on each of the remaining candidates to obtain the final
results. These methods have proven to be effective and efficient.
However, since we have only a single database graph, the old defi-
nition of "frequency" cannot apply. The difficulty of defining "fre-
quency" over a single database graph has been addressed by [32, 4,
12]. Furthermore, since the database graph is much larger than the
database graphs for which the frequent subgraph mining tools de-
signed, those tools may not work at all. The change of the problem
setting requires us to define frequency from a new perspective, and
at the same time segment the database graph in a meaningful way.

The inherent difficulty of indexing a single graph of thousands ver-
tices and edges lies in the fact that the subgraph isomorphism is
an NP-hard problem. In the traditional database indexing research,
the data set size is very large. Thus the goal is to optimize the disk
access time. However, in the graph indexing problem setting, the
raw graph is not very large, e.g., in the range of megabytes. The
computation time to find all occurrences of a subgraph in a graph
database is very long. There exist two extreme solutions: (1) Store
and index all possible subgraphs of a graph. This is not practically
feasible due to the exponential number of possible subgraphs for a
graph of thousands edges and nodes, which may require terabyte of
storage. (2) Only store the raw database graph. Since the size of the
raw database graph is small, it can be easily fit in the main memory.
However, the query (matching) time will be very long due to the
NP-hard complexity. As a result, we need identify a solution which
lies somewhere between these two extremes, that only utilizes an
index structure of a reasonable size and can provide efficient query
time.

Before providing a solution, we first propose the inequality prop-
erty, which is the general requirement of any distance based prun-
ing for a matching algorithm. In this paper we present the index
structure in the form of distance, because distance is much easier
to compute than most substructures which may introduce tedious
subgraph isomorphism tests.

Afterwards, we present our index-based method for subgraph match-
ing, called GADDI. GADDI employs a novel graph indexing method,
the NDS distance (neighboring discriminating substructure distance).
Most existing graph indexing methods only index subgraphs (paths,
trees or general subgraphs), which may result in a huge amount of
index substructures in addition to the subgraph isomorphism tests.
The indexing unit of NDS distance is closely related to a pair of
neighboring vertices. The neighborhood concept captures the local
graph structure between each pair of vertices, and leads to an in-
dex substructure with high pruning power. The number of indexing
units is proportional to the number of neighboring vertices in the
database, which allows the index to grow in a more controllable
pace. To make the index construction process more efficient, we
optimize the procedure by using the property of neighboring ver-
tices.

After the part of index construction, we propose an innovative match-
ing algorithm for query process. The algorithm is based on twoway
pruning. Any database graph vertex matched to a query graph
vertex needs to have some vertices around it in order to meet the
inequality property. On the other hand, after a vertex has been
matched, we will remove some of its neighboring vertices since
they can never be matched. The convenience in employing dis-
tances as index structures accelerates the pruning process. Since

we are to find all the matches of the query graph, much of the cal-
culation may be redundant. We incorporate a dynamic matching
scheme into our matching algorithm to avoid wasted calculation.
The dynamic matching scheme is specifically designed for the pur-
pose of finding all the matches of the query graph.

The main contributions of this paper are as follows:

1. We propose GADDI—an index based graph matching algo-
rithm in a single large graph, especially for biological net-
works. GADDI indexes the NDS distance between pairs of
neighboring vertices. It achieves high pruning power and its
size scales linearly with the number of neighboring vertex
pairs. We introduce an innovative graph matching algorithm,
which applies a two-way pruning and incorporates a dynamic
matching scheme.

2. By applying GADDI to real applications, we show its ef-
fectiveness, significant performance improvements over ex-
isting methods, and ability to efficiently accomplish query
processing in a large database graph.

The remainder of this paper is organized as follows: Related work
is presented in Section 2. Section 3 defines the preliminary con-
cepts. Section 4 and 5 describe our indexing mechanism, and the
matching algorithm, respectively. Experimental results are pre-
sented in Section 6, and the final conclusions are drawn in Section
7.

2. RELATED WORK
We use graphs to model complex data objects in the real world,
e.g., chemical compounds, biological networks, images, XML doc-
uments and social networks. Due to its wide usage, it is important
to organize, access, and analyze graph data efficiently. As a result,
graph database research has attracted a large amount of attention
from the database and data mining communities, such as subgraph
search in a database of multiple graphs [5, 23, 38, 46, 51, 52, 53,
16], approximate subgraph matching [17, 40, 44, 47, 48, 11], fre-
quent subgraph mining [21, 31, 45, 19, 20, 35, 27], and correlation
subgraph query[24].

Regarding to the problem studied in this paper, the first category
of related research lies in subgraph isomorphism algorithms. Ull-
mann [41] proposed a subgraph matching algorithm based on a
state space search method with backtracking. However, this algo-
rithm is prohibitively expensive for querying against a large database
graph. Recently, Cordella [7] proposed a new subgraph isomor-
phism algorithm for large graphs. These algorithms do not utilize
any indexing structures by preprocessing the database graph.

Among many graph based applications, it is quite important to re-
trieve those database graphs containing the query graph efficiently.
This is called a subgraph search problem and is closely related to
work in this paper. To speed up the subgraph search, researchers
preprocess the database and adopt a filter-and-verification frame-
work. First, false positives are removed by a pruning strategy.
Then, a subgraph isomorphism algorithm is performed on each of
the remaining candidates to obtain the final results. Many prun-
ing strategies have been proposed, which can be divided into two
sub-categories.

The first sub-category is the frequent discriminate substructure based
filtering. The approaches in this sub-category apply data mining

193

techniques to extract some discriminating substructures, then build
inverted index for each feature. Query graph Q is denoted as a set
of features, the pruning power of which is always dependent on the
set of selected features. With the inverted indexes, we can find the
complete set of candidates. Many algorithms have been proposed
to improve the effectiveness of the selected features, such as gIn-
dex[46], TreePi[51], FG-Index[5] and Tree+δ[52]. In gIndex, the
authors propose a discriminative ratio for features. Only frequent
and discriminative subgraphs are chosen as indexed features. In
TreePi, due to the manipulation efficiency of trees, frequent and
discriminate subtrees are chosen as feature set. The frequent sub-
graphs and edges are used as indexed features in FG-Index. In
Tree+δ, the author use frequent free trees and a small number of
discriminative subgraphs as indexed features.

The second sub-category is the path, vertex, and neighborhood sub-
structures based filtering, in which no data mining based feature
selection is necessary. There are several representative algorithms.
In GraphGrep [38, 16], the authors propose to use all paths up to
maxL length as index features. Similarly, GraphGrep also builds
inverted index for each path. In Closure-Tree [17], a pseudo sub-
graph isomorphism test is performed by checking the existence of
a semi-perfect match from vertices in the query graph to vertices
in a data graph (or graph closure). In TALE [40], an approxi-
mate matching method was proposed for large query graphs based
on neighborhood units. In [18], the authors introduced a pattern
matching method based on a combination of techniques: use of
neighborhood subgraphs and profiles, joint reduction of the search
space, and optimization of the search order. Since paths, vertices
and neighborhood units are less discriminative than the frequent
substructures, these algorithms may have less pruning power but
better manipulation efficiency.

Most of these techniques only apply to a database of multiple small
or medium sized graphs. These databases are large in the sense
that they contain many graphs. Many of these methods care more
about whether any database graph contains the query graph or not,
instead of finding all the matches of the query graph in a given
database graph.

Another category of research related to subgraph matching is graph
alignment [28, 29, 39, 37, 3, 8]. Instead of matching subgraphs in
a large database graph, these methods aimed to align a pair of bio-
logical graphs. In the problem studied in this paper, the size of the
query graph may be much smaller than that of the database graph.
Thus, the graph alignment method may not be directly applicable.

To apply the idea of frequent discriminate substructure based filter-
ing, we need to create a new way to define ”frequency" within one
large graph. There is some related work in mining frequent sub-
graphs in a large graph [32, 50, 6, 13, 42]. However, none of them
is designed for the acceleration of graph matching.

3. PRELIMINARIES
In this section, we introduce the fundamental definitions used in
this paper and give the formal problem statement. We investigate
the graph matching methods for undirected and unweighted labeled
graphs. Without a loss of generality, it is easy to extend our meth-
ods to directed and weighted labeled graphs.

DEFINITION 1. A labeled graphG is a five element tuple G =
{V, E,ΣV ,ΣE , LG} where V is a set of vertices and E ⊆ V × V

is a set of edges. ΣV and ΣE are the sets of vertices and edge
labels, respectively. The labeling function LG defines the mappings
V → ΣV and E → ΣE .

DEFINITION 2. A labeled graphG = (V,E,ΣV ,ΣE , l) is iso-
morphic to another graph G′ = {V ′, E′,Σ′

V ,Σ
′
E , l

′}, denoted by
G ≈ G′, iff there exists a bijection f : V → V ′ s.t.

1. ∀ u ∈ V , l(u) = l′(f(u)),

2. ∀ u, v ∈ V ,(u, v) ∈ E ⇔ (f(u), f(v)) ∈ E′, and

3. ∀ (u, v) ∈ E, l(u, v) = l′(f(u), f(v)).

S is subgraph isomorphic to G′, denoted as S ⊆ G′, if S is
isomorphic to at least one subgraph G′′ of G′. G′′ is a match of S
in G′.

An unlabeled graph substructure S is (sub)isomorphic to another
graph G without considering labeling if G is regarded as an unla-
beled graph and S is (sub)isomorphic to G.

DEFINITION 3. Given vertices va and vb in a connected graph
G, we define the shortest distance between va and vb, denoted as
d(G, va, vb), as the number of edges on the shortest path between
va and vb.

Since G is connected and undirected, we have d(G, vb, va) < |V |
and d(G, va, vb) = d(G, vb, va), where V is the vertex set of G.

In this paper, if the type of distance is not otherwise specified, short-
est distance is assumed.

Figure 1: 2-neighborhood of vertex 5

DEFINITION 4. Given a vertex v in a graph G and an integer
k, we define the k-neighborhood of v, denoted as Nk(G, v), as a
set of vertices in G such that

∀v′ ∈ Nk(G, v), d(G, v′, v) ≤ k

As an example, in figure 1, the 2-neighborhood set of vertex 5 is
set { 3, 4, 5, 6, 7, 8}.

DEFINITION 5. Given a subset V1 of vertex set V of graph G,
an induced subgraph of V1 is the subgraph composed of V1 and
any edge whose endpoints both belong to V1. We denote the induce
subgraph of V1 as S(V1).

As an example, in figure 2, the induced subgraph of figure 2(b) is
the graph in figure 2(c).

194

(a) G (b) V1 (c) S(V1)

Figure 2: Induced subgraph

(a) Database graph (b) Query

Figure 3: Database graph and query graph

Problem Statement: Given a large database graph G and a query
graph Q, we aim to find all distinct matches of Q in G.

In figure 3, there is exactly one match of the query graph in the
database graph. In this paper, we assume that the database graph
is large, e.g., |V | ≥ 103. The processing of graph queries in our
paper can be divided into two major steps:

1. Database Preprocessing. In this step we construct the in-
dex from the database graph. We enumerate and select dis-
criminative substructures in the database graph G. The set
of discriminative substructures is denoted by DS(G). For a
substructure ti ∈ DS(G), we count the number of matches
of ti in the induced subgraph of intersecting neighborhood
of two vertices. It is stored as the NDS distance between the
pair of vertices. The NDS distances are used in the index
structures.

2. Query Processing. In this step we match the query graph
to the database graph. This step includes two repeated sub-
steps: 1. Vertex matching. In this step we match a vertex in
the database graph to one in the query graph. We match two
vertices if they have the same label, meet the adjacency rela-
tionships, and satisfy the distance constraint with unmatched
vertices. 2. Pruning unqualified vertices by distance. In
this step, we prune the candidate vertices in the database
graph by distance constraints introduced by the new matched
vertex.

4. DATABASE PREPROCESSING
When the database of interests is composed of many small or medium
sized graphs, GraphGrep [38, 16], GIndex [46] and TreePi [51] use
substructures (paths, frequent subgraphs and trees respectively) to
filter out graphs that do not match the query. There are two prob-
lems in directly applying these techniques in the new problem when
the only database graph is of much larger size. First, the old concept
of frequent substructure does not apply [32]. We need to develop
a new definition of frequent substructures in a single large graph.
Second, the final verification process of these algorithms may be
slow because it might not be easy to directly apply the knowledge

of substructure locations due to the difficulty of subgraph isomor-
phism tests.

In approximate large graph matching, TALE [40] used neighbor-
hood units to improve performance. The neighborhood unit of a
vertex consists of three elements: the degree of the vertex, the num-
ber of edges between the neighbors, and the labels of the actual
neighbors. In this paper, we extend the definition of "neighbor-
hood" in two ways. First, we extend the neighborhood unit from
the set of adjacent vertices to the k-neighborhood set. Second, we
extract more information from the intersection of the neighborhood
units of a pair of vertices. Thus, we make the neighborhood defi-
nition a more powerful pruning tool. Moreover, by modifying the
definition of a neighborhood, we are able to apply the concept of
frequent substructures in this graph matching problem, which is
widely adopted in subgraph search methods. We will provide more
details in the remainder of this section.

In this section, we construct an index that will accelerate the query
processing. First we introduce a property for the desired distance
measurement. Then a new type of distance measurement between
a pair of vertices is presented. Last we describe how to construct
the index structure based on this distance.

4.1 The inequality property
There are many possible types of distance measurements between
a pair of vertices. Only when the distance measurement meets the
inequality property can we use it to reduce the search space during
the query processing. Before we propose the distance measure-
ment, we first introduce the inequality property.

If the query graph Q is subgraph isomorphic to the database graph
G, for any vertices v1, v2, v3, and v4 in Q and their corresponding
vertices v′1, v′2, v′3 and v′4 in G, we require a distance measurement
dist, such that:

(dist(G,v′1, v
′
2)− dist(Q,v1, v2))×

(dist(G,v′3, v
′
4)− dist(Q,v3, v4)) ≥ 0

In other words, the difference between the distances between a pair
of vertices in Q and its counterparts in G should either be always
less than or equal to zero, or be always greater than or equal to zero.

Many types of distance measurements satisfy the inequality prop-
erty, e.g., shortest distance, longest distance, second shortest dis-
tance, etc. The longest distance between any pair of vertices in
the query graph, is always less than or equal to its counterparts in
the database graph. In figure 4, the longest distance between two
vertices (filled) is four in the query graph, while it is eleven in the
database graph (the longest paths are marked by dashed lines).

4.2 The NDS distance
In this subsection, we introduce a new distance measurement based
on the frequent substructure count. This measurement satisfies the
inequality property. We further explore the relationship between
neighboring vertices in the database graph. We generate one sub-
graph from each pair of vertices and obtain a set of subgraphs.
Thus, we can re-introduce the idea of frequent substructures to the
new problem where the only database graph is of much larger size
than the database graphs in previous methods. However, we need
to restrict the size of this set of subgraphs.

195

(a) Database graph (b) Query

Figure 4: The definition of longest distance satisfies the inequal-
ity property

To limit the number of subgraphs in the set, we introduce a pa-
rameter Length, which is the upper bound of the shortest distance
between a pair of vertices to be indexed. Additionally, to reduce the
average size of the subgraphs in the set, we select the intersection
(instead of union) of the neighborhood sets. For a pair of vertices
v1 and v2 within distance Length in the database graph G and an
integer k (2× k > Length), we generate an intersecting subgraph
Int(G, v1, v2) from v1 and v2 as follows.

• Generate the k-neighborhood set of v1 and v2, i.e.,Nk(G, v1)
and Nk(G, v2).

• Obtain the intersection of Nk(G, v1) and
Nk(G, v2), Nk(G, v1) ∩Nk(G, v2)

• Obtain the induced subgraph of the intersection set as
Int(G, v1, v2), Int(G, v1, v2) = S(Nk(G, v1)∩Nk(G, v2))

By the above process, we can generate a set of intersecting sub-
graphs from pairs of vertices within distance Length. When the
database graph is very dense, i.e., high edge to vertex ratio, these
intersecting subgraphs can be quite large, and hence may not be as
useful as expected. However, the large database graph of interests
is more likely to be generally sparse and locally dense (as noted in
[14]). Thus, the intersecting subgraphs will be much smaller than
the original database graph. In addition, the radius k can be chosen
(as shown in the experimental results section) so that the number of
intersecting subgraphs is too large.

With a set of intersecting subgraphs, we use frequent subgraph min-
ing tools to find frequent substructures and select the discriminative
ones. More details of how to select the discriminating substructure
set DS(G) will be discussed in the next subsection. Let us assume
that DS(G) is chosen for a substructure P in DS(G) and a pair of
vertices v1 and v2. We define the neighboring discriminating sub-
structure (NDS) distance of P between v1 and v2 as the number of
matches of P in the intersecting subgraph Int(G, v1, v2). We de-
note this distance as dNDS(G, v1, v2, P). We should address here
that in case of automorphisms, when more than one matches of P is
located in the same set of database graph vertices, we count these
matches separately as though they are located in different sets of
vertices.

As an example, in figure 5, let us suppose that Length = 4, k =
3, the NDS distance between the two filled vertices is three, as
there are three matches in their intersection subgraph. The matches

(a) Database graph (b) P

Figure 5: The definition of NDS distance satisfies the inequality
property

of the discriminative substructure in the intersecting subgraphs are
marked by dashed lines.

Next we show that the NDS distance satisfies the inequality prop-
erty.

THEREOM 1. The NDS distance satisfies the inequality prop-
erty.

PROOF. Let us suppose that there is a match of Q in G, as-
suming v1 and v2 are two vertices in Q and v′1 and v′2 are their
counterparts in G.

We have S(Nk(Q,v1)) ⊆ S(Nk(G, v′1)) and S(Nk(Q,v2)) ⊆
S(Nk(G, v′2)), which leads to Int(Q,v1, v2) ⊆ Int(G,v′1, v

′
2).

For a discriminating substructure P , the number of matches of P in
Int(G, v′1, v

′
2) is always no less than that in Int(Q,v1, v2). Thus,

the NDS distance satisfies the inequality property.

4.3 Selecting discriminating substructures
In the last subsection, we defined the NDS distance between two
vertices. Now, we explain how to select the discriminative sub-
structure set DS(G). A discriminating substructure is a small fre-
quent substructure of intersecting subgraphs of neighboring ver-
tices. Here we define a substructure to be frequent if it is subgraph
isomorphic to no less than 50% of the intersecting subgraphs with-
out considering labeling. We restrict the size of the substructure
since the subgraph isomorphism test of large graphs is very ex-
pensive; we relax the labeling restrictions so that more frequent
substructures will qualify as candidates.

Given a database graph G, and parameters Length and k, we first
generate a subset of around 100 intersecting subgraphs ISr(Int(G))
by randomly selecting pairs of vertices. Then, we use a frequent
graph mining algorithm (e.g., [45]) to find unlabeled top 10 fre-
quent substructures of either 3 or 4 edges in ISr(Int(G)). We
record the number of matches of these frequent substructures in
each intersecting subgraph. These frequent substructures distin-
guish the intersecting subgraphs by the number of matches, and are
selected as a first set of discriminating substructures.

The large number of possible frequent substructures may signifi-
cantly increase the computational and space complexity. Moreover,
two substructures may carry good distinguishing information indi-
vidually, but there is little gain if they are combined together. Due
to the large number of possible substructures, it is hardly possible

196

to select a set of substructures without including any mutual cor-
relation. Therefore, we select only the most important discrimina-
tive substructures leading to the large inter-class distance and small
intra-class variance, i.e., the number of matches are far apart for
intersecting subgraphs in the different clusters and are similar for
intersecting subgraphs in one cluster. After selecting the initial set
of discriminating subgraphs, we cluster the intersecting subgraphs
into groups according to the number of matches. From the original
set of frequent substructures, we select the most discriminative 3
substructures by a sequential forward selection procedure.

The sequential forward selection procedure is straightforward: first,
we select the discriminating substructure with the best discriminat-
ing ability, say x1, and then select the discriminating substructure
which forms the best discriminating ability with x1. The proce-
dure continues until all the 3 substructures are selected from the
10 original ones. The number of combinations searched with this
procedure is 27. Thus, the original 10 discriminating substructures
are reduced to 3, as the final set of discriminating substructure, i.e.
DS(G).

4.4 Constructing index
Having selected and refined the discriminative substructure set DS(G),
for each P in DS(G), we calculate the NDS distance of P for every
pair of neighboring vertices as our index structure. There are ap-
proximately |V |degLength/2 pairs of neighboring vertices, where
deg is the average degree and V is the vertex set of the database
graph G. To reduce the amount of calculation, we provide the fol-
lowing method.

Let us suppose that we have already calculated the NDS distance
between vertices v1 and v2 for discriminative substructure P and
parameter k. For another adjacent vertex of v1, denoted as v3, we
deduce dNDS(G, v2, v3, P) from dNDS(G, v1, v2, P).

We can deduce that the NDS distance between v2 and v3 is
dNDS(G, v1, v2, P) plus the number of matches of P in
S((Nk(G, v3) ∩ Nk(G, v2)) which contain at least one vertex in
Nk(G, v3) − Nk(G, v1), and minus the number of matches of P
in S(Nk(G, v1) ∩ Nk(G, v2)) which contains at least one vertex
in Nk(G, v1)−Nk(G, v3). Formally, it is:

THEREOM 2.

M132 = {m|P ≈ m ⊆ S(Nk(G, v3) ∩Nk(G, v2)),

m ∩ (Nk(G, v3)−Nk(G, v1)) �= ∅}
M312 = {m|P ≈ m ⊆ S(Nk(G, v1) ∩Nk(G, v2)),

m ∩ (Nk(G, v1)−Nk(G, v3)) �= ∅}
dNDS(G, v2, v3, P) = dNDS(G, v1, v2, P) + |M132| − |M312|

PROOF. Let us suppose that the set of matches in Int(G, v2, v3)
is T23 and in Int(G, v1, v2) is T12. By definition, we have T23 ∪
M312 = T12 ∪M132. By set theory, T23 ∩M312 = ∅ and T12 ∩
M132 = ∅. So we have |T23| + |M312| = |T12| + |M132|, and
consequently |T23| = |T12|+ |M132|− |M312|. Replacing the sets
with NDS distances we have

dNDS(G, v2, v3, P) = dNDS(G, v1, v2, P) + |M132| − |M312|

By the shortest distance definition, the set ofNk(G, v3)−Nk(G, v1)

and Nk(G, v1)−Nk(G, v3) can be retrieved as follows:

Nk(G, v3)−Nk(G, v1) =

{v|v ∈ V, d(G, v1, v) = k + 1, d(G, v3, v) = k}
Nk(G, v1)−Nk(G, v3) =

{v|v ∈ V, d(G, v3, v) = k + 1, d(G, v1, v) = k}
That is, any vertex v in Nk(G, v3) but not in Nk(G, v1) should
satisfy the requirement that the shortest distance from v to v1 is
k + 1 and the distance from v to v3 is k, and vice versa.

To obtain dNDS(G, v3, v1, P), we only need to search those matches
containing vertices whose distances to v1 and v3 are exactly k and
k+1. Considering that the discriminating substructures we use are
of small size, we can improve the efficiency of the index construc-
tion by theorem 2.

To store the NDS distance between pairs of neighboring vertices,
we use one array for each vertex of a discriminating substructure P .
In the array, we store the NDS distance from the vertex to each of
its neighboring vertices, which are sorted by the vertex indices. The
space requirement for the index structure is |DS(G)||V |degLength.

5. MATCHING ALGORITHM
In this section, we introduce the subgraph matching algorithm. We
start with a depth first matching algorithm, and then we provide a
dynamic matching method to improve overall efficiency.

5.1 Depth first matching algorithm
Given a query graph Q, we need to find all matches of Q in the
database graph G. In this subsection, we introduce the matching
algorithm by depth first search. The algorithm is based on the fol-
lowing two observations.

1. To match a database graph vertex vg to a query graph vertex
vq , we will need to check the neighboring vertices of vg in G and
those of vq in Q. For each neighboring vertex v of vq, we want
to find at least one neighboring vertex v′ of vg , such that v and
v′ have the same label, and the NDS distance for any discriminat-
ing substructure between v′ and vg is greater than or equal to that
between v and vq while the shortest distance between v′ and vg

is less than or equal to that between v and vq . Formally, given
vg in G and vq in Q, ∀v ∈ Q, d(Q,vq , v) ≤ Length, we are
to find v′ ∈ G, d(G, vg, v

′) ≤ Length, such that (1) L(v) =
L(v′), (2) d(Q, vq, v) ≥ d(G, vg , v

′), and (3) dNDS(Q, vq , v)
≤ dNDS(G, vg , v

′). Based on the inequality property, if such a
neighboring vertex (v′) does not exist in the database graph, then
we cannot match vg to vq .

2. Having matched a database graph vertex vg to a query graph
vertex vq, we can prune those vertices in the database graph that
cannot appear in the current match based on the matching between
vg and vq. For any neighboring vertex v of vg , we need to find
at least one vertex v′ in Q, such that v and v′ are of the same la-
bel, and the NDS distance for any discriminative substructure is
less than or equal to that between v and vg while the shortest dis-
tance is greater than or equal to that between v and vg . Formally,
given vg in G and vq in Q, ∀v ∈ G, d(G, vg, v) ≤ Length, we
are to find v′ ∈ Q, such that (1) L(v) = L(v′), (2) d(Q, vq, v

′)
≥ d(G,vg , v), and (3) dNDS(Q, vq, v

′) ≤ dNDS(G, vg, v). (Re-
member that when d(Q,vq , v

′) > Length, dNDS(G, vg, v) = 0.)
Based on the inequality property, if such a vertex (v′) does not exist

197

(a) Query graph (b) DS P1 (c) DS P2

Figure 6: Query graphs and the discriminating substructure

in the query graph, then we cannot match the database graph ver-
tex v to any vertex in the query graph, and we remove v from the
candidate set. After removing all such database graph vertices, we
also remove any vertex unconnected to the matched vertex.

Although these two observations look similar, they are not the same.
In observation one, we fix the query graph vertex and then search
for database graph vertices, so that we can find a potential match
for the query graph vertex. In observation two, we fix the database
graph vertex and search for query graph vertices, so that we can
decide whether the database graph vertex can be removed. This
twoway pruning strategy is highly effective. It is also very efficient
because the shortest distance and the NDS distance can be retrieved
quickly in the database graph.

Let us suppose that we have the two discriminative substructures
shown in figure 6(b) and figure 6(c) and Length = 3, k = 2.
To match a database graph vertex in figure 3(a) to the filled vertex
in figure 6(a), we check the neighboring vertices (within distance
Length) of each vertex in figure 3(a) with label "1". In the query
graph, there are three vertices with the label "3" of the filled vertex.
The NDS distance of the discriminating substructure P1 between
any of the filled vertices to the filled vertex is 1, and the shortest
distances are 1, 2, and 2 respectively. By applying this informa-
tion, we can significantly reduce the set of candidate database ver-
tices for the filled query graph vertex from the whole set of labeled
"1" vertices to a small vertex set. If we use the discriminative sub-
structure in figure 6(b), we can reduce the candidate set to the set
of filled vertices in figure 7. On the other hand, if we use the dis-
criminative substructure in figure 6(c), we can reduce the candidate
set to two vertices (the rightmost filled vertex in figure 7 would be
removed).

In the same example, having matched the filled database graph ver-
tex in figure 8 to the filled query graph vertex in figure 6(a), we
remove those database graph vertices which are impossible to be
matched based on the information from the new matched vertex.
The greatest shortest distance from the filled vertex to any labeled
"1" vertex is 3 in the query graph, when the NDS distance of both
P1 and P2 should be at least 1. Similarly, the greatest shortest dis-
tance from the filled vertex to any vertex labeled "3" is 2 in the
query graph, when the NDS distance of either P1 or P2 should be
at least 1. Thus, we remove all unqualified vertices in the database
graph and as well as the unconnected ones. The remaining database
graph is shown in figure 8.

From these two observations, we introduce a new index based sub-
graph matching algorithm. To find a match for the query graph
in the database graph, we match one pair of vertices a time. The
database graph vertices are chosen in a depth first fashion. With-
out loss of generality, we assign a unique vertex ID to each query
graph vertex, vq1, ..., vqn, where n is the number of vertices in

Figure 7: Reduced candidate vertex set (filled)

Figure 8: The pruned database graph (pruned by the filled ver-
tex)

the query graph and for any i, 1 ≤ i ≤ n, the induced subgraph
S(vq1, ..., vqi) is connected. The query graph vertices are matched
in the order of their vertex ID.

At the beginning of any match, the candidate set (the set of database
graph vertices which can appear in the match) is the whole vertex
set of the database graph. To match a database graph vertex to a
query graph vertex, we check: (1) if they have the same label; (2)
whether the database graph vertex is adjacent to the corresponding
matched vertices based on the structure of the query graph; and
(3) if the neighboring vertices satisfy the inequality property (by
observation one). If all these three requirements are satisfied, we
match the database graph vertex to the query graph vertex. After
matching the vertex, we remove those vertices that cannot appear in
the current match from the database graph based on the information
introduced by the new matched vertex. We also remove any vertices
that are unconnected to the matched vertex.

When the algorithm finishes searching all database graph vertices
in the candidate set from match a query graph vertex vqi, we delete
the last matched vertex from the current match, recover the re-
moved vertices to the candidate set, and match another database
graph vertex to the query graph vertex vqi−1. If all the query graph
vertices are matched successfully, we output the current match and
start another match with a different database graph vertex. If such
a database graph vertex does not exist, the algorithm ends since all
matches have been found.

5.2 Dynamic matching
To find multiple matches for the query graph, we use a depth first
algorithm to find all possible matches. We can accelerate the al-
gorithm by avoiding redundant calculations. In observation one, in
order to match a database graph vertex to a query graph vertex, we
check their neighboring vertices. This procedure is complicated but
can be reduced. After a database graph vertex is matched to a query
graph vertex in one match, we record the vertex-vertex matching re-
lationship. To find another match of the query graph, if the same
vertex pair appears again, we do not calculate the neighboring ver-
tices again since that has already been cached.

198

Algorithm 1 GADDI
Input: database graph G, query graph Q
Output: matches of Q in G

1: match M ← ∅, candidate set C ← V
2: DynamicMatching(0, M, C)

Subprocedure name: DynamicMatching(i,M, C)
Input: No. of matched vertices i, current match M , candidate
set C
Output: final matches of Q in G

1: if i = n then
2: output M
3: RETURN
4: end if
5: for each vertex v in C do
6: if v and vqi+1 have the same label and adjacency relationships then
7: if vqi+1 is in the false list of v then
8: Continue
9: end if

10: if vqi+1 is in the true list of v then
11: shrink C by observation two
12: add v to M ,
13: DynamicMatching(i + 1, M, C)
14: Continue
15: end if
16: if the neighboring vertices of v satisfy inequality property then
17: add vqi+1 to the true list of v
18: shrink C by observation two
19: add v to M ,
20: DynamicMatching(i + 1, M, C)
21: else
22: add vqi+1 to the false list of v
23: end if
24: end if
25: end for

In the beginning of the algorithm, we create two empty lists for
each database graph vertex. The first list (the true list) represents
the vertices which the database graph vertex can be matched to, the
other list (the false list) represents the vertices which the database
graph vertex cannot be matched to. For any database graph vertex
vg , when we match it to a query graph vertex vqi for the first time,
if vg and vqi have the same vertex label, and vg is adjacent to a set
of vertices that match to the neighboring vertices of vqi in the query
graph, we check whether the neighboring vertices of vg satisfy the
inequality property (based on observation one). If they do, then we
add vqi to the true list of vg ; otherwise we add vqi to the false list.
Another match may attempt to match vg with vqi again. Then, we
only need to check the true and false lists, instead of checking the
neighboring vertices again.

The true and false lists are only modified when necessary. At all
times, the intersection of the true and false lists of any database
graph vertex is the empty set. For example, assuming the vertex
ID of filled vertex in figure 6(a) is 0 and it is the first vertex to be
matched in the algorithm. After we try to match this query graph
vertex, the true list of the three filled vertices and the false list of all
other vertices in figure 7 is changed to {0} from the empty set.

After using this dynamic matching techniques, we show our algo-
rithm in algorithm 1.

5.3 Parameter Setting
In the GADDI algorithm, there are two important parameters,Length
(upper bound of the distance between a pair of indexed vertices)
and k (radius) mentioned above. The range of Length is from 1

to 2k and can be set adaptively. First Length is set to 1 and it can
gradually increase. Let us assume that we are matching vq in Q to
nodes inG, if the pruning power is too low (i.e., too many1 possible
matches), we increase Length and redo the process for the vertex
vq with higher Length. Otherwise, we will try to match another
vertex in Q. Parameter k is more difficult to set. It is highly depen-
dent on the characteristics of the database graph, e.g., the average
degree of a vertex.

As the radius k increases, the number of vertices in the intersec-
tion area also increases. The increasing rate of construction time
depends on the average degree deg of the graph. Usually the num-
ber of vertices in a circle with radius k is degk, which means the
number of vertices in either a single circle or the intersection of two
circles increases exponentially with k and polynomially with deg.
Thus when deg is large, even a small increase of k increases the
index construction time dramatically.

However, the pruning power does not linearly increase with k. When
k is small, the number of vertices in the intersection of two circles
in the query graph tends to increase as k increases. But when k
becomes larger, most vertices in query graph are already covered
by the intersection area, and the number of vertices in the intersec-
tion area does not change much. However, for the database graph,
due to its large size, the number of vertices in the intersection area
increases significantly with deg and k. The increasing potential of
the NDS distance in the database graph is much higher than it is
in the query graph. Thus, when k is low, the pruning power of the
NDS distance usually increases with k. On the other hand, when k
is high, the pruning power does not usually improve with larger k.
Therefore, k is fixed at 2.

6. EXPERIMENTAL RESULTS
In this section, we empirically analyze the performance of GADDI
against TALE [40], one of the most recent subgraph matching tools
that designed for large graphs. TALE is very efficient and effec-
tive in index construction and matching, which is quite important
to subgraph matching in graphs of large size. We also compare
GADDI with another graph indexing tool GraphGrep [16], for its
widely recognized performance. GADDI and TALE are imple-
mented with C++ code and we obtained GraphGrep from the au-
thors of [16]. They were all run on a Dell PowerEdge 2950, with
two 3.0 GHZ dual-core CPUs and 16 GB main memory, using
Linux 2.6.16.21-0.8-smp.

First, we compare the performance of GADDI with the other al-
gorithms on two real data sets, a protein interaction network and
a social network. Then, a large number of synthetic data sets are
employed to show the efficiency and scalability of these three meth-
ods. Without loss of generality, we select three discriminating sub-
structures for all experiments, which are triangles, quadrilaterals,
and stars of size 3.

6.1 Real Data Sets
In this set of experiments, two graphs generated from real data
sets are utilized. The first graph is generated from a subset of the
protein-protein interaction network for homo sapiens. There are
6410 vertices, 53844 edges, and the average degree of a vertex is
8.4. Each vertex represents a protein and the label of the vertex is
its gene ontology term from [54]. There are a total of 632 distinct

1This threshold is application dependant and can be set by domain
experts. In this paper, we set threshold value to 20.

199

labels. An edge in the graph represents an interaction between the
two proteins it connects. Although our major application domain
is biological networks, we also compare GADDI with other meth-
ods in a social network graph, where the average degree is much
higher. The social network graph is obtained from a social network
in [55]. There are 297 vertices, 4158 edges, and the average degree
of a vertex is 14. Each vertex represents a person (with a unique
vertex label), and an edge corresponds to communication between
two persons.

For the protein interaction network, we vary the number of vertices
and edges in the query graph. GADDI spends about 35 minutes
to construct an index of 100MB and it can find all matches of a
pattern correctly with efficient execution time and memory usage.
This means that the precision and recall of GADDI is 100%. On
the other hand, GraphGrep enumerates all possible paths up to the
length MaxL in the database graphs to construct the index. The
index space isO(NdegMaxL) whereN and deg are the number of
vertices and the average degree of a vertex, respectively. We have
experimented with various value for MaxL. We found that when
MaxL is small, e.g., less than 4, GraphGrep does not perform very
effectively. This may be due to the fact that when the paths are too
short, one path in the query graph may have too many matches in
the database graph. Thus, we use the default setting ofMaxL = 4
in the GraphGrep program for all the experiments.

It is expected that when the number of edges increases in the database
graph, the size of index will also grow dramatically especially when
MaxL is large. Thus, GraphGrep consumes over 20 gigabytes of
memory during the construction of the index for the protein inter-
action graph and the program crashed. Even had it not crashed, it
would have generated a very large indexing structure, which would
not have fit in main memory. Thus, it would have to be loaded into
main memory whenever it was needed. This would increase the
query time dramatically (with disk accesses).

For TALE, on the other hand, since it is an approximate algorithm,
it may not correctly find all matches of a pattern. We therefore show
both the execution time of GADDI and TALE and the precision and
recall [1] of TALE in Figure 9. The precision and recall of TALE
are much lower than GADDI, particularly on large graphs. We
found another very interesting phenomenon: the query execution
time of GADDI is usually less than that of TALE when the query
graph size is not very small, e.g., larger than 5 vertices. This is
due to the fact that GADDI uses an indexing structure with more
information about the database graph. During the query time, the
information captured in the indexing structure can be utilized more
efficiently, which leads to a faster response time.

(a) Query Time (b) Accuracy of TALE

Figure 9: Protein Interaction

For our social network graph, we also vary the number of vertices

(a) Query Time (b) Accuracy of TALE

Figure 10: Social Network

and edges in the query graph. The execution time of GADDI and
TALE and the precision and recall of TALE are shown in Figure 10.
GADDI is able to build the index structure within 300 ms, with the
size of less than 1MB. The average execution time is less than 10
ms. GraphGrep spends almost 4 minutes in order to build its index
structure, which is 1.2GB in size. However, it finishes the actual
execution in under 1 millisecond. With the lowest precision and
recall, TALE spent the least 3ms. The TALE index structure is also
very small, e.g., 1 MB. However, its query time is the longest of the
three when the size of the query graph is not tiny, e.g., 5 vertices
or larger. Once again, this result is due to the fact that GraphGrep
keeps the most information in its index while TALE keeps the least.

Since we only need to build an index structure for each database
graph once, query time is much more important than index build-
ing time. From the perspective of precision and recall, GADDI
performs better than TALE in both of the real data sets. Graph-
Grep has equal precision to GADDI, and we note that the query
time of GraphGrep on the social network graph is shorter than that
of GADDI. However, GraphGrep generates a much larger index
structure than GADDI does. When the database graph is large, the
indexing structure of GraphGrep does not fit in the main memory
leading to the dynamic loading of indexing pages and in turn sig-
nificantly increasing the query execution time.

6.2 Synthetic Data Sets
We analyze the performance of the three methods by separately
varying each of six parameters in experiments run on a set of syn-
thetically generated graphs. Since GADDI finds all the matches of
theQ inG, its precision and recall are all 100 percents. So we only
show TALE’s accuracy in the following experiments. To systemat-
ically analyze the performance of GADDI, we vary one parameter
at a time. GraphGrep can only be applied to a small database graph
G, and thus is only involved in part of tests. For the remainder of
experiments, GraphGrep crashes due to the extremely high space
utilization. The default parameter values are listed in Table 1.

Table 1: Default Parameter Value
Parameter Default Value

Number of vertices in G 5000
Average Degree in G 8

Number of vertices in Q 20
Average Degree in Q 4

Number of Labels 250

The first parameter is the number of vertices in G. We test GADDI
and TALE, 200 to 10,000 vertices and GraphGrep from 200 to
3,000 vertices(Grapgrep crashes when generating index on graphs

200

with larger number of vertices). GraphGrep still spends the most
amount of time in generating the largest indexing structure, but
spends the least amount of time in querying. The query time of
GADDI is less than that of TALE when the number of vertices in
G is less than or equal to 5,000. On the other hand, the precision
and recall of TALE degrade dramatically when the number of ver-
tices in G increases. When the number of vertices in G is 10,000,
GADDI takes 7,828 seconds to build a 200 MB index. This is much
less than GraphGrep and is affordable. GADDI needs to calculate
the shortest distance and NDS distance between any pair of ver-
tices inG, a calculation with a time complexity ofO(n3) and space
complexity of O(n2). So the index construction time and size in-
creases polynomially (with a low power) with number of vertices
in G. Figure 11(a) and (b) show the index construction time and
size of all three methods. Figure 11(c) and (d) show the query time
of all three methods, and the precision and recall of TALE.

(a) Index Construction Time (b) Index Size

(c) Query Time (d) Accuracy of TALE

Figure 11: Number of Vertices in G

The second parameter we vary is the average degree of a vertex in
G. GraphGrep is tested on G with average degrees of 2, 3, 4, 6 and
7(GraphGrep crashes when the average degree is greater than 7).
Figure 12 (a) and (b) show the index construction time and size for
all three methods. It is evident that TALE spends the least amount
of time in constructing the smallest index. On the other hand, when
the average vertex degree is low, the number of paths in G is also
small. Thus, GraphGrep spends a small amount of time in build-
ing the relatively small indexes. However, with the increase of the
average vertex degree, the number of paths increase significantly,
Grephgrep builds much larger indexing structure and crashes when
the degree reaches 8. The GADDI index construction time contains
two parts, the shortest path and the NDS calculations. The shortest
path calculation time depends on the number of vertices inG while
the NDS calculation time does not. However, the NDS calculation
time is much less than the shortest path computation time. Thus the
GADDI index construction time primarily depends on the number
of vertices in G.

Figure 12 (c) and (d) show the query time of all three methods,
and the precision and recall of TALE, respectively. In general, the
query time of GADDI is less affected by the average vertex degree
in G. On the other hand, the query time of TALE increases with the
average vertex degree because it needs to match more vertices and
edges. In addition, the accuracy of the query results from TALE
degrades significantly with the average vertex degree due to the

fact that the probability of a mismatch is greater.

(a) Index Construction Time (b) Index Size

(c) Query Time (d) Accuracy of TALE

Figure 12: Average Degree of a Vertex in G

The third parameter we vary is the number of vertices in the query
graph Q. We only run GADDI and TALE, which are shown in Fig-
ure 13. (GraphGrep crashed during this sets of experiments.) With
more vertices in Q, more vertices and edges need to be compared
in the query process, so the query times of both GADDI and TALE
increases. GADDI has a faster or similar query time as TALE for
varying number of vertices in Q. Since TALE is an approximation
match algorithm, the probability of it finding wrong matches in-
creases with the number of vertices in Q. So the accuracy of TALE
degrades when number of vertices in Q increases.

(a) Query Time (b) Accuracy of TALE

Figure 13: Number of Vertices in Q

The forth parameter is the average degree of a vertex in Q. The
query time of GADDI and TALE, and the precision and recall of
TALE are shown in Figure 14. It is obvious that the higher the ver-
tex average degree Q has, the more information that Q possesses
for pruning vertices in G. However, a high vertex degree also re-
quires more edges to be compared when querying. When the aver-
age degree of Q is 2, there are few edges to be compared and both
GADDI and TALE perform very quickly. When the average degree
goes from 4 to 8, the pruning power of both methods increases and
more vertices in G are pruned during query. However, when the
vertex degree of Q increases from 10 to 16, the additional num-
ber of edges that need to be compared plays a key role and query
time increases. GADDI outperforms TALE with a wide margin on
various average degree values.

The fifth parameter is the number of distinct labels. From Fig-
ure 15, we can see that the precision and recall of TALE increases

201

(a) Query Time (b) Accuracy of TALE

Figure 14: Average Degree of a Vertex in Q

with the number of distinct labels. More labels in G increases the
pruning power of both GADDI and TALE. Increasing the number
of distinct labels reduces the number of candidate matches between
any pair of vertices in G and Q, which leads to a shorter execution
time.

(a) Query Time (b) Accuracy of TALE

Figure 15: Distinct types of labels

The sixth parameter we vary is the number of matches of Q in G.
Figure 16 the query time of TALE and GADDI, and the precision
and recall of TALE. With more matches in G, GADDI requires
more time to find all the matches. Since TALE only finds some
of the matches, the number of matches does not affect the query
time of TALE as much as it does for GADDI. On the other hand,
the accuracy of TALE degrades since the number of matches TALE
finds does not increase with the number of true matches.

(a) Query Time (b) Accuracy of TALE

Figure 16: Number of matches of Q in G

This concludes the results of the experiments we ran on these three
methods using various real and synthetic data sets. GraphGrep
stores a larger amount of information about the database graph in
its index than TALE and GADDI do. Thus, the index size of Graph-
Grep increases more quickly with the database graph size (e.g., the
number of vertices and average degree of a vertex) while TALE
and GADDI maintain a relatively small indexing structure. When
the graph is very large, GraphGrep often fails to build the index
structure due to running out of space. On the other hand, the query
time of GraphGrep is usually shorter when its index can be built.
The main difference between TALE and GADDI is in accuracy.

TALE is an approximate method which does not find all matches
of a pattern correctly while GADDI has no such problem. Thus, if
the database graph is relatively small (e.g., a couple thousand ver-
tices and less than ten thousand edges) and index size is not a big
concern, then GraphGrep is preferable over the other two methods.
On the other hand, if the database graph is very large, e.g., several
thousand vertices and tens of thousand edges or more, then GADDI
should be deployed.

7. CONCLUSION
In this paper, we have proposed an indexed based graph match-
ing method (GADDI) to find all the matches of any query graph
in a single large database graph. GADDI indexes the NDS dis-
tance between pairs of neighboring vertices. The NDS distance
satisfies the proposed inequality property which is the basis of our
pruning method. GADDI achieves high pruning power and its size
scales linearly with the number of neighboring vertex pairs. We
introduce an innovative graph matching method, which applies a
twoway pruning and incorporates a dynamic matching scheme.

With a large set of real and synthetic data sets, we demonstrate that
the GADDI approach can outperform the alternative methods both
in efficiency and accuracy. Overall, GADDI is a very useful tool of
subgraph matching in biological networks.

8. ACKNOWLEDGEMENT
We sincerely thank the authors of GraphGrep for providing their
implementation of GraphGrep. This project was partially supported
by the grant of NSF0551603 and a Case PRI award.

9. REFERENCES
[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information

Retrieval. New York: ACM Press, Addison-Wesley, 1999.
[2] B. Berendt, A. Hotho, and G. Stumme. Towards semantic web

mining. Proc. of ISWC, 2002.
[3] J. Berg, and M. Lassig, Local graph alignment and motif

search in biological networks, PNAS, 2004.
[4] B. Bringmann, and S. Nijssen: What Is Frequent in a Single

Graph? PAKDD 2008.
[5] J. Cheng, Y. Ke, W. Ng, and A. Lu. FG-Index: Towards

verification-free query processing on graph databases. Proc. of
SIGMOD, 2007.

[6] D. Cook, L. Holder, and S. Djoko. Knowledge discovery from
structural data. Journal of Intelligent Information Systems,
1995.

[7] L. Cordella, P. Foggia, C. Sansone, and M. Vento. A
(Sub)Graph Isomorphism Algorithm for Matching Large
Graphs. PAMI, 2004.

[8] T. Dandekar, S. Schuster, B. Snel, M. Huynen, and P. Bork,
Pathway alignment : application to the comparative analysis of
glycolytic enzymes, Biochem, 1999.

[9] L. Dehaspe, H. Toivonen, and R. King. Finding frequent
substructures in chemical compounds. Proc. of KDD, 1998.

[10] M. Deshpande, M. Kuramochi, G. Karypis. Frequent
sub-structure based approaches for classifying chemical
compounds. Proc. of ICDE, 2003.

[11] B. Dost, T. Shlomi, N. Gupta, E. Ruppin, V. Bafna, and R.
Sharan. QNet: A Tool for Querying Protein Interaction
Networks, Proc. of RECOMB, 2007.

[12] M. Fiedler, and C. Borgelt: Subgraph Support in a Single
Large Graph. Proc. of ICDM Workshops, 2007.

[13] S. Ghazizadeh, and S. Chawathe. SEuS: Structure extraction
using summaries. Proc. of ICDS, 2002.

[14] D. Gibson, R. Kumar, and A. Tomkins. Discovering Large
Dense Subgraphs in Massive Graphs, Proc. of VLDB, 2005.

202

[15] J. Gonzalez, L. Holder, and D. Cook. Application of
graph-based concept learning to the predictive toxicology
domain. Proc. of the Predictive Toxicology Challenge
Workshop, 2001.

[16] R. Giugno, D. Shasha, GraphGrep:, A Fast and Universal
Method for Querying Graphs. Proc. of ICPR, 2002.

[17] H. He and A. K. Singh. Closure-Tree: an index structure for
graph queries. Proc. of ICDE, 2006.

[18] H. He and A. K. Singh. Graphs-at-a-time: Query Language
and Access Methods for Graph Databases, Proc. of SIGMOD,
2008.

[19] J. Huan, W. Wang, J. Prins, and J. Yang. SPIN: mining
maximal frequent subgraphs from graph databases. Proc. of
KDD, 2004.

[20] J. Huan, W. Wang, and J. Prins. Efficient mining of frequent
subgraphs in the presence of isomorphism. Proc. of ICDM,
2003.

[21] A. Inokuchi, T. Washio, and H. Motoda. An apriori-based
algorithm for mining frequent substructures from graph data.
Proc. of PDKK, 2000.

[22] D. Jensen, and H. Goldberg. Artificial Intelligence and Link
Analysis. AAAI Press, 1998.

[23] H. Jiang, H. Wang, P. Yu, and S. Zhou. Gstring: A novel
approach for efficient search in graph databases. Proc. of ICDE,
2007.

[24] Y. Ke, J. Cheng, and W. Ng. Correlation search in graph
databases. Proc. of SIGKDD, 2007.

[25] J. Kleinberg, R. Kumar, P. Raghavan,S. Rajagopalan, and A.
Tomkins. The Web as a graph: Measurements, models and
methods. Lecture Notes in Computer Science, 1999.

[26] C. Ko. 2000. Logic induction of valid behavior specifications
for intrusion detection. In IEEE Symposium on Security and
Privacy, 2000.

[27] M. Koyuturk, A. Grama, and W.Szpankowski. An efficient
algorithm for detecting frequent subgraphs in biological
networks. Bioinformatics, 2004.

[28] M. Koyuturk, A. Grama, and W. Szpankowski. Pairwise
Local Alignment of Protein Interaction Networks Guided by
Models of Evolution. RECOMB 2005.

[29] M. Koyuturk, Y. Kim, U. Topkara, S. Subramaniam, W.
Szpankowski, and A. Grama. Pairwise Alignment of Protein
Interaction Networks, RECOMB 2005 .

[30] S. Kramer, L. De Raedt, and C. Helma. Molecular feature
mining in HIV data. Proc. of KDD, 2001.

[31] M. Kuramochi, and G. Karypis. Frequent subgraph
discovery. Proc. of ICDE, 2001.

[32] M. Kuramochi, G. Karypis, Finding Frequent Patterns in a
Large Sparse Graph. DMKD, 2005.

[33] W. Lee, and S. Stolfo. A framework for constructing features
and models for intrusion detection systems. ACM Transactions
on Information and System Security, 2000.

[34] R. Mooney, P. Melville, L. Tang, J. Shavlik, I. Castro Dutra,
and D. Page. Relational data mining with inductive logic
programming for link discovery. AAAI Press/The MIT Press,
2004.

[35] S. Nijssen and J. Kok. A quick start in frequent structure
mining can make a difference Proc. of KDD, 2004.

[36] C. Palmer, P. Gibbons, and C. Faloutsos. ANF: A fast and
scalable tool for data mining in massive graphs. Proc. of KDD,
2002.

[37] R. Pinter, O. Rokhlenko, E. Yeger-Lotem and M.
Ziv-Ukelson, Alignment of metabolic pathways,
Bioinformatics, 2005.

[38] D. Shasha, J. Wang, and R. Giugno. Algorithmic and
applications of tree and graph searching. PODS, 2002.

[39] R. Singh, J. Xu, and B. Berger. Pairwise Global Alignment
of Protein Interaction Networks by Matching Neighborhood
Topology, RECOMB 07’.

[40] Y. Tian and J. Patel. TALE: A Tool for Approximate Large
Graph Matching, Proc. of ICDE, 2008.

[41] J. Ullmann. An algorithm for subgraph isomorphism. J.

ACM, 1976.
[42] N. Vanetik, E. Gudes, and S. Shimony. Computing frequent

graph patterns from semistructured data. Proc. of ICDM, 2002.
[43] S. Wasserman, K. Faust, and D. Iacobucci. Social network

analysis : Methods and applications. Cambridge University
Press, 1994.

[44] D. Williams, J. Huan, and W. Wang. Graph database indexing
using structured graph decomposition. Proc. of ICDE, 2007.

[45] X. Yan and J. Han. gSpan: graph-based substructure pattern
mining, Proc. of ICDM, 2002.

[46] X. Yan, P. Yu, and J. Han. Graph indexing, a frequent
structure-based approach. Proc. of Sigmod, 2004.

[47] X. Yan, P. Yu, and J. Han. Substructure similarity search in
graph databases. Proc. of Sigmod, 2005.

[48] X. Yan, F. Zhu, J. Han, and P. Yu. Searching substructures
with superimposed distance. Proc. of ICDE, 2006.

[49] K. Yoshida, and H. Motoda. CLIP: Concept learning from
inference patterns. Artificial Intelligence, 1995.

[50] K. Yoshida, H. Motoda, and N. Indurkhya, Graph-based
induction as a unified learning framework. Journal of Applied
Intelligence, 1994.

[51] S. Zhang, M. Hu, and J. Yang. Treepi: a new graph indexing
method. Proc. of ICDE, 2007.

[52] P. Zhao, J. X. Yu, and P. S. Yu. Graph indexing: tree + delta
<= graph. Proc. of VLDB, 2007.

[53] Lei Zou, Lei Chen, J. Yu, Y. Lu, A Novel Spectral Coding in
a Large Graph Database, Proc. of EDBT, 2008.

[54] Gene Ontology. http://www.geneontology.org/.
[55] Social Network.
http://www-personal.umich.edu/ mejn/netdata/.

203

