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Abstract 

Rational drug design featuring explicit solubility considerations can greatly benefit from molecular 

dynamics simulations, as they allow for the prediction of the Gibbs free energy of solvation and thus 

relative solubilities. In our previous work (A. Mecklenfeld, G. Raabe. J. Chem. Theory Comput. 13 no. 12 

(2017) 6266–6274), we have compared solvation free energy results obtained with the General Amber 

Force Field (GAFF) and its default restrained electrostatic potential (RESP) partial charges to those 

obtained by modified implicitly polarized charges (IPolQ-Mod) for an implicit representation of impactful 

polarization effects. In this work, we have adapted Lennard-Jones parameters for GAFF atom types in 

combination with IPolQ-Mod to further improve the accuracies of solvation free energy and liquid density 

predictions. We thereby focus on prominent atom types in common drugs. For the refitting, 357 

respectively 384 systems were considered for free energies and densities and validation was performed for 

142 free energies and 100 densities of binary mixtures. By the in-depth comparison of simulation results 

for default GAFF, GAFF with IPolQ-Mod and our new set of parameters, which we label GAFF/IPolQ-

Mod+LJ-Fit, we can clearly highlight the improvements of our new model for the description of both 

relative solubilities and fluid phase behaviour.  

©2020 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons 

Attribution license (http://creativecommons.org/licenses/by/4.0/). 
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Introduction 

Solubility is a crucial thermophysical property in the pharmaceutical industry [1] and its assessment is 

therefore of utmost importance. Molecular simulations can be interpreted as experiments on the computer 

and are capable to complement the computer-aided drug design. They allow for the accurate prediction of 

thermophysical properties to determine suitable solvents for an active pharmaceutical ingredient in an 

early stage of the drug development process. According to Liu et al. [2], the relative solubilities can be 

determined by Eq. (1): 

ln cS
A

cS
B  = -β(∆Gsolv

A  - ∆Gsolv
B ) (1) 
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in which cS is the molar concentration of solute S in solvent A or B, β is the inverse temperature and ΔGsolv is 

the Gibbs free energy of solvation of the solute. The Gibbs free energy of solvation corresponds to the 

change in the Gibbs free energy for transferring a single solute from a vacuum into a condensed phase [3]. 

In the vacuum phase, no intermolecular interactions are considered between solute and solvent, whereas 

they are fully existent in the condensed phase. In order for the Gibbs free energy to converge, the change 

of state from vacuum to condensed phase is subdivided into a series of intermediate states, each 

representing an inherent molecular simulation. These intermediates create a linking chain of shared 

configurational space overlap and are characterized by scaled solute-solvent interactions. As the 

intermediates often represent non-physical states, they are referred to as alchemical pathway and the 

scaling factor is the alchemical variable λ. In a previous study [4] we proposed our “pathfinder” method to 
define a set of λ-states with reduced computational effort but high statistical certainty. However, the 

quality of solubility predictions is greatly affected by the molecular models that describe the intermolecular 

interactions.  

Several studies compared different molecular models, the so called force fields, for different sets of test 

systems [5–15]. Widely used molecular models such as the General Amber Force Field (GAFF) [16], the 

Optimized Potentials for Liquid Simulations model (OPLS-AA) [17] or the CHARMM General Force Field 

(CGenFF) [18] are applied for the description of drug-like molecules and are categorized as “Class 1” force 
fields. This class of models is characterized by the usage of fixed partial charges located on the atom’s 
center of mass for the evaluation of electrostatics by Coulomb’s law. Class 1 force fields represent a 

moderate computational effort, which makes them applicable for systems with high time constants or 

simulation techniques such as free energy calculations, which require increased effort due to the multitude 

of intermediate λ-states. A significant disadvantage is the lacking ability to represent polarization effects. 

This means that physical meaningful phenomena, like for the transition of a solute from a vacuum into a 

condensed phase, cannot be described adequately. Although polarizable models [19–30] could be used, 

these are considered computational expensive [31], while not necessarily more accurate than Class 1 force 

fields due to the more demanding parametrization [29]. For an at least implicit representation of 

polarization effects for solvation free energy calculations, Cerutti et al. [32] developed the IPolQ („implicitly 
polarized charges“) method, which was later modified by Muddana et al. [11] and referred to as IPolQ-

Mod. In an extensive study [6], we compared solvation free energy results obtained with GAFF and its 

default two-stage RESP (“restrained electrostatic potential”) [33] partial charge scheme, and GAFF with 

IPolQ-Mod partial charges. We concluded a general compatibility of the GAFF model and the IPolQ-Mod 

method, though we highlighted shortcomings for specific compound classes due to the disturbed self-

consistency of the molecular model. As a consequence, we recommended the refitting of the atom type 

specific parameters ε and σ of the Lennard-Jones (LJ) potential: 

 ULJ = 4 ∙ εij [(σij

rij
)12

- (σij

rij
)6] , (2) 

with rij being the distance between atoms i and j. In this study we present our methodology to optimize a 

large number of Lennard-Jones parameters based on GAFF for an improved representation of densities and 

particularly solvation free energies. We thereby consider a large number and diversity of systems and 

optimized atom types. Our aim is to provide model parameters to restore the self-consistency of the GAFF 

model in combination with IPolQ-Mod charges, as stressed in our previous work [6]. In detailed analyses we 

compare our newly developed model parameters with results from the standard GAFF model with both 

standard RESP and IPolQ-Mod partial charges for different data sets. We conclude this manuscript with a 

summary of our findings.  
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Methodology 

Targeted functional groups, atom types and data sets 

The choice of atom types for the re-parametrization was based on the analysis of substance groups 

occurring in potential active pharmaceutical ingredients or relevant solvents [34]. This includes alkanes, 

alkenes, alkynes, cycloalkanes, arenes, azoles, azines, amides, nitriles, aldehydes, ketones, alcohols, 

phenols, amines, ethers as well as haloalkanes, i.e. compounds with bonded fluorine, chlorine, bromine and 

iodine atoms. GAFF includes a variety of atom types that feature identical Lennard-Jones, but different 

bonded parameters. As the chemical environments for these types are comparable, no distinction was 

made in the re-parametrization. Furthermore, only non-hydrogen atom types were considered. Table 1 

summarizes the GAFF atom types included in the refitting of the LJ-parameters. 

Table 1. Standard GAFF atom types targeted at the parameter optimization. 

Atom type Description [16] 

br any bromine 

c sp
2
 carbon in C=O 

c1 (cg) sp
1
 carbon (in conjugated ring systems) 

c2 sp
2
 carbon, aliphatic 

c3 sp
3
 carbon 

ca (cc / cd / ce) sp
2
 carbon, aromatic / conjugated 

cl any chlorine 

f any fluorine 

i any iodine 

n sp
2
 nitrogen in amides 

n1 sp
1
 nitrogen 

na sp
2
 nitrogen with 3 subst. 

nb (n2) aromatic nitrogen / sp
2
 nitrogen with 2 subst. 

nh (n3) amine nitrogen / sp
3
 nitrogen with 3 subst. 

o sp
2
 oxygen in C=O 

oh sp
3
 oxygen in hydroxyl groups 

os sp
3
 oxygen in ethers and esters 

Besides solvation free energies, we also chose liquid densities ρ of pure compounds in a broad 

temperature range as target quantities in order to allow for accurate solubility predictions as well as for 

precise descriptions of liquid bulk phases. The data set considered in the refitting process consists of 357 

solvation free energy systems and 384 densities for small model compounds. For validation, three 

additional data sets were used. Set I and II cover 100 solvation free energy systems for small model 

compounds respectively 42 solvation free energy systems with solutes haloperidol, phenacetin, temazepam 

and trimethoprim. For the latter, relative solubilities were calculated according to Eq. (1) and compared to 

experimental relative solubility data. In validation data set III, 100 liquid densities of binary mixtures were 

considered. None of the validation systems were included in the refitting process. The various data sets are 

summarized in Table 2.  

Table 2. Data sets used for fitting respectively validating new Lennard-Jones parameters. 

Data set Content 

Refitting 
357 ΔGsolv-systems: 112 solute / 37 solvent compounds 

384 ρ-systems: 78 compounds, ΔT = (183.15 … 478.15) K 

Validation I 100 ΔGsolv-systems: 59 solute / 34 solvent compounds 

Validation II 42 ΔGsolv-systems: 4 solute / 23 solvent compounds 

Validation III 100 ρ-systems of binary mixtures: 72 compounds, ΔT = (183.15 … 383.15) K 
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All data sets except for validation II include water as solvent compound. New parameters for solutes 

dissolved in water were derived and tested both for the TIP3P [35], as well as for the TIP4P/2005 [36] water 

models. While TIP4P/2005 is considered to be a multi-purpose model for the description of liquid water, 

default GAFF parameters were derived using TIP3P. As the Lennard-Jones parameters for the water models 

themselves were unaltered, adaptable interaction parameters ξij and ζij were used in the Lorentz-Berthelot 

combining rules, i.e.  

εij = (1 + ξij) ∙ √εii ∙ εjj   , (3) 

and 

  ii jj
ij ij

   
    1      

2

 
 


    . (4) 

Index i refers to the atom type of interest, while index j represents the oxygen atom type of the 

corresponding water model. Hydrogen atom types for both water models do not participate in Lennard-

Jones interactions. For all but the water interactions, parameters ξij and ζij were set to zero. 

Our main aim in the composition of the data sets was to consider both, diverse compound pairs and a 

broad temperature range for the density calculations. All simulation results are given as numerical values in 

the Supporting Information.  

Molecular models 

The adaptation of Lennard-Jones parameters is based on GAFF Version 1.8. Molecule topologies were 

generated using Antechamber [37] from AmberTools18 [38], followed by the transfer into the GROMACS 

[39–45] format using ACPYPE [46]. For comparison, we performed all simulations with default GAFF 

parameters using RESP [33] partial charges (GAFF/RESP), while the new Lennard-Jones parameters were 

specifically derived for the IPolQ-Mod method (GAFF/IPolQ-Mod+LJ-Fit). For the fitting as well as the 

validation sets I and III, we also considered IPolQ-Mod charges with default GAFF parameters (GAFF/IPolQ-

Mod) for the sake of comparison. Partial charges were calculated using ab initio simulations in Gaussian09 

[47]. Therefore, an energy optimization was performed for each system at the HF/6-31G* [48–58] level of 

theory prior to the partial charge calculation. For GAFF/RESP, the electrostatic potential (ESP) was 

calculated at HF/6-31G*, and partial charges were fitted according to the two-stage restrained electrostatic 

potential (RESP) [33] to match the ESP. However, this approach cannot be applied to compounds with 

bonded iodine, as this element is not included in the 6-31G* basis set. Although GAFF should be compatible 

with partial charges derived by the semi-empirically AM1-BCC [59,60] method, Muddana et al. [11] 

highlighted that results for ΔGsolv obtained by using RESP and AM1-BCC partial charges may differ by several 

kJ/mol. Therefore, i.e. for the sake of consistency, no AM1-BCC charges were applied, and systems 

including iodine were dismissed from simulations using GAFF/RESP.  

For deriving the IPolQ-Mod partial charges, the MP2/aug-cc-pVDZ [61–70] level of theory was used for 

all ESP calculations as initially proposed by Muddana et al. [11]. For the solutes in ΔGsolv simulations, two 

sets of ESP’s were calculated. One ESP represents the condensed phase by applying a polarizable 

continuum model [71] of the solvent (Gaussian keyword: SCRF=PCM), while no continuum model is applied 

for the representation of the vacuum phase. Partial charges from both ESP calculations were derived by 

RESP fitting. The charge sets were then averaged for an implicit representation of polarization effects 

caused by the transition of the solute from the vacuum into the solvent phase. As free energy simulations 

describe the behavior of the solute in infinite dilution, charges for the solvent compounds were derived in 

solvent phase only.  

http://dx.doi.org/10.5599/admet.837
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For the density calculation of a binary mixture with compounds A and B, the partial charge for an atom i 

in compound A qi
A is calculated according to Eq. (5): 

qi
A = xA ∙ qi

A,A + (1 - xA) ∙ qi
A,B, (5) 

whereas xA is the mole fraction of A in the binary mixture. Expressions qi
A,A

 and qi
A,B

 are the partial charges 

for atom i in compound A considering the continuum models for compounds A and B respectively. For 

compounds including the element iodine, a pseudopotential aug-cc-pVDZ basis set [72,73] from the EMSL 

Basis Set Library [74,75] was employed.  

Objective approach and optimization algorithms 

The adaptation of Lennard-Jones parameters has been widely discussed [13,15,76,77]. In order to 

reduce the complexity of the optimization task, pair interactions can be adapted sequentially. As the issue 

of high computational efforts remains, we have studied the applicability of a thermodynamic cycle 

approach to obtain accurate free energy results but with significant decreased expenses [78]. This approach 

is also employed here, when possible. 

In our optimization, we target both solvation free energies and liquid densities. While the focus of our 

work is the accurate prediction of ΔGsolv respectively relative solubilities, the ability to describe liquid bulk 

phases is essential for the transfer of our new model parameters to further applications. Eq. (6) displays the 

chosen objective function Z
i
 for optimization step i.  

solv

solv
solv

solv

(i) (i)
G

G (ref) (ref)
G

G

RMSD RMSD1
 =      +    

 +  RMSDRMSD

i
Z w w

w w




 




 

 
 
 
 
 

 (6) 

The root-mean-square deviations (RMSD) describe the divergence between simulation and experimental 

data. Given the two target properties ΔGsolv and ρ, we normalize the RMSD for ΔGsolv and ρ with regards to 

reference results (ref) obtained from simulations with unaltered model parameters. RMSD ratios are 

weighted by w∆Gsolv  and wρ, individually defined to obtain accurate results for both ΔGsolv and ρ.  

Lennard-Jones parameters εii and σii respectively ξij and ζij are not explicitly associated with target 

properties ΔGsolv and ρ, as ΔGsolv depends on both enthalpic interactions as well as entropic effects between 

solute and solvent molecules. This requires the application of a 2-dimensional optimization algorithm. A 

further issue is the occurrence of statistical noise [63]. Optimization algorithms typically evaluate the 

change of the target function inflicted by small parameter changes. If the change in simulation results and 

the statistical noise are in the same order of magnitude, the optimization is likely to fail. This especially 

concerns derivation-based algorithms, as the usually applied difference quotients require particular small 

parameter changes. As a consequence, Faller et al. [79] proposed the usage of the derivative free and 

robust Downhill Simplex by Nelder and Mead [80], which was used for several subsequent force field 

optimizations [81–85]. To prevent local optima, optimization cycles have been repeated with differently 

orientated initial simpli. The optimization procedure including the thermodynamic cycle approach has been 

implemented into Python for a fully automated workflow. 

Simulation details 

All molecular simulations were performed using GROMACS 2016.1 or 2018.1. For all simulations, the 

stochastic dynamics integrator [86] with a time step of δt = 0.5 fs was employed, which additionally 

controlled the temperature using an inverse friction constant of τT = 2.5 ps. The pressure was set to p = 1 

atm and adjusted by the Berendsen barostat [87] during equilibration respectively the Parrinello-Rahman 



ADMET & DMPK 8(3) (2020) 274-296 GAFF/IPolQ-Mod+LJ-Fit for solvation free energy predictions 

doi: http://dx.doi.org/10.5599/admet.837   279 

barostat [88] during production phases, each with a time constant of τp = 5 ps. The particle mesh Ewald 

scheme with interpolation order 4, a real space cutoff radius rcoulomb = 1.2 nm and a Fourier spacing of 0.12 

nm was employed for the calculation of electrostatic interactions. The cutoff radius for Lennard-Jones 

interactions was set to rvdW = 1.2 nm, and long-range corrections were applied for energy and pressure 

calculations. System sizes exceed the recommendations proposed by Parameswaran and Mobley [89], and 

initial configurations were created using PACKMOL [90]. The rigid water models TIP3P and TIP4P/2005 were 

constrained using the settle algorithm [91]. For all solvation free energy calculations, the 1-1-48 softcore-

potential with α = 0.003 was used [92,93], while enthalpy differences for the calculation of ΔGsolv were 

written out every 100 steps. For the evaluation of ΔGsolv we used the Multistate Bennett Acceptance Ratio 

(MBAR) method [94] as implemented in the “alchemical_analysis.py” tool [95]. The evaluations for density 

calculations were performed using the GROMACS “gmx energy” utility, and their uncertainties refer to the 

standard error of the mean using 5 blocks of equal length.  

Further simulation details presented in the following are specific to the target property, and depend on 

whether the simulation was performed as part of the parameter refitting or validation. For the non-refitting 

simulations, density calculations were performed from production runs of 4e6 simulation steps after a 

short energy minimization and an equilibration run of 2e6 steps. Solvation free energy calculations were 

performed following the workflow of our “pathfinder” method [4]. Given an initial number of λ-states, an 

energy minimization and an equilibration of 4e5 steps was performed for each state. Following that, the 

number and distribution of λ-states was adjusted in 3 to 5 trial simulations of 4e5 steps each. The aim of 

the trial simulations is to obtain equal partial free energy uncertainties for an overall improvement of 

statistical certainty [96,97], while simultaneously ensuring sufficient configurational space overlap. This is 

followed by 5 productions runs of 4e6 simulations steps, which were evaluated using the block averaging 

technique.  

For density calculations during the refitting, 4e5 equilibration steps, respectively 3.6e6 production steps 

were performed. To reduce the equilibration period, initial configurations were used from completed runs 

of similar model parameters. The number and distribution of λ-states was not adjusted during the fitting 

but adopted from corresponding GAFF/IPolQ-Mod simulations, although the existence of sufficient 

configurational space overlap was carefully monitored. Equivalent to the density calculations, initial 

configurations were taken from previous optimization steps. By this, equilibration could be reduced to 4e5 

steps, while for production 4.6e6 to 5.6e6 steps were used depending on the dynamics of the systems. All 

ΔGsolv calculations in the refitting procedure were evaluated using bootstrapping analysis [98]. The 

simulation protocols were carefully tested to ensure reproducibility of the results. 

Procedure of the atom type adaptation 

Due to the complexity of the optimization problem, atom types were not adjusted simultaneously, but 

in a subsequent manner. That means that for a current atom type optimization, only compounds were 

included that featured already optimized atom types. By this, the number of atom types considered, and 

thus the complexity of compounds increased during the optimization process. Atom types that occur in 

compounds with a large volume of reference data were prioritized in the order of their adaptation. For the 

following atom type adjustments, the number and diversity of the considered components thus quickly 

increased. 

In the following, the procedure of the adaptation will be discussed, referring to atom types presented in 

Table 1. Figure 1 shows the order of the atom type adaptation. 
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Figure 1. Illustration of the order of 

the atom type adaptation with newly 

defined atom types. 

At first, we optimized the sp
3
 hybridized carbon in ring structures (c3R), followed by the sp

3
 hybridized 

carbon in acyclic hydrocarbons. The aromatic sp
2
 hybridized carbon (ca) was adapted in connection with 

the subsequent oxygen type in alcohols and phenols. Due to the poor performance of ΔGsolv predictions for 

both alcohols and phenols, we decided to differentiate between an oxygen type in alcohols (oh) and 

phenols (ohP). Because of difficulties in representing the solvent n-octanol, a sp
3
 hybridized carbon (c3) was 

introduced as additional atom type. That is, we differentiate between the sp
3
 hybridized carbons of a CH2-

group within an alkyl chain (c3), the carbons in a CH3-group at the end of an alkyl chain (c3E), and the c3R 

carbon type in ring structures described in the beginning. 

After the adaptation of the oxygen type in ethers (os) and the chlorine atom type (cl), atom types for 

nitrogen in arenes (nb) as well as sp
2
 hybridized carbon in alkenes (c2) and c=o structures (c) were 

optimized independently. After the refitting of type nb, the sp
2
 nitrogen in heteroaromatics (na) was 

modified. The adaptation of types c and o was performed successively for the description of c=o in 

aldehydes, ketones and esters, the latter featuring a newly defined atom type osE. After that, atom types n 

in amides and n1 in nitriles were targeted. For nitrile compounds, both characteristic atom types n1 and c1 

were adapted successively again. Atom type bromine (br) was adjusted considering the optimized ester 

parameters, followed by nitrogen in amines (nh). The halogen atom types fluorine (f) and iodine (i) were re-

parametrized at the end. For each of these atom types, the adjustable interaction parameters ξij and ζij for 

the description of interactions between any atom type i and the oxygen atom type in TIP3P respectively 

TIP4P/2005 were optimized analogously. 

Results and discussion 

Evaluation of the refitting 

Overall, 21 atom types respectively 42 pairs of adaptable coefficients were adjusted in the refitting 

process. The newly derived parameters are given in the Supporting Information. In Figure 2, simulation 

results of the free energy of solvation ΔGsolv,simulation for the refitting data set are given for GAFF/RESP, 

GAFF/IPolQ-Mod and GAFF/IPolQ-Mod+LJ-Fit with respect to experimental data ΔGsolv,experiment 

[92,93,99,100]. The diagram highlights the broad deviations of the results especially for GAFF/IPolQ-Mod 

and to a minor degree also for GAFF/RESP, while results for GAFF/IPolQ-Mod+LJ-Fit show significant better 

agreement with the experimental data. 
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Figure 2. Comparison of solvation free energies 

ΔGsolv,simulation vs. experimental data ΔGsolv,experiment 

[92,93,99,100] from the refitting data set. The results are 

represented by blue circles for GAFF/RESP, red squares for 

GAFF/IPolQ-Mod and green triangles for GAFF/IPolQ-

Mod+LJ-Fit. 

RMSD and MAE deviations as well as the linear regression fits are summarized in Table 3. The table 

highlights that the RMSD value of GAFF/IPolQ-Mod+LJ-Fit has been decreased by approximately 2 kJ/mol 

respectively 3 kJ/mol compared to GAFF/RESP and GAFF/IPolQ-Mod. Furthermore, both the slope m of the 

linear function and the Pearson coefficient R are closest to 1.  

Table 3. Summary of the evaluation of free energy results from the refitting data set. Besides the root-mean-square 

deviations (RMSD) and the mean absolute errors (MAE), the slopes m of the linear fitting curves with corresponding 

Pearson correlation coefficients R are given. For a better comparison with GAFF/RESP, additional values for 

GAFF/IPolQ-Mod and GAFF/IPolQ-Mod+LJ-Fit are stated in brackets that exclude iodine compounds. 

 GAFF/RESP GAFF/IPolQ-Mod GAFF/IPolQ-Mod+LJ-Fit 

RMSD in kJ/mol 4.64 5.39 (5.49) 2.39 (2.43) 

MAE in kJ/mol 3.52 3.93 (4.00) 1.77 (1.79) 

Slope m 0.9511 1.0452 (1.0397) 1.0083 (1.0085) 

Pearson R 0.9438 0.9350 (0.9340) 0.9850 (0.9848) 

In Figure 3, RMSD-values are given for solvation free energy results clustered by substance groups of 

solutes respectively solvents.  

The arrangement by solutes in diagram a) demonstrates that GAFF/IPolQ-Mod+LJ-Fit yields better 

results than GAFF/RESP for all groups except for azoles and indoles, as well as aldehydes and ketones. 

However, the performance for azoles and indoles is almost equal, while the RMSD value for aldehydes and 

ketones lies well below its total RMSD value, indicated by the horizontal dash-dotted line. The comparison 

with GAFF/IPolQ-Mod further shows better performance for all groups but bromine compounds, while the 

corresponding RMSD is again smaller than the overall RMSD. Regarding the deviations by solvent in 

diagram b), GAFF/IPolQ-Mod+LJ-Fit describes phenols rather poorly compared to GAFF/RESP and 

GAFF/IPolQ-Mod, while this is distinctively reversed for the grouping by solutes. This is analogous to iodine 

compounds and GAFF/IPolQ-Mod. For all the other groups, GAFF/IPolQ-Mod+LJ-Fit yields smaller RMSD 

deviations. 

That is, the performance of GAFF/IPolQ-Mod+LJ-Fit is much more homogenous for both solute and 

solvent groups compared to GAFF/RESP and GAFF/IPolQ-Mod. While these exhibit individual weaknesses, 

for example in the description of azines & diazoles, esters, amides and nitriles, the level of accuracy for 

GAFF/IPolQ-Mod+LJ-Fit remains nearly constant for the ΔGsolv refitting data set. 
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Figure 3. Comparison of RMSD-values for the solvation free energy results from the refitting data set 

obtained with the various model parameters. In diagram a), RMSD values are given aggregated by substance 

groups in solutes, while in diagram b), RMSD values are given by substance groups in solvents. Blue full bars 

refer to GAFF/RESP, red bars with rising pattern to GAFF/IPolQ-Mod and green bars with sloping pattern to 

GAFF/IPolQ-Mod+LJ-Fit. The bold horizontal lines indicate the overall RMSD values for the data set, whereas 

the continuous lines represents GAFF/RESP, the dashed lines GAFF/IPolQ-Mod and the dash-dotted lines 

GAFF/IPolQ-Mod+LJ-Fit. 

Some compounds of the refitting data set were also subject of a previous work [101], in which we have 

compared the performance of different force fields regarding the preproduction of hydration free energies. 

In the SI we provide the new results of GAFF/IPolQ-Mod+LJ-Fit for this small set of test systems considered 

in [101] compared to the previous results from GAFF/RESP and GAFF/IPolQ-Mod as well as CGenFF and 

OPLS-AA. 

Simulation results of the density ρsimulation from the refitting data sets are given in Figure 4 vs. 

experimental data ρexperiment [102–131]. 

Table 4 summarizes the root-mean-square deviations, mean absolute errors (MAE) as well as the slopes 

m and the Pearson correlation coefficients R of the linear regression curves. GAFF/IPolQ-Mod+LJ-Fit 

demonstrates slightly improved agreement with experimental data compared to GAFF/RESP, while the 

results for GAFF/IPolQ-Mod are significantly worse.  

In Figure 5, RMSD values for the three sets of model parameters are presented by groups of substances 

respectively temperature intervals. As for GAFF/IPolQ-Mod, large deviations occur for amines, amides, 

azoles, nitriles and alcohols, respectively, for temperature ranges -10 °C < ϑ ≤ 20 °C as well as for ϑ > 80 °C, 
while GAFF/RESP demonstrates poor performance for amines and temperatures within the range of  

-10 °C < ϑ ≤ 0 °C. GAFF/IPolQ-Mod+LJ-Fit shows lacking accuracies for amides, as well as for fluorocarbons, 

bromocarbons and iodocarbons. However, the impact of the temperature is less pronounced. 
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Figure 4. Comparison of simulated densities ρsimulation vs. 

experimental reference data ρexperiment [102–131] from 

the refitting data set. The results are represented by blue 

circles for GAFF/RESP, red squares for GAFF/IPolQ-Mod 

and green triangles for GAFF/IPolQ-Mod+LJ-Fit. 

Table 4. Summary of the evaluation of density results from the refitting data set. Besides the root-mean-square 

deviations (RMSD) and the mean absolute errors (MAE), the slopes m of the linear fitting curves with corresponding 

Pearson correlation coefficients R are given. For a better comparison with GAFF/RESP, additional values for 

GAFF/IPolQ-Mod and GAFF/IPolQ-Mod+LJ-Fit are stated in brackets that exclude iodine compounds. 

 GAFF/RESP GAFF/IPolQ-Mod GAFF/IPolQ-Mod+LJ-Fit 

RMSD in kg/m
3
 29.80 42.55 (43.27) 26.15 (25.66) 

MAE in kg/m
3
 22.51 33.78 (34.56) 19.20 (18.80) 

Slope m 0.9970 0.9938 (1.0036) 1.0168 (1.0266) 

Pearson R 0.9959 0.9956 (0.9941) 0.9979 (0.9974) 

 

Figure 5. Comparison of RMSD-values for the density results from the refitting data set obtained with the 

various model parameters. In diagram a), RMSD values are given aggregated by substance groups, while in 

diagram b), RMSD values are clustered by temperature intervals. Blue full bars refer to GAFF/RESP, red bars 

with rising pattern to GAFF/IPolQ-Mod and green bars with sloping pattern to GAFF/IPolQ-Mod+LJ-Fit. The 

bold horizontal lines indicate the overall RMSD values for the data set, whereas the continuous lines 

represents GAFF/RESP, the dashed lines GAFF/IPolQ-Mod and the dash-dotted lines GAFF/IPolQ-Mod+LJ-Fit. 
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Evaluation of the Validation I Data Set 

Figure 6 shows the simulation results of the solvation free energies from the validation I data set over 

experimental data [99]. 

 

Figure 6. Comparison of simulated solvation free 

energies ΔGsolv,simulation vs. experimental reference data 

ΔGsolv,experiment [99] from the validation I data set. The 

results are represented by blue circles for GAFF/RESP, 

red squares for GAFF/IPolQ-Mod and green triangles 

for GAFF/IPolQ-Mod+LJ-Fit. 

The RMSD and MAE deviations as well as the slopes of the regression curves and the Pearson correlation 

coefficients are summarized in Table 5. The results shown in Figure 6 and Table 5 illustrate that although 

GAFF/IPolQ-Mod+LJ-Fit allows for the most accurate predictions of the solvation free energy, the RMSD and 

MAE deviations for the validation I data set are much higher than for the refitting data set shown in Table 3. 

In contrast to this, the deviations for GAFF/RESP and GAFF/IPolQ-Mod have decreased significantly, so that 

GAFF/RESP and GAFF/IPolQ-Mod+LJ-Fit show very similar accuracies in the prediction of ΔGsolv. 

Table 5. Summary of the evaluation of solvation free energy results from the validation I data set. Besides the root-

mean-square deviations (RMSD) and the mean absolute errors (MAE), the slopes m of the linear fitting curves with 

corresponding Pearson correlation coefficients R are given. For a better comparison with GAFF/RESP, additional values 

for GAFF/IPolQ-Mod and GAFF/IPolQ-Mod+LJ-Fit are stated in brackets that exclude iodine compounds. 

 GAFF/RESP GAFF/IPolQ-Mod GAFF/IPolQ-Mod+LJ-Fit 

RMSD in kJ/mol 3.30 3.96 (4.07) 3.14 (3.09) 

MAE in kJ/mol 2.56 3.14 (3.22) 2.55 (2.50) 

Slope m 0.9192 0.9801 (0.9805) 0.9623 (0.9623) 

Pearson R 0.9578 0.9418 (0.9412) 0.9701 (0.9706) 

Figure 7 demonstrates the RMSD deviations for substance groups in solute and solvent molecules. 

Remarkable is the poor description of alkanenes, amides and fluorocarbons as solutes with the new 

parameters. However, the discussed groups of substances as solvents exhibit better-than-average RMSD 

values. This suggests that the corresponding substance groups or the atom types associated with them do 

not generally fail to reflect interactions. This raises the question whether identical atom types are justified 

for solute and solvent if the partial charges of the molecules are determined differently and the polarization 

effects are only approximated with IPolQ-Mod. Based on this consideration, there is a risk of underfitting 

model parameters if no distinction is made between the atom type adaptation in the solute or solvent. 

Consequently, individual pair potentials might be ideal, though this clearly leads the concept of a general 

force field ad absurdum.  
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Figure 7. Comparison of RMSD-values for the solvation free energy results from the validation I data set 

obtained with the various model parameters. In diagram a), RMSD values are given aggregated by substance 

groups in solutes, while in diagram b), RMSD values are given by substance groups in solvents. Blue full bars 

refer to GAFF/RESP, red bars with rising pattern to GAFF/IPolQ-Mod and green bars with sloping pattern to 

GAFF/IPolQ-Mod+LJ-Fit. The bold horizontal lines indicate the overall RMSD values for the data set, whereas 

the continuous lines represent GAFF/RESP, the dashed lines GAFF/IPolQ-Mod and the dash-dotted lines 

GAFF/IPolQ-Mod+LJ-Fit. 

However, not only do the RMSD values differ significantly between refitting- and validation I data set for 

GAFF/IPolQ-Mod+LJ-Fit, but also between GAFF/RESP and GAFF/IPolQ-Mod. The differences in the RMSD 

values between refitting and validation I data sets are ∆RMSDGAFF/RESP = 1.34 kJ/mol,  

∆RMSDGAFF/IPolQ-Mod = 1.43 kJ/mol and ∆RMSDGAFF⁄IPolQ-Mod+LJ-Fit = -0.75 kJ/mol. As the systems from both data 

sets are of similar complexity and as identical simulation protocols were used leading to comparable 

statistical accuracies, these discrepancies cannot be attributed to systematic errors in the calculation of 

ΔGsolv. A further analysis (see SI) highlights that the accuracies obtained from the validation I data set do 

not represent the predictive quality of neither of the models. 

Evaluation of the validation II data set 

As a consequence, the validation II data set was introduced for the prediction of relative solubilities for 

the more complex solute substances haloperidol, phenacetin, temazepam and trimethoprim. Based on the 

calculation of 42 solute/solvent pairs, 237 individual relative solubilities can be determined according to Eq. 

(1) using combinatorics, which are plotted against experimental data [132] in Figure 8. 
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Figure 8. Relative solubilities obtained from simulated 

solvation free energies of the validation II data set over 

experimental data [132]. Blue hollow symbols refer to 

GAFF/RESP, while green full symbols represent 

GAFF/IPolQ-Mod+LJ-Fit. Solutes haloperidol, 

phenacetin, temazepam and trimethoprim are 

displayed by squares, circles, triangles and diamond 

shapes respectively. 

Due to the consistently poor performance of GAFF/IPolQ-Mod, only GAFF/RESP and GAFF/IPolQ-

Mod+LJ-Fit models are compared for the validation II data set. Figure 8 illustrates the poor description of 

relative solubilities for solvate haloperidol and solvent glycerol with GAFF/RESP. However, other relative 

solubilities also show significant deviations from the experimental reference data, especially for GAFF/RESP. 

Table 6 summarizes RMSD and MAE deviations as well as slopes m and coefficients R of the regression lines. 

Even when the haloperidol/glycerol systems are excluded, GAFF/IPolQ-Mod+LJ-Fit has a significantly better 

overall accuracy than GAFF/RESP.  

Table 6. Summary of the evaluation of solvation free energy results from the validation II data set. Besides the root-

mean-square deviations (RMSD) and the mean absolute errors (MAE), the slopes m of the linear fitting curves with 

corresponding Pearson correlation coefficients R are given. In order to determine the effect of the outliers for 

GAFF/RESP, the results with haloperidol as solute and glycerol as solvent were not considered for the values in 

brackets. RMSD and MAE deviations for the individual solute compounds are given below the overall values. 

 GAFF/RESP GAFF/IPolQ-Mod+LJ-Fit 

RMSD 6.14 (2.98) 2.28 (2.26) 

haloperidol 11.53 (2.91) 2.03 (1.89) 

phenacetin 1.92 2.97 

temazepam 3.27 2.24 

trimethoprim 2.09 0.51 
 

MAE 3.41 (2.40) 1.74 (1.72) 

haloperidol 6.78 (2.45) 1.67 (1.55) 

phenacetin 1.55 2.49 

temazepam 2.66 1.66 

trimethoprim 1.80 0.45 
 

Slope m 0.5550 (1.1032) 1.2512 (1.2311) 

Pearson R 0.2358 (0.6859) 0.8286 (0.8183) 

Depending on whether the haloperidol/glycerol outliers are taken into account, the reduction of the 

RMSD value from the validation II data set for GAFF/IPolQ-Mod+LJ-Fit compared to GAFF/RESP is between 

24 - 63 %, which corresponds to a mean value of approximately 44 %. This value agrees very well with the 

decrease in the RMSD value of about 42 % for a hypothetical basis population from the refitting and 

validation I data set as discussed in the SI. In contrast, the validation I data set shows a decrease of only 

5 %. We therefore conclude that the validation II data set gives a more reasonable estimate for the 

potential of our newly developed model parameters aiming at improved predictions of solvation free 

energies and relative solubilities. 
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Evaluation of the validation III data set 

For validation III, 100 liquid densities of binary mixtures were calculated. Simulation results over 

experimental reference data [102,118,120,133–138] are given in Figure 9.  

 

Figure 9. Comparison of simulated densities ρsimulation vs. 

experimental reference data ρexperiment 

[102,118,120,133–138] for binary mixtures from the 

validation III data set. The results are represented by 

blue circles for GAFF/RESP, red squares for GAFF/IPolQ-

Mod and green triangles for GAFF/IPolQ-Mod+LJ-Fit. 

  

The evaluation of the predictive performance by set of model parameters is summarized in Table 7. 

Table 7. Summary of the evaluation of density results for binary mixtures from the validation III data set. Besides the 

root-mean-square deviations (RMSD) and the mean absolute errors (MAE), the slopes m of the linear fitting curves 

with corresponding Pearson correlation coefficients R are given. For a better comparison with GAFF/RESP, additional 

values for GAFF/IPolQ-Mod and GAFF/IPolQ-Mod+LJ-Fit are stated in brackets that exclude iodine compounds. 

 GAFF/RESP GAFF/IPolQ-Mod GAFF/IPolQ-Mod+LJ-Fit 

RMSD in kg/m
3
 39.06 47.85 (49.08) 24.93 (22.89) 

MAE in kg/m
3
 23.47 31.71 (32.04) 17.84 (16.60) 

Slope m 1.002 0.9977 (1.0041) 1.0132 (1.0193) 

Pearson R 0.9816 0.9856 (0.9766) 0.9954 (0.9939) 

The comparison of results in Table 7 demonstrates high correlations R and regression slopes m close to 1 

for all parameter sets. However, the RMSD value for GAFF/IPolQ-Mod+LJ-Fit decreased by approximately  

41 % and 48 % compared to GAFF/RESP and GAFF/IPolQ-Mod, respectively, and is in close agreement to the 

accuracies presented in Table 4. RMSD values aggregated by substance groups respectively temperature 

intervals are displayed in Figure 10. 

For GAFF/RESP and GAFF/IPolQ-Mod, the left figure demonstrates shortcomings for amines as well as 

for both the TIP3P and TIP4P/2005 water models. Although GAFF/IPolQ-Mod+LJ-Fit indicates deviations for 

fluorine and iodine compounds, these outliers are still significantly smaller than those of the other 

parameter sets. Regarding the reproduction of experimental data over a broad temperature range, 

GAFF/RESP and GAFF/IPolQ-Mod show extreme faults for systems within the temperature range of 70 °C < 
ϑ ≤ 80 °C, while the temperature impact on GAFF/IPolQ-Mod+LJ-Fit results is comparably small.  
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Figure 10. Comparison of RMSD-values for the density results from the validation III data set obtained with 

the various model parameters. In diagram a), RMSD values are given aggregated by substance groups, while 

in diagram b), RMSD values are clustered by temperature intervals. Blue full bars refer to GAFF/RESP, red bars 

with rising pattern to GAFF/IPolQ-Mod and green bars with sloping pattern to GAFF/IPolQ-Mod+LJ-Fit. The 

bold horizontal lines indicate the overall RMSD values for the data set, whereas the continuous lines 

represent GAFF/RESP, the dashed lines GAFF/IPolQ-Mod and the dash-dotted lines GAFF/IPolQ-Mod+LJ-Fit. 

Conclusions 

Molecular simulations offer great potential for a better understanding of complex processes such as 

solubility as they sample systems on the molecular level. However, accurate simulations require accurate 

molecular models. As polarization is considered to be an impacting factor, though linked to high 

computational effort, there is need for an implicit representation of polarization effects, for example using 

the IPolQ-Mod method. In this work, we have optimized GAFF atom types (GAFF/IPolQ-Mod+LJ-Fit) for a 

variety of substance groups considering IPolQ-Mod partial charges to improve the description of solvation 

free energies, respectively relative solubilities, as well as liquid densities. The evaluation of our refitting 

data set highlights significant improvements in the description of solvation free energies for our new 

parameters compared to default GAFF (GAFF/RESP), but especially for GAFF with IPolQ-Mod charges but 

not-optimized parameters (GAFF/IPolQ-Mod). The improvement regarding the prediction of liquid densities 

for pure compounds is minor compared to default GAFF.  

Regarding the validation, the description of densities for binary mixtures is significantly better with our 

new parameters. However, the accuracies of the free energy predictions for default RESP and our optimized 

parameters are almost identical. By in-depth analyses, partly given in the SI, we conclude that the free 

energy validation data does not represent the overall performance for neither GAFF/RESP nor GAFF/IPolQ-

Mod. We therefore deduce that the quality of our new model parameters is misrepresented as well. As a 

consequence, we further compared GAFF/RESP and GAFF/IPolQ-Mod+LJ-Fit for the description of relative 

solubilities of four drug-like structures in a multitude of solvents, resulting in a total of 237 individual 

relative solubilities. The improvement in root-mean square deviations between GAFF/IPolQ-Mod+LJ and 

GAFF/RESP of around 44 % is in much better agreement with the reduction of RMSD for the total of both 

previous free energy data sets. By this, our newly derived parameters for GAFF in combination with IPolQ-

Mod apparently allow for a significant improvement in the prediction of relative solubilities. 
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