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Gain and Dispersion Focusing in a High Gain Laser

Lee W. Casperson and Amnon Yariv

The transverse modes of a laser resonator containing a medium with a strong radial gain profile differ
greatly from the modes of a similar resonator containing a low gain medium. Focusing and defocusing
effects result from the gain profile and from the associated dispersion profile. The dispersion focusing
causes an asymmetry in the power output as the laser is tuned across the gain line. The theory has been
verified using a high gain 3.51-u xenon laser.

1. Introduction

In lenslike media having an approximately quadratic
radial variation of either the gain or the index of refrac-
tion there is a focusing or defocusing of propagating
Gaussian beams." 2 A positive index profile results in a
spot size of an unmatched beam which oscillates periodi-
cally with distance, while a positive gain profile causes
the beam to approach a steady-state spot size. In a
high gain gas discharge there is often a strong profile
of the gain, so that gain focusing is likely to be impor-
tant. However, whenever a medium has a gain spec-
trum, it must also have an associated dispersion spec-
trum. Therefore, dispersion focusing effects must al-
ways accompany gain focusing. It is the purpose of
this paper to show that the two types of focusing are
comparable in importance and that, moreover, the dis-
persion focusing may lead to asymmetry in Lamb dip
measurements. Ordinarily asymmetries in the output
of simple gas lasers are attributed to collisions between
the atoms.3 '4 The lasers considered are assumed to be
operated very near threshold, so that self-focusing is
unimportant. 5 This treatment is based on one given
elsewhere. 6

11. Theory

A lenslike medium is one in which the complex propa-
gation constant k varies quadratically with radius ac-
cording to

Here a is the exponential gain constant for the electric
field and ,B is related to the index of refraction by

, = 2rn/X. (3)

The easiest way to study the propagation of Gaussian
beams through such lenslike media is in terms of the
complex beam parameter q given by

11q = (11R) -i(,;/?rwV ) (4)

where R is the radius of curvature of the phase fronts,
w is the spot size of the beam, and Xm is the wavelength
in the medium. The same beam parameter may also
be used to characterize higher order Laguerre-Gaussian
and Hermite-Gaussian beams.

From the wave equation one finds that the propaga-
tion of q is governed by the Ricatti equation'

(1/q)' + (d/dz)(1/q) + (k2/ko) = 0. (5)

For simplicity we assume here that saturation is unim-
portant and the coefficients ko and k2 are independent
of position along the axis of the medium. The solution
of Eq. (5) is

1/q2 = [(l/ql) cos(k2/ko)izl - [(k2/ko)' sin(k2/ko)izj 

* { [(1/q)(ko/k 2 )1 sin(k2/ko)1z] + [cos(k2/ko)iz]} I (6)

Except when (k2/ko)' is real, the beam parameter at
large distances approaches the limiting value

I- l/q,, = Fi(k2/ko)1 ,
k, = - lk2r2. (1)

The real and imaginary parts of k are given by

k = + ic. (2)
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(7)

where the upper sign is used if m(k2/ko) > 0 and the
lower sign is used if Im(k2/kco) i < 0.

In the special case Im(k2/ko) = 0, Re(k 2 /ko)' i 0
(no gain profile), the beam parameter oscillates periodi-
cally without approaching a steady-state value. If
(k2/ko)l = 0 so that there is no profile at all, Eq. (6)
reduces to the free space result

(8)q2 = 1 + Z-

Otherwise, after some oscillation the beam goes to the
limit given in Eq. (7). From Eqs. (4) and (7) the limit-
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ing spot size is

wa, = (m/7r)1[Re(k/ko)1 -i (9)

and the limiting radius of curvature of the phase fronts
is

R.w= [Im(k 2 /ko)1]J-. (10)

The spot size given by Eq. (9) must be real if the
beam is to be confined by the medium. With our sign
convention this means that the real and imaginary parts
of (k2/ko) must have the same sign, or that

Im(k 2/ko) > 0. (11)

With Eq. (2) this stability condition is simply

a2 > 0, (12)

provided that the gain per wavelength is small (bo >
ao). In other words, the gain profile causes a damped
focusing such that the beam approaches a stable steady-
state value if and only if the gain is highest on the axis
of the medium. It is only this stable situation which is
of interest in the remainder of this paper. From Eqs.
(9) and (10) the spot size is

w0, = (Xm/r){zRe[( + i 2 )/1o30} i (13)
and the radius of curvature of the phase fronts is

R& = { Im[(32 + i 2 )/6oj } -'. (14)

We have described so far the propagation of Gaussian
beams in long high gain laser amplifiers. The transverse
modes of a laser resonator containing a high gain me-
dium are most easily found using complex beam
matrices.2 In the remainder of this paper we consider
only the simplest type of high gain laser, which consists
of a plane parallel resonator filled with a lenslike
medium. Such a configuration can be well approxi-
mated in practice. The spot size everywhere in this
laser is equal to the limiting value given by Eq. (13),
which can be written as

w = ((ira2/4Xm){ [1 + (2/a2)2] + (/2/C2)})i (15)

This result can be applied to lasers with various types
of index profiles. In the following, only profiles due to
the gain and dispersion will be considered.

To find how the spot size in Eq. (15) depends on fre-
quency, it is necessary to know the frequency depen-
dence of a2 and 32. In a Doppler-broadened medium
the unsaturated intensity gain g is a Gaussian function
of frequency and 2(X) may be written

-2(X) = (g2'/2)ex',

Therefore 32(x) is simply/62(X) = (92'/7r4)F(x).

Using Eqs. (16) and (19) in Eq. (15), one obtains the
following expression for the frequency-dependent spot
size of a plane parallel gain-focused laser:

( ) [7z92' ( + [2(X)e]2} ) + 2F (X)ej].

(20)

It is convenient to define the normalized spot size w*(x)
given by

w*(x) = e/4 1 + [2F(x)ex7 2 ± 2F(x)ex 2) (21)

which is equal to the actual spot size divided by its
line center value. A plot of w*(x) is given in Fig. 1.
Fig. 1

Also plotted in the figure is the function e62/4, which
would represent the frequency dependence of the
normalized spot size if dispersion focusing were ne-
glected. The asymmetry of the spot size results from
the positive and negative dispersion focusing, which
occur, respectively, for positive and negative values of
the frequency x. The minimum value of the spot size
is at a frequency of about x - 0.6 rather than at line
center.

We are primarily interested here in inhomogeneously
broadened media, but the results for homogeneous
broadening are similar. In an unsaturated homoge-
neous medium the gain is the Lorentzian

a2(Y) = (92'/2 )[1/(1 + y)],

where y = 2(v- v)/Avn is a normalized frequency.
The index of refraction is

n2(y) = (Xg2'/4,)[/(l + y2)].

Therefore, from Eq. (15) the spot size is given by
w = {(rg 2'/8Xm)[1/(1 + y 2

)][(1 + 2)i + y]} i. (24)
These homogeneous results are not considered further.

w
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where x = 2(v - v)(1n2) 1/AvD is a normalized fre-
quency and 92' is the line center value of the quadratic
term in the intensity gain constant. The quadratic
term in the index of refraction of a Doppler-broadened
medium is'

n2 (x) = (92'/27r/36)F(x),

where F(x) is Dawson's integral given by

F(x) = e 2 et2dt.

(17)
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Fig. 1. Solid line is the normalized spot size as a function of

(18) frequency. Dashed line is the spot size neglecting dispersion
focusing.
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The difference between the spot sizes indicated by

the two curves in Fig. 1 is at most of the order of 10%.
Nevertheless, the dispersion focusing could, in principle,
be detected directly by scanning the output beam profile
of a laser if the oscillation frequency were known. A

more important practical consequence of the dispersion
focusing is that the total power output of the laser

becomes asymmetric about line center. One expects
that for equal values of the gain, the larger the beam
spot size, the greater the output power. In particular,
the maximum power output of the laser does not occur
when the oscillation frequency is at gain center (neglect-
ing the Lamb dip, of course). The asymmetry in the

power output is easily measured and provides a fairly
direct indication of dispersion focusing.

The growth of intensity in a saturating one-dimen-
sional inhomogeneously broadened laser is governed by
the well-known expression

dI/dz = gI/(l + sI), (25)

where s is a saturation parameter. For simplicity dis-

tributed losses are neglected. For very weak satura-

tion (sI << 1) Eq. (25) reduces to the homogeneous ap-
proximation

dI/dz = gI/(l + IsI). (26)

If the laser beam were uniform over an area of radius w

and there were no gain profile, then the corresponding
result for the growth of the total power would be

dP/dz = goPl[1 + l (sP/iXw2)j. (27)

Equation (27) can.be shown to be also valid for a

Gaussian beam with nearly plane phase fronts in a

medium with a quadratic gain profile, provided that

the square of the spot size w is much smaller than the
square of the discharge diameter r0.6 This is not always
a good approximation but it is valid for our experi-
merts. go is the unsaturated gain at the axis of the
medium. The result for a homogeneously broadened
medium would be the same as Eq. (27) except that the
factor 2 would be missing.

If one mirror is highly reflecting, Eq. (27) can be in-

tegrated for one loop through the laser-medium, and the
result is

We have assumed here that the medium has a Bessel
function radial gain profile, so that the quadratic term
is2

92 = go(2 .88/ro2 ). (31)

Equation (30) is the general expression for the fre-
quency dependence of the output power of a Doppler-
broadened laser oscillator (neglecting the Lamb dip).
The exact calculation of the Lamb dip is difficult in
high gain lasers. However, as long as the homogeneous
line width is small compared to the Doppler line width,
the Lamb dip provides a useful indication of line center
(x = 0) without significantly affecting the over-all line
shape.

It is convenient to define the normalized power spec-
trum
PO*(x) = (ez' - b)ex

212({ 1 + [2F(x)ex'/71 i] 2}

+ [2F(x)ex2/r-]) -
where

b = - (lnR/2go'l) (33)

is a threshold parameter which is less than unity if the
laser is saturated. Equation (32) is plotted in Fig. 2
for various values of the parameter b. Evidently when
the laser is above threshold, the greatest output occurs
at a slightly negative frequency rather than at line
center. Near threshold (b -a- 1) this effect diminishes
and the greatest output occurs near x = 0. Also plotted
in Fig. 2 is the gain spectrum e - 2 .

The asymmetry of the power spectrum is most con-
veniently characterized by the location in frequency of
the power maximum. In Fig. 5 is a plot of this fre-
quency as a function of the threshold parameter b.
The plots in Figs. 2 and 5 are not quantitatively correct
for all values of b. From Eqs. (27) and (29) this homo-
geneous approximation is only valid in an inhomoge-
neously broadened medium as long as the product (2gol
+ lnR)(1 - R)-' is small compared to unity. In a

P0

2-(8/7r2)(P2 - P1) = 2got - n(P2 /P), (28)

where is the length of the medium. This integration is
possible as long as the right and left traveling beams

interact with different velocity classes of atoms. If the
reflectivity of the output mirror is R and the transmis-
sion is T, then Eq. (28) may be solved for the output
power Po as

Po = (27rw 2 /s)[T/(1 - R)](2gol + nR). (29)

A similar result can be obtained for homogeneously
broadened lasers.

Using Eq. (20) for the frequency-dependent spot
size with go = g'e-x 2, one obtains finally

Po(x) = (4ro/s)(7rA/1.44go)iex2[T/(l - R)](2g 0 '1ex2 + lnR)

X ({I + [2F(x)ex2/7rlJ1211 + [2F(x)e_ 2 /rj)_. (30)

Fig. 2. Normalized power output as a function of frequency for

various values of the threshold parameter. Dashed line is the gain
spectrum.
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high loss laser (R << 1) this is the same as requiring that
b be nearly equal to unity. Nevertheless, these results
are expected to be qualitatively correct for most values
of b.

It is possible to obtain a simpler approximate expres-
sion for the output power as a function of frequency
which is valid for small values of x. One finds after
some algebra that Eq. (32) may be expanded to second
order in x as

Po*(x) (1 - b) - [(1 - b)/7 rx]x + { [(1 - b)/27 r]

- [(1 + b)/2]Ix2. (34)

The maximum of this spectrum occurs at the frequency
xmax = {7T- - [(1 + b)/(l - b)]jr-l -1. (35)

If b is nearly equal to unity, then the maximum is at

Xmax = -[(1 - b)/27ri]. (36)

This equation is plotted as a dashed line in Fig. 5. The
two lines in the figure are in good agreement in the limit
of weak saturation.

In this section we have discussed focusing effects
which are due to the gain and dispersion profiles which

flat mirror
xenon amplifier > veP bS 1 movable

detector r ,,f |latro
Ik c/s chopper

signal loc -i _signal ~amplifier --

Fig. 3. Experimental setup.

may be associated with a high gain laser transition. It
was shown that the spot size of a waveguided beam is
greater for frequencies below gain center than for fre-
quencies greater than gain center. As a consequence
of this focusing asymmetry, the power output maximum
occurs at a frequency slightly below gain center. Ex-
perimental verification of the theory is described in the
next section.

111. Experiment

The gain focusing and dispersion focusing have been
observed experimentally using a high gain 3 .51-A xenon
laser. In a discharge laser of this type the gain maxi-
mum must be at the axis of the discharge with the gain
falling to zero at the tube walls. This gain profile
makes the xenon laser appropriate for studying focusing
effects.

The spot size in a simple plane parallel resonator
filled with an unsaturated high gain medium is given
by Eq. (20). For frequencies near line center Dawson's
integral F(x) goes to zero and the spot size is simply

w(X) = (8Xm/7rg2)1. (37)

Experimental investigations of this result have been
reported previously.2 The purpose of this section is to
consider experimentally the more subtle frequency
asymmetry resulting from dispersion focusing.

The apparatus is shown in Fig. 3. The d discharge
was about 5.5 mm in diameter and 1.1 m in length. The
right mirror was highly reflecting and could be trans-
lated longitudinally by means of a motor drive. The
cavity length was 1.29 m, so the empty cavity mode
spacing would be about c/2L = 116 MHz. Synchro-
nous detection was used to improve the signal-to-noise
ratio, and monoisotopic xenon was used to prevent un-
necessary asymmetries in the output. The xenon
pressure was maintained at about 5 by means of a
liquid nitrogen trap.8

A typical plot of the power output for decreasing
cavity length (increasing frequency) is shown in Fig. 4.
The laser was operated very near threshold and the
peaks represent successive longitudinal modes. These
peaks are to be compared to the theoretical curves
shown in Fig. 2. In the experimental plot there is a dip
in the output power on the high frequency side of the
peak. This is the Lamb dip and it results from the
interaction of the left and right traveling beams with
atoms which have zero z-component of velocity. Thus
the Lamb dip provides a convenient indication of the
frequency x = 0.

Comparison of the experimental and theoretical plots
shows that the power maximum is shifted down in fre-
quency by roughly the amount predicted by the dis-
persion focusing theory. Some data are shown in Fig. 5.
The value of the gain as a function of discharge current
was determined by introducing known losses into the
cavity and reducing the current until threshold was
reached. The reflectivity of the output mirror was 4%
and the value of b is given by Eq. (33). For the analysis
of the data it was necessary to take into account mode
pulling, because with a dispersive medium of this sort
the rate of change of the frequency with mirror position
may be greatly reduced near line center.9 For a rigor-
ous comparison of the experimental and theoretical
results over the entire spectrum it would have been
necessary to include the nonlinear mode pulling which
occurs near the wings of the gain line. The pressure
was low enough in these experiments that collision ef-
fects are believed to be completely unimportant. The
experiments indicate that the threshold Lamb dip in
xenon has a width of about 6 1 MHz and a depth
somewhat greater than the 10% enhanced Lamb dip
reported previously."

A possible cause of asymmetry in the power measure-
ments is the mass motion of the emitting atoms."
Particularly in a low pressure d discharge one might
expect a drift of the ions toward the cathode compen-
sated by a drift of neutral atoms toward the anode. In
a high gain laser the Doppler shifts resulting from this
mass motion would result in an asymmetry of the out-
put power spectrum. However, the asymmetry for
light emerging from one end of the laser would be ex-
pected to be in the opposite direction to the asymmetry
for light emerging from the other end. To check this
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Fig. 4. Power output for decreasing cavity length with a dis-
charge current of 18 mA.

-X

possibility a resonator was constructed having equally
transmitting mirrors at the two ends. It was found

that the power spectrum was identical at the two ends
of the laser, indicating that for the conditions of our

experiments drift of the atoms is unimportant. The

shift resulting from the known abundances of impurity
isotopes is estimated to be small compared to the ob-

served asymmetry.

IV. Conclusion

The transverse modes of a laser containing a high
gain medium may differ significantly from the modes of

a similar low gain laser because of gain and dispersion
focusing. The dispersion effects result in an asymmetry
of the output power spectrum which could be important
in any Lamb dip measurements in lasers with moder-

ately high gain. Experiments with a high gain 3.51-A

xenon laser have yielded results in agreement with the

theory. While only plane parallel resonators have

been considered here, the results may readily may be
extended to more complicated laser configurations.

This
search
Office,
search.

.2 .4 .6 .8 I0 b

Fig. 5. Frequency of the power maximum vs the threshold

parameter b. The solid line is a theoretical result obtained from

Eq. (32) and the dashed line is a plot of Eq. (36). The circles
are experimental values.
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