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We propose a scheme to generate high-dimensional self-trapped laser beams at a very low light
intensity via atomic coherence. The system we consider is a resonant four-level atomic ensemble,
working in an active Raman gain regime and at room temperature. We derive a high-dimensional
nonlinear envelope equation for signal field with a specific saturable nonlinearity. We show that due
to the quantum interference effect induced by a control field the imaginary part of the coefficients
of the signal-field envelope equation can be much smaller than their real part. We demonstrate that
the system supports gain-assisted, stable high-dimensional spatial optical solitons and long-lifetime
vortices, which can be produced with light power at microwatt level.

PACS numbers: 42.65.Tg, 05.45.Yv

I. INTRODUCTION

Spatial optical solitons are special types of optical wave packets appearing as a result of interplay between diffraction
and nonlinearity. The study of them is of special interest due to their rich nonlinear physics and important practical
applications [1–3, 5, 32]. Up to now, most spatial optical solitons are produced in passive optical media, in which
far-off resonance excitation schemes are employed in order to avoid significant optical absorption. As a result, a very
high light intensity is usually needed to obtain enough nonlinearity for balancing the diffraction effect.

In recent years, much interest has focused on the wave propagation in highly resonant optical media via electro-
magnetically induced transparency (EIT). EIT can be used not only for suppressing optical absorption, but also for
acquiring ultraslow group velocity, enhancing Kerr nonlinearity [6], and temporal [7–9] and spatial [10–13] optical
solitons and vortices in resonant nonlinear systems. However, the EIT-based schemes have some inherent drawbacks,
such as the probe attenuation and spreading at room temperature and the long response time due to the character of
ultraslow propagation.

Parallel to the study of EIT, much attention has been also paid to the wave propagation in resonant optical media
with active Raman gain (ARG) [14–23]. Contrary to EIT-based scheme which is absorptive in nature, the central
idea of ARG scheme is that signal field operates in stimulated Raman emission mode, and hence attenuation of the
signal field can be completely eliminated and a superluminal propagation of the signal field can be realized [14–
23]. In addition, it has been shown recently by Deng and Payne [24] that a gain-assisted giant Kerr effect can also
be obtained by using ARG media. Based on these results, gain-assisted temporal optical solitons of superluminal
propagating velocity have been predicted [25–27]. However, up to now there is no report on the study of gain-assisted
spatial optical solitons and vortices in the ARG-based systems.

In this work, we propose a scheme to generate high-D spatial optical solitons and vortices in a four-level ARG
system. We derive a high-D nonlinear Schrödinger (NLS) equation for the signal-field envelope and show that, by
means of the quantum interference effect induced by a control field, the imaginary part of the coefficients of the
envelope equation can be much smaller than their real part. The high-D NLS equation obtained has a new type of
saturable nonlinearity, which allows solutions of gain-assisted high-D spatial optical solitons and vortices. Due to the
resonant character of the system, the high-D self-trapped nonlinear laser beams obtained can be produced by using
very low light power.

The paper is arranged as follows. Sec. II gives a simple introduction of theoretical model and derive the high-D
NLS equation. Sec. III investigates the formation and propagation of high-D spatial optical solitons and vortices, and
discuss their interaction and stability. The last section summarizes main results of our work.

II. MODEL AND ENVELOPE EQUATION

The model under consideration is shown in Fig. 1. A weak signal field (with center angular frequency ωS), a
strong pump field (with center angular frequency ωP ), and a strong control field (with center angular frequency
ωC) interact resonantly with a N -type four-level system. The electric-field vector in the system is given by E =
∑

l=P,S,C elEl exp [i(kl · r − ωlt)] + c.c., where el (kl) is polarization direction (wavevector) of lth field with envelope
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FIG. 1: (Color online) Excitation scheme of life-time broadened four-state atomic system interacting with a strong pump field (with half
Rabi frequency ΩP ), a strong control field (with half Rabi frequency ΩC), and a weak signal field (with half Rabi frequency ΩS). |j〉
(j = 1, 2, 3, 4) are bare atomic states, ∆3, ∆2, and ∆4 are one-photon, two-photon, and three-photon detunings, respectively.

El. The Hamiltonian of the system in interaction picture reads Ĥint = −~
∑4

j=1 ∆j |j〉〈j| − ~(ΩP |3〉〈1| + ΩS |3〉〈2| +

ΩC |4〉〈2|+H.c.). Here ∆3 = ωP−(ω3−ω1), ∆2 = ωP−ωS−(ω2−ω1), and ∆4 = ωP−ωS+ωC−(ω4−ω1) are respectively
the one-, two-, and three-photon detunings; ΩP ≡ (eP ·p13)EP /~, ΩS ≡ (eS ·p23)ES/~, and ΩC ≡ (eC ·p24)EC/~ are
respectively the half Rabi frequency of the pump, signal and control fields, with pij being the electric dipole matrix
element associated with the transition from state |i〉 to state |j〉.

Using the Schrödinger equation i~∂|Ψ(t)〉int/∂t = Ĥint|Ψ(t)〉int with |Ψ(t)〉int = (A1, A2, A3, A4)
T and under

electric dipole and rotating-wave approximations, we obtain the equation of motion for Aj

(

i
∂

∂t
+ d2

)

A2 + Ω∗

SA3 + Ω∗

CA4 = 0, (1a)

(

i
∂

∂t
+ d3

)

A3 + ΩP A1 + ΩSA2 = 0, (1b)

(

i
∂

∂t
+ d4

)

A4 + ΩCA2 = 0, (1c)

with
∑4

j=1 |Aj |
2 = 1 and dj = ∆j + iγj (j = 2, 3). γj is the decay rate of the state |j〉.

Under slowly varying envelope approximation, the Maxwell equation for the signal field is reduced to

i

(

∂

∂z
+

1

c

∂

∂t

)

ΩS +
c

2ωS

∇2
⊥

ΩS + κA3A
∗

2 = 0, (2)

where ∇2
⊥

= ∂2/∂x2 + ∂2/∂y2, κ = NωS |eS · p23|
2/(2ǫ0~c) with N being atomic concentration. For simplicity, the

signal field has been assumed to propagate in z-direction, i.e. kS = ezkS .
We assume that atoms are initially populated in the state |1〉. Since the system works at room temperature, Doppler

effect resulted by thermal motion of atoms is significant. In order to suppress large gain of the signal field and the
Doppler effect, we assume one-photon detuning ∆3 is large enough. Steady-state solution of Eqs. (1) and (2) is given

by A
(0)
1 = 1/

√

1 + |ΩP /d3|2, A
(0)
2 = 0, A

(0)
3 = −ΩP /(d3

√

1 + |ΩP /d3|2), A
(0)
4 = 0. By assuming Aj − A

(0)
j and ΩS

proportional to exp[i(Kz − ωt)], it is easy to get the linear dispersion relation of the signal field

K(ω) =
ω

c
−

κ|A
(0)
3 |2(ω − d∗4)

|ΩC |2 − (ω − d∗2)(ω − d∗4)
, (3)

where ω and K are deviation of frequency and wavevector of the signal field, respectively. Fig. 2 shows the real part
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FIG. 2: (Color online) Real part ReK(ω) (solid line) and negative imaginary part −ImK(ω) (dashed line) of the linear dispersion relation
of the signal field as functions of ω.

ReK(ω) (solid line) and the negative imaginary part −ImK(ω) (dashed line) of K as a function of ω with realistic
system parameters for 87Rb atoms [24]. We see that −ImK(ω) displays a structure of gain spectrum hole, where
signal-field gain is largely suppressed. The width of the gain spectrum hole is proportional to the intensity of the
control field. The physical reason for the appearance of such gain spectrum hole is the quantum interference effect
induced by the control field [27, 28].

We focus on steady-state regime of the system, in which time-derivative terms in Eqs. (1) and (2) can be neglected.
Such regime can be realized under the condition |dj |τ0 ≫ 1, where τ0 is the pulse length of the signal field. In
this case, using Eq. (1) we obtain A1 = DA3/(ΩP D1), A2 = d4Ω

∗

SA3/D1, A4 = −ΩCΩ∗

SA3/D1, with |A3|
2 =

(

1 + |d4ΩS/D1|
2 + |D/(ΩP D1)|

2 + |ΩCΩS/D1|
2
)−1

, D1 = |ΩC |
2 − d2d4, and D = −d3D1 − d4|ΩS |

2. Then Eq. (2)
reduces to the (2+1)-D NLS equation with saturable nonlinearity

i
∂ΩS

∂z
+

c

2ωS

∇2
⊥

ΩS +
κd∗4D1

G

ΩS

1 + α|ΩS |2 + β|ΩS |4
= 0, (4)

with α =
[

|d4|
2 + |ΩC |

2 + 2|d4/ΩP |
2Re(d3D1/d4)

]

/G, β = |d4/ΩP |
2/G, and G = |D1|

2(1 + |d3/ΩP |
2).

In linear approximation, the signal beam spreads during propagation due to the diffraction of the system. In order
to arrest such spreading and obtain a stable signal-beam propagation, a natural way is to use the saturable nonlinear
effect of the system. To explore such possibility we write Eq. (4) into the dimensionless form

i
∂u

∂s
+

(

∂2

∂ξ2
+

∂2

∂η2

)

u + Re(δ)
u

1 + σ|u|2 + ζ|u|4
= P [u], (5)

where s = z/LD, (ξ, η) = (x, y)/R⊥, and u = ΩS/U0, with LD(≡ 2R2
⊥
ωS/c), R⊥, and U0 being respectively charac-

teristic diffraction length, beam radius, and half Rabi frequency of the signal field. The function on the right hand
side (RHS) of Eq. (5) is defined by P [u] = −iIm(δ)u/[1 + σ|u|2 + ζ|u|4]. The coefficients in Eq. (5) are given by
σ = U2

0 α, ζ = βU4
0 , and δ = Re(δ) + iIm(δ), with Re(δ) = ∆4κD1LD/G and Im(δ) = −γ4κγ4D1LD/G. Notice that

σ and ζ are real, but δ is complex. Notice that since Imδ < 0, the term P [u] in Eq. (5) is not an absorption but a
gain one.

Now we make an estimation of realistic values of the coefficients appeared in Eq. (5). We consider a typical
warm atomic vapor of 87Rb used in Ref. [24]. System parameters are given by γ2 = 150 Hz, γ3 = 250 MHz,
γ4 = 250 kHz, κ = 7.04 × 109 cm−1s−1, and ωS = 2.37 × 1015 s−1. Other parameters are chosen as ∆2 = 0,
∆3 = −2.0× 109 s−1, ∆4 = −3.0× 108 s−1, ΩP = 8.0× 107 s−1, ΩC = 6.0× 107 s−1, and R⊥ = 4.0× 10−3 cm. With
these parameters, we obtain LD = 2.53 cm, U0 = 1.04 × 108 s−1, σ = 1.0, and ζ = 0.19, and δ = −11.66 − 0.01i.
Because Im(δ) ≪ Re(δ), the term P [u] on the RHS of Eq. (5) can be taken as a perturbation. Consequently, in
leading order approximation Eq. (5) becomes a NLS equation without gain. Such result is interesting because in usual
undriven resonant systems one obtains envelope equations with very strong gain or dissipation, i.e. the coefficients
of the envelope equations have imaginary parts that are of the same order of corresponding real parts. The physical
reason of so small imaginary part in the coefficients of the envelope equation (5) is due to the quantum interference
effect induced by the control field.
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FIG. 3: (Color online) Soliton profile |u| as a function of coordinates ξ, η, and s, obtained by numerically solving Eq. (5). (a): Initial
profile of the soliton (s = 0). (b) and (c): Soliton profiles when propagating to five (s = 5) and ten (s = 10) diffraction lengths, respectively.
(d), (e), and (f): 2D projection plots correspond to panels (a), (b), and (c), respectively.

NLS equations with saturable nonlinearity have been studied for many years [29, 30, 33]. In many cases investigated
so far, the term related to saturable nonlinearity is of the form f(I)u, with I = |u|2. Usually, in non-resonant systems
f(I) takes the form n0/(1+I/I0), or n2I/(1+I/I0), with n0, n2, and I0 being constants [2, 3, 5, 32]. In resonant EIT
systems, f(I) takes the form n0/(1 + I/I0) (three-level) [12], or a very complicated form (four-level) [10]. However,
the saturable nonlinearity we obtained in the present four-level ARG system is very specific, which has the form
f(I) = n0/(1 + I/I0 + I2/I2

1 ), with n0, I0 and I1 being constants.

III. HIGH-D SPATIAL OPTICAL SOLITONS AND VORTICES

We now investigate the possibility of spatial optical solitons and vortices supported by saturable nonlinearity, based
on the NLS equation (5). Our strategy is as follows. We first get soliton or vortex solutions in the leading-order
approximation (i.e. the perturbation P [u] is set to zero). Then, we solve Eq. (5) by taking the leading-order solutions
as initial conditions to obtain the soliton or vortex solutions of Eq. (5) numerically. In fact, the solutions in the
leading-order approximation are already quite accurate because Im(δ)/Re(δ)≈ 10−3.

In the leading-order approximation, the solution of Eq. (5) has the from u = Ψ(r) exp [i(µ + Re(δ) )s + imφ], here
r2 = ξ2 + η2, µ is propagation constant, and m(≥ 0) is winding number. The solution for m = 0 corresponds to a
soliton, while for m 6= 0 the solution corresponds to a vortex with topological charge m. Boundary conditions are
∂Ψ/∂r = 0 at r = 0 and Ψ = 0 at r → ∞ for m = 0 (for solitons), or Ψ = 0 at r = 0 and r → ∞ for m > 0 (for
vortices).

A. Solitons

The soliton solution corresponds to the winding number m = 0. We solve Eq. (5) by using Newton iteration method
[34], with µ = 2.0, δ = −11.6 − 0.01i, σ = 1.0, and ζ = 0.19. Fig. 3 shows the result of our numerical simulation.
Panels (a), (b), and (c) of the figure are soliton profiles for s = 0, s = 5, and s = 10 (in unit of LD = 2.53 cm),
respectively. Panels (d), (e), and (f) are 2D projection plots corresponding to panels (a), (b), and (c), respectively. For
checking the stability of the soliton, in the simulation we have added a small randomness ρran to the initial condition,
i.e. u = usol (1 + ρran), with |ρran| = 0.1. From Fig. 3 we see the soliton keeps its shape after propagating to ten
diffraction length (i.e. s = 10). Hence Eq. (5) admits indeed soliton solution and this solution is fairly stable during
propagation.

We have also investigated collisions between two solitons by using an accelerated imaginary-time evolution method
[35]. Shown in Fig. 4 are profiles of amplitude |u| as function of ξ, η, and s for two-soliton collisions. The physical
parameters are chosen as the same as Fig. 3. The lower part of the figure is corresponding projecting (to ξ-η plane)
plots of the upper part. Note that in the upper part of the figure, 3D plots have been projected into the η = 0 plane.
From the figure we see that soliton collisions display elastic character; two solitons are attractive for ∆φ = 0, but
repulsive for ∆φ = π.
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FIG. 4: (Color online) Profiles of amplitude |u| for two-soliton collisions as function of ξ and s (projection to η = 0 plane has been taken).
Panels (a), (b), (c) and (d) are for collisions of two solitons with initial relative phase ∆φ = π, π/2, 0 and −π/2, respectively. The lower
part of the figure is corresponding projection (to ξ-η plane) plots of the upper part.
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FIG. 5: (Color online) (a): Ψmax as a function of propagation constant µ, with ΩC = 6.0×107 s−1. The vortex corresponding to the point
(µ, Ψmax)=(8.56,3.152) in the curve has a longer lifetime than the vortex corresponding to the point (µ, Ψmax)=(5,1.577). (b): Curves
of saturation parameters σ (solid line) and ζ (dashed line) as functions of ΩC . The point (4.0,2.6) in the σ-curve and the point (4,1) in
the ζ-curve correspond to (µ, Ψmax) = (7.43, 1.578). The point (6.0,1.0) in the σ-curve and the point (6.0,0.2) in the ζ-curve correspond
to (µ, Ψmax) = (5.0, 1.577). The vortex corresponding to (µ, Ψmax) = (7.43, 1.578) has a longer lifetime than the vortex corresponding to
(µ, Ψmax) = (5.0, 1.577).

It is easy to get the peak generation power of the spatial optical soliton obtained above, which is given by P̄max =
2ǫ0cnSS0(~/| p23|)

2U2
0 |umax|

2, with nS and S0 being the reflective index and the cross-section area of the signal beam,
respectively. Taking S0 = πR2

⊥
≈ 0.5 × 10−4 cm2, | p23| = 2.1 × 10−27 cm C, and using the other parameters given

above, we obtain P̄max = 2.32µW. Hence, the spatial optical soliton in the present system can be generated at very
low light power, which is much different from the optical soliton generation schemes using passive media, where much
higher generation power is required.

B. Vortices

It is well known that vortices of high-D NLS equations are generally unstable. However, saturable nonlinearity
may be used to effectively suppress such instability [29–33]. For a non-resonant passive system, saturation intensity is
very large, and saturation parameters of the system are fixed. However, our present system is a resonant active one,
the situation is thus quite different. On the one hand, due to the resonant character of the system, the saturation
intensity is very small. This can be seen as follows. From Eq. (5), the saturable nonlinearity can be obtained by
setting σ|usat|

2 ≈ 1, which gives the saturable electric field of the signal beam as |Esat| = ~U0/|p23|. Using the
numerical values of the physical parameter given above, we obtain |Esat| ≈ 5 V/m. On the other hand, the active
character of the present system provides us many adjustable parameters, which can be manipulated to reduce the
saturation intensity and increase vortex lifetime. In the following, we shall discuss only how to increase the vortex
lifetime by adjusting the half control-field Rabi frequency ΩC . From Eq. (5) we know that the coefficients δ, σ, and ζ
depend on ΩC , and hence the solution parameters of vortices, i.e. the propagation constant µ and Ψmax(the maximum
value of Ψ), depend also on ΩC .

Shown in Fig. 5(a) is the relation between Ψmax and µ, with ΩC = 6.0 × 107 s−1. The vortex correspond-
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FIG. 6: (Color online) Evolution of amplitude |u| of m = 1 vortex as a function of (ξ, η), with different propagating distance s. (a):
Evolution corresponding to the point (µ, Ψmax)=(5,1.577) of Fig. 5(a) without adding any random perturbation. (b): Evolution when a
random perturbation is added into the initial condition. The vortex keeps its shape till propagating to s = 2.4, but it deforms after s = 2.4
and then disintegrates into two solitons. (c): Evolution of large-amplitude vortex corresponding to the point (µ, Ψmax)=(8.56,3.152) of
Fig. 5(a). The vortex has a longer lifetime comparing with the case shown in panel (b), but it splits into two solitons at large s. (d):
Evolution corresponding to ΩC = 4.0 × 107 s, which corresponds to (µ, Ψmax) = (7.43, 1.578) of Fig. 5(b).

ing to the point (µ, Ψmax)=(8.56,3.152) in the curve is more stable than the vortex corresponding to the point
(µ, Ψmax)=(5,1.577). Shown in Fig. 5(b) are curves of saturation parameters σ (solid line) and ζ (dashed line) as
functions of ΩC for fixed parameters ∆2 = 0, ∆3 = −2.0 × 109 s−1, ∆4 = −3.0 × 108 s−1, and ΩP = 8.0 × 107 s−1.
Since the saturation intensity of the signal field is inversely proportional to σ and ζ, from the figure we see that one
can reduce the saturation intensity by decreasing ΩC . In the figure, by choosing 107 s−1 as the unit of ΩC we have
illustrated the point (ΩC , σ)=(4.0,2.6) in the σ-curve and the point (ΩC , ζ)=(4.0,1.0) in the ζ-curve. Using the values
of ΩC , σ and ζ at these points, we obtain (µ, Ψmax) = (7.43, 1.578), which has been indicated in the insetted up-left
square in the figure; we have also illustrated the point (ΩC , σ)=(6.0,1.0) in the σ-curve and the point (ΩC , ζ)=(6.0,0.2)
in the ζ-curve, which correspond to (µ, Ψmax) = (5.0, 1.577) that is indicated in the insetted bottom-right square.
The vortex corresponding to (µ, Ψmax) = (7.43, 1.578) has a longer lifetime comparing with the vortex corresponding
to (µ, Ψmax) = (5.0, 1.577). All these predications have been verified by numerical simulations.

In Fig. 6 we have shown the evolution of |u| for m = 1 vortex with different distance s. Panel (a) of the figure
corresponds to the point (µ, Ψmax)=(5,1.577) of Fig. 5(a) without adding any random perturbation to initial condition.
No deformation of the vortex is found after propagating to s = 10. However, when a random perturbation ρran (with
|ρran| = 0.158) is added into the initial condition, i.e. u = uvor(1 + ρran), the vortex is stable till propagating to
s = 2.4, but it deforms after s = 2.4 and disintegrates into two solitons, as shown clearly in panel (b). Plotted in panel
(c) of the figure is the result of the evolution of large-amplitude m = 1 vortex corresponding to the point (8.56,3.152)
of Fig. 5(a). In this case, vortex has a longer lifetime in comparison with the case shown in panel (b) because the
vortex can propagates to a longer distance even a random perturbation is added into the initial condition. Of course,
it splits into two solitons at large distance.

All evolution figures in panels (a), (b), and (c) are obtained for ΩC = 6.0 × 107 s. In order to demonstrate the
effect of different saturation parameters, in the panel (d) of Fig. 6 we have shown the evolution of m = 1 vortex for
ΩC = 4.0 × 107 s, which corresponds to (µ, Ψmax) = (7.43, 1.578) of Fig. 5(b). We see that in this case the vortex is
also relatively stable comparing with that shown in the panel (b).

Shown in Fig. 7 are the evolution plots of the m = 2 vortex for four different propagating distance s. Panel (a)
in the figure is the vortex evolution for (µ, Ψmax) = (5, 1.565) without adding any random perturbation to the initial
condition. We see that, different from the m = 1 vortex, the m = 2 vortex can not keep its shape even with no
random perturbation added into the initial condition. At s = 6.25, the vortex splits into four solitons. When a
random perturbation ρran (with |ρran| = 0.157) is added into the initial condition, the vortex displays instability in
earlier stage (s = 2.4). At s = 2.8, it splits into four solitons as shown in panel (b) of the figure. Panel (c) shows the
result of the evolution of large-amplitude m = 2 vortex corresponding to (µ, Ψmax) = (8.56, 3.152). We see that the
large-amplitude vortex is relatively stable comparing with that of the (small-amplitude) vortex of panel (b). However,
it disintegrates into three (not four) solitons at long evolution distance.

We have also simulated the evolution of the m = 2 vortex by changing the Rabi frequency of the control field. Shown
in panel (d) is the evolution of the m = 2 vortex for ΩC = 4.0× 107 s, which corresponds to (µ, Ψmax) = (7.43, 1.566).
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FIG. 7: (Color online) Evolution plots of the m = 2 vortex as functions of (ξ, η), with different propagating distance s. (a): Vortex evolution
based on Eq. (5) for (µ, Ψmax) = (5, 1.565) without adding any random perturbation to initial condition. (b): Vortex evolution when a
random perturbation is added into the initial condition. (c): Evolution of large-amplitude m = 2 vortex corresponding to (µ, Ψmax) =
(8.56, 3.152). (d): Evolution of m = 2 vortex corresponding to ΩC = 4.0 × 107 s, which corresponds to (µ, Ψmax) = (7.43, 1.566).

We see that the vortex in this case is also relatively stable in comparison with that shown in the panel (b). Generally,
by manipulating the parameters of the system, we can control the lifetime of the vortex freely. In particular, when
the control-field intensity decreases a small amount, the lifetime of the vortex can increase significantly. In addition,
it is easy to show that the peak generation powers of the m = 1 and m = 2 vortices are also at microwatt level.

IV. DISCUSSION AND SUMMARY

Generally, the vortices found in the system are unstable, mainly due to symmetry-breaking azimuthal perturbations.
However, as shown above the instability can be very weak, i.e. the vortices can have long lifetime and hence observable
in experiment and useful for practical applications. Because our system is an active one, one can control the weak
instability of the vortices by manipulating the system parameters at will. In addition, there exists a parameter
domain in which the vortices are stable, which can be illustrated as follows. Notice that Eq. (5), after making the
transformation u = v exp (iδs), can be reduced into the following cubic-quintic NLS equation

i
∂v

∂s
+

(

∂2

∂ξ2
+

∂2

∂η2

)

v − δσ|v|2v − δ(ζ − σ2)|v|4v = 0 (6)

if σ|u|2 + ζ|u|4 ≪ 1, which can be realized when (i)the signal field is weak and (ii)the saturation intensity is large,
which can be achieved easily by selecting the system parameters. Under the condition

δσ = −1, δ(ζ − σ2) = 1, (7)

Eq. (6) can be transferred into the standard cubic-quintic NLS equation i∂v
∂s

+
(

∂2

∂ξ2 + ∂2

∂η2

)

v + |v|2v − |v|4v = 0,

which admits stable vortices [31]. The condition (7) can be easily fulfilled in our system. For instance, by choosing
∆3 = −1.0 × 109 s−1, ∆4 = −1.69∆3, ΩP = ΩC = −0.1∆3, U0 = −0.44∆3, R⊥ = 2.516 × 10−3 cm, one obtains
σ ≈ −0.09, ζ ≈ 0.10, and thus the condition (7) is well satisfied. In this parameter domain, the vortices are very
stable, which has been verified in our numerical simulation.

In conclusion, we have proposed a scheme for generating high-D self-trapped laser beams at a very low light intensity
via atomic coherence. The system we have considered is an ensemble of resonant four-level atoms, working in an active
Raman gain regime and at room temperature. We have derived a (2+1)-D NLS equation for the signal-field envelope
with a specific saturable nonlinearity. We have shown that, due to the quantum interference effect induced by a control
laser field, the imaginary part in coefficients of the NLS equation can be much smaller than their real part. We have
demonstrated that the system supports stable high-D spatial optical solitons and long-lifetime vortices, which can
be produced with light power at microwatt level. The results presented here may be useful for understanding the
nonlinear property of coherent atomic systems and guiding experimental findings of spatial solitons and vortices with
very low generation power, which may have potential applications in optical information processing and engineering.
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