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Gain Calibration Methods for Radio Telescope Arrays
Albert-Jan Boonstra and Alle-Jan van der Veen, Senior Member, IEEE

Abstract—In radio telescope arrays, the complex receiver gains
and sensor noise powers are initially unknown and have to be cal-
ibrated. Gain calibration can enhance the quality of astronomical
sky images and, moreover, improve the effectiveness of array signal
processing techniques for interference mitigation and spatial fil-
tering. A challenging aspect is that the signal-to-noise ratio (SNR)
is usually well below 0 dB, even for the brightest sky sources. The
calibration method considered here consists of observing a single
point source and extracting the gain and noise parameters from
the estimated covariance matrix. We present several closed-form
and iterative identification algorithms for this. Weighted versions
of the algorithms are proven to be asymptotically efficient. The al-
gorithms are validated by simulations and application to experi-
mental data observed at the Westerbork Synthesis Radio Telescope
(WSRT).

Index Terms—Array calibration, covariance matching, factor
analysis, radio astronomy, weighted least squares.

I. INTRODUCTION

I N CONTRAST to most communications systems, in radio
astronomy the sources of interest are usually much weaker

than the instantaneous system noise levels, with signal to noise
(SNR) levels much below 0 dB even for the strongest sources.
Integration times of several hours to more than ten hours are
needed to obtain sky images with acceptable sensitivity. Astro-
nomical sources can be broadband or narrowband, and accurate
estimates of the telescope gains are necessary to compute the
astronomical source power distribution, in radio astronomy also
known as the surface brightness.

For an array of telescopes (see Fig. 1), not only the gain of
the main beam of each telescope needs to be estimated but the
phase differences between the telescopes, and the power of the
noise present at each receiver need to be estimated as well. Two
techniques are widely used. In imaging applications, a “blind”
iterative self-calibration technique [1], [2] starts from an initial
estimate of the parameters and adapts them until the resulting
image matches a prior parametric model of the field of interest
(usually a point source model). A second standard technique is
to obtain dedicated calibration observations of a part of the sky
that contains a single known, relatively strong point source, and
this is the technique that we consider in this paper.
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Fig. 1. Radio telescope array.

Several algorithms to estimate the parameters from these ob-
servations have existed for a long time [3]–[5], and until re-
cently, their performance was considered satisfactory. For ex-
ample, a typical 12-hr duration observation at the Westerbork
Synthesis Radio Telescope (WSRT), which is a 3-km linear
array of 14 telescope dishes of 25 m diameter located in The
Netherlands, is usually calibrated with two dedicated short cali-
bration observations prior to and after the 12-hr observation run.
At 1420 MHz and under optimal atmospheric and ionospheric
conditions, the resulting gain phase accuracy is about 5, and
the gain magnitude accuracy about a few percent. The gain es-
timates are assumed to be valid for any direction in the sky. If a
better accuracy is required or if the atmospheric and ionospheric
conditions are unstable, intermediate calibration measurements
need to be carried out, and calibration sources closer to the as-
tronomical source of interest can be selected. Since these are
usually weaker, longer integration periods are needed to reach
sufficient accuracy. Observation time is expensive, and there is
a growing need for data efficient estimation algorithms.

The advent of a new generation of radio telescopes such
as the square kilometer array (SKA) radio telescope [6] has
sparked new interest in the issue. SKA will be a phased array of
about 10 elements with receivers that are not as matched and
much noisier than the classical arrays. Hence, array calibration
is both harder and more important. A proposed low-frequency
array (LOFAR) will suffer from atmospheric disturbances that
can vary within minutes, and calibration will have to be online
and work with short data sets; hence, efficient algorithms
are needed. A second reason for renewed interest in gain
calibration issues is the recent attention for radio frequency
interference (RFI) suppression techniques. Advanced array
signal processing techniques such as spatial filtering are very
adequate in this context [7], but most algorithms rely on
spatially white noise models that are valid only after accurate
calibration. In this paper, we will study calibration techniques
valid for the 14-dish Westerbork array, but the results are more
generally applicable.

As mentioned before, we consider the standard procedure
for estimating the complex gain and noise power of each tele-
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scope, which starts by pointing the telescopes at a relatively
strong astronomical source (e.g., SNR dB). Each tele-
scope output signal is the sum of the telescope system noise (un-
correlated among the telescopes) and the astronomical source
flux, which is correlated, multiplied by the telescope gain. The
source flux is the same for each of the telescopes, but the tele-
scope gain and noise power usually are not. The gain consists of
the combined effect of atmospheric disturbances, telescope ge-
ometry, receiver characteristics, and electronic (amplifier) gain.
The noise consists mostly of thermal system noise, and differs
between the receivers by several decibels.

The output of the back-end processing stage is a sequence
of covariance matrices formed by cross-correlation of all tele-
scope outputs. In this paper, we aim to estimate the complex gain
factors and the system noise power from a recorded covariance
matrix, assuming that we observe a single astronomical source
whose flux is known from tables. We present four algorithms to
extract these parameters.

The telescope gains are frequency dependent; therefore, the
received frequency band is divided into subbands, and the pa-
rameter estimation is repeated for each frequency. We assume
that the subbands are sufficiently narrow so that the geometric
delay compensation (i.e., the delay of the astronomical signal
across the array) can be carried out via phase rotations. Under
the narrowband assumption, it is sufficient to discuss the param-
eter estimation at a single frequency.1

As we will show in Section II, the calibration problem is es-
sentially reduced to estimating the parameters of a covari-
ance matrix of the form

(1)

where is a gain vector, and is a diagonal matrix repre-
senting the noise covariance. This problem is not entirely un-
known in signal processing. There is some recent literature on
direction-of-arrival estimation in colored noise, with models of
the form , where is an array response
vector corresponding to the direction of arrival of a source. This
problem and generalizations to multiple sources have been con-
sidered, for example, in [8] and [9]. There is also a signifi-
cant body of earlier research that considers more general struc-
tured noise models; see [10], [11], and references therein. Our
problem differs in that we consider anunstructuredcomplex
vector and adiagonalnoise covariance matrix . This en-
ables some interesting closed-form estimators.

The model (1) also appears in the statistical literature as a
(rank-1) factor analysisproblem [12], [13]. Factor analysis is
a mature field that has seen much activity in the 1960s through
the 1980s. Although they are quite relevant to array signal
processing, the results are apparently little known in this field.
Many results also need to be translated to the complex domain.

Our main contribution in this paper is that we give several
new algorithms to estimate the gain and noise parameters, in-
cluding simple closed-form algorithms. We start with posing the
data model, deriving the Cramér–Rao bound (CRB), and formu-

1If a model is assumed for the frequency behavior of the parameters, then the
information from different frequencies should obviously be combined. This is
outside the scope of the paper.

lating a maximum likelihood (ML) estimation problem (Sec-
tion II). This does not directly lead to useful algorithms since
the number of parameters to be estimated can be large [ ,
where the number of sensorsis in the order of 10–60 for clas-
sical arrays and potentially much more in future arrays]. We
then present an asymptotically efficient Least Squares (LS) cost
function (Section III-A) and subsequently derive several itera-
tive and closed-form algorithms (Sections III-B–E). The algo-
rithms are first verified using simulations (Section IV) and then
applied to experimental data collected at WSRT (Section V).

Notation: The complex conjugate (Hermitian) trans-
pose is denoted by , the transpose operator by, the
complex conjugate by overbar, and the matrix pseudo
inverse (Moore–Penrose inverse) by. The Kronecker ma-
trix product is represented by , is the element-wise
matrix multiplication (Hadamard product), and is the
Khatri–Rao product, which is a column-wise Kronecker
product . An estimated
value is denoted by, diag and either converts a vector into a
diagonal matrix (with the vector placed on the main diagonal)
or, if applied to a matrix, sets the off-diagonal elements to zero,
and vecdiag returns the main diagonal of a matrix stacked
into a vector. Finally, is the Kronecker delta function,
is the th unit vector (all zeros except for theth element),
is a vector containing ones, and is the complement of :

.
Define the selection matrix such that for

any matrix , vec vec , where vec is the
vectorizaton omitting the diagonal entries. Note thatis easily
constructed from a identity matrix by removing its rows

. Then,
.

II. DATA MODEL AND PRELIMINARY RESULTS

A. Data Model Description

Consider a telescope array as in Fig. 1, and assume that during
the calibration observation, the telescopes are pointed at a single
radio source in the sky, placed in the center of the field of view.
Let be the complex baseband signal at a certain frequency

at the output of the receiver of elementat time . We assume
that the frequency bin is sufficiently narrow for the maximal
propagation delay of a signal across the array to be much smaller
than the inverse bandwidth so that it may be represented by a
phase shift. Then, can be modeled as

where is the overall amplitude gain of the receiver system
and the atmospheric disturbances, is the corresponding
phase shift, is the flux of the impinging source signal,

is the phase shift due to the propagation delay
of across the array, as compared to its arrival at the first

element, and is the system noise.
Assuming that we have elements, we can stack the

into a vector . Similarly, we
define
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and . We thus arrive at the
data model

We make the following model assumptions.

1) The source signal is zero mean Gaussian, temporally
independent identically distributed (i.i.d.) with signal
power known from tables.

2) The noise signal is zero mean Gaussian, temporally i.i.d.,
spatially uncorrelated among the sensors, with unknown
power and independent of the source
signal.

3) The gains and phases are unknown constants.
4) The geometry and looking directions of the telescopes are

known, so the phase shifts are known.
Assume that we have collectedindependent samples

, , where is the sample period. Since
the signals are Gaussian, all information on the parameters is
located in the second-order covariance. Let the true covariance
matrix and its sample estimate be

(2)

Since the noise is uncorrelated to the signal, we obtain

(3)

where diag is the noise covari-
ance matrix, which is a diagonal matrix containing the noise
powers.

Our objective in this paper will be, given , to estimate
and . Since is known from tables, we can make it equal
to 1 without loss of generality. In addition, the are known
from the geometry and look direction of the telescopes; hence,
without loss of generality, we make as well.

We will use the following real-valued parametrization of the
model. Define a factorization of into a magnitude vectorand
a phase vector as

It is clear that the phases inare underdetermined so that we
define the phase of the first entry to be zero ( ). The
parameter vector to estimate is thus

where .

B. Cramér–Rao Lower Bound

The CRB gives a lower bound to the variance of any unbi-
ased estimator of the parameter vector. In our situation, we
assume that the source signal and the channel noise are complex
independent Gaussian distributed with zero mean and that they
satisfy the model in (3) with . Following standard tech-

niques [14], [15], the CRB is known to be given by the diagonal
entries of

where is the (scaled) Fisher information matrix (FIM), which
can be written as (e.g., [16])

(4)

Here, is the Jacobian evaluated at the true value
of the parameters

vec vec vec

(5)

and are expressed similarly.
Further expansion of , which is presented in Appendix A,

shows that the gain phase parameters are decoupled from the
other parameters, which hints that they can be estimated sepa-
rately (indeed, we will derive such an algorithm). Moreover,
is independent of ; the estimation accuracy bounds are inde-
pendent of the particular values of the phases.

C. ML Formulation

In principle, asymptotically efficient estimates of the model
parameters, or and , can be obtained via an ML formula-
tion. Since all signal waveforms are i.i.d. Gaussian sequences,
the derivation is standard, and ML parameter estimates for
independent samples are obtained by minimizing the negative
log likelihood function

tr

where is a function of , and is the sample covariance
matrix defined in (2). This would lead to ML optimal, asymp-
totically efficient, estimates.

Even if the model is somewhat simpler than in [11], it does
not seem possible to solve this minimization problem in closed
form, and we have to resort to numerical optimization methods,
e.g., Newton–Raphson or scoring methods [15], [17], [13].
Stable implementations of such methods are complicated;
global convergence is not guaranteed, and a good initial point
is needed. The computational complexity is dominated by the
repeated evaluation of second-order derivatives.

In the following section, we propose algorithms that are based
on the least squares (LS) optimization of the model errors. Al-
though there is no guarantee that the solution converges to the
global optimum here either, the advantage of the LS algorithms
is reduced computational complexity. We also derive simple
closed-form approximate solutions to the LS cost function.

III. GAIN DECOMPOSITIONALGORITHMS

We start by describing the least squares cost function,
and subsequently, we derive four least squares estimation
algorithms: two iterative and two in closed form.
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A. Generalized Least Squares Formulation

As discussed in [11] and following techniques written in
detail in [18, chap. 9], a weighted least squares covariance
matching approach is known to lead to estimates that, for a
large number of samples, are equivalent to ML estimates and,
hence, are asymptotically efficient and reach the CRB.

Thus, define the least squares covariance model fitting
problem as, for given , an estimation of and via

(6)

Equivalently, by writing and in terms of their parametriza-
tion , we consider the minimization of the cost function :

(7)

where vec . A more general weighted
least squares problem is obtained, for a Hermitian weighting
matrix , as the optimization of

(8)

where . The weighting can be used to ob-
tain estimators with a reduced variance. The optimal weight is
known to be the inverse of the asymptotic covariance of the
residuals (cf. [11]), , where is the “true”
value of the parameters, or vec (corresponding
to the true covariance matrix). Since all sources are Gaussian,
we find

(9)

Let . Before we discuss algorithms to com-
pute , we summarize the statistical performance of this LS es-
timator because they follow from [18, ch. 9] and from similar
results, e.g., in [11], [15], and [19]. It is well known that the
(W)LS estimator is asymptotically unbiased and consistent. The
asymptotic distribution of is Gaussian, and the large sample
covariance matrix of the parameter
estimate is given by

where is the Jacobian in (5) evaluated at. For
weighted estimates , the large sample covariance matrix is
derived as

At the optimal weight (9)

Hence, at the optimal weight (or a consistent estimate of it), the
WLS estimator is asymptotically efficient.

B. Gauss–Newton Iterations (GNLS)

Assuming that we have a good initial point for, the mini-
mization of the (weighted) LS cost function (6) can be carried
out using the Gauss–Newton method [17].

Let denote the Jacobian (5). For the unweighted cost
function, the gradient at is

Re (10)

Note that due to the Hermitian symmetries, the product is
already real. The Hessian of the cost function atis given by

Re (11)

The Gauss–Newton update step is then

(12)

where , and . is a step size;
with a good initial point, we can take , but in practice,
a line search would be necessary to ensure proper convergence.
For numerical stability, the pseudo-inverse ofcan be regular-
ized by incorporating a certain threshold on its singular values.
A similar iteration can be derived for the weighted cost function.

An initial point for the GNLS recursion is needed, and can
often be obtained from an SVD of diag , because the
astronomical source power is usually much smaller than the
noise powers (or diag ). Another possibility is ap-
plying one of the closed-form algorithms described later in Sec-
tions III-D and -E. The initial point can also be used to generate
a consistent estimate of the optimal weight (since the latter de-
pends on the true and is unknown).

In the CRB derivations, it was shown that the gain magnitudes
and the gain phases are decoupled. Similar to the derivation in
the Appendix, we can show that , and ,
which somewhat simplifies the Hessian. As in [11], it is also
possible to concentrate the cost function, eliminatingand the
scaling of , but the remaining parameters are more strongly
coupled and the derivatives more complex to evaluate. In our ex-
perience, the complexity of the resulting Gauss–Newton scheme
is higher, and the convergence is not better.

C. Minimization Using Alternating Least Squares (ALS)

Unweighted ALS Algorithm:A straightforward technique to
try to optimize a cost function over many parameters is to al-
ternatingly minimize over a subset, keeping the remaining pa-
rameters fixed. In our case, assume at theth iteration that we
have an estimate . The next step is to minimize the LS cost
function (6) with respect to the gain vector only.

(13)

The minimum is found from the eigenvalue decomposition
, where the matrix contains

the eigenvectors , and is a diagonal matrix containing the
eigenvalues . The gain estimate minimizing (13) is given by

(14)
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where is the largest eigenvalue, and is the corresponding
eigenvector. The second step is minimizing (6) with respect to
the system noise matrix , keeping the gain vector fixed

(15)

where is constrained to be diagonal with non-negative entries.
The minimum is obtained by subtracting from and
discarding all off-diagonal elements

diag

The condition that the diagonal elements of should be
positive can be implemented by subsequently setting the nega-
tive entries at zero. The two minimizations steps (13) and (15)
are repeated until the model error (7) converges. Since each of
the minimizing steps in the iteration loop reduces the model
error, we obtain monotonic convergence to a local minimum.
Although the iteration is very simple to implement, simulations
indicate that convergence is usually very slow, especially in the
absence of a reasonable initial point.

Weighted ALS:The optimal weight for the LS cost function
is . Due to this Kronecker structure, the WLS
cost function (8) can also be written as

(16)

where . As before, if at the th iteration we have
an estimate of , then an estimate of follows from

(17)
After computing the eigenvalue decomposition

, the estimate follows as

(18)

The second step is minimizing the cost function with respect to
while keeping fixed:

(19)
Letting vecdiag (using several Kronecker relations
[20])

vec

vecdiag

This is a closed-form solution for . Note that unless is
diagonal, in general, the result is not equal to diag .

The optimal weight depends on the true co-
variance matrix , which is unknown. Asymptotically, the same
results are obtained by replacingby a consistent estimate, for

example, or the result of one of the closed-form estimates in
the following sections. At the optimum, the statistical proper-
ties of the ALS and W-ALS estimators are as described in Sec-
tion III-A.

D. Closed Form Using Logarithmic Least Squares (LOGLS)

Unweighted LOGLS Algorithm:An alternative closed form
estimate (as in use at the WSRT [3] since 1980) is obtained
by minimizing the mean squared error of thelogarithmsof the
model. As we will show, taking the logarithm has several effects.
The equations become linear in the parameters as the products
of gains become sums:

It is seen that a least squares model fitting can be applied to
the gain magnitude and gain phase separately. Unfortunately, a
modulo phase ambiguity is introduced because of the com-
plex properties of the logarithm. This makes phase unwrapping
necessary in the decomposition algorithm.

In a matrix formulation, we minimize a LS cost function after
taking the element-wise logarithm

(20)
where is a nuisance parameter matrix of integers. For any
estimate , the optimal estimate of is still given by
diag . Substituting this back into the cost function
shows that the main diagonal of the argument to the Frobenius
norm is equal to zero. Thus, the cost function is compressed as

vec (21)

where vec . Note that

(22)

Defining vec Re and vec Im , it is
seen that the optimization problem separates into independent
optimizations over and (corresponding to the real and imag-
inary components), namely

Each cost function is linear and easily optimized in closed form.
For the first cost function, we obtain, using

and several Kronecker relations [20]

(23)

where , Re , and
. An explicit expression of is easily obtained
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using Woodbury’s identity. Note also that can be com-
puted very efficiently. Similarly, solving the second cost func-
tion is reduced to solving

where

and . The last row in implements the
chosen phase uniqueness constraint . The system can be
solved as

(24)

once the integers are known. Suppose we have an initial es-
timate of , for example, from the first column of as

Im . Then, (and thus ) is obtained by rounding
the entries of to the nearest multiple of :
round . Using Woodbury’s identity and sev-
eral Kronecker relations, (24) can be worked out further, pro-
ducing

tr

Im

where , and unvec .
Weighted LOGLS:The LOGLS method has zero bias and is

consistent, as the logarithm function is a smooth monotonous
transformation, but the logarithm operator prevents the LOGLS
method from being statistically efficient. In general, there exists
no weighting matrix that makes the LOGLS method asymptoti-
cally efficient, but there exist special cases for which asymptot-
ical efficiency can be reached. This will be shown by comparing
the LOGLS cost function with the weighted LS cost function,
the latter leading to asymptotically efficient estimates. We start
from the compressed LOGLS cost function (21). After replacing
the selection matrix by (which does not change the norm
and is more convenient since is diagonal), we introduce a
weighting matrix to obtain

vec

(25)
Assuming that is close to and that none of the gain ampli-
tudes are zero, we can use the Taylor approximation

. Let denote an element-wise matrix division; then

vec

vec

vec

vec diag diag

diag vec

Note that for the cost function, the phase of the diagonal matrix
diag is irrelevant; therefore, it can be replaced by

, where diag . The weighted LOGLS cost
function close to the optimum can thus be written as

vec

If we compare this to the cost function for the weighted LS,
vec , we see that these two cost

functions give the same solution if

(26)

Because is singular, a solution is possible only in special
cases, for example, diagonal weighting matrices. For low SNRs,
SNR tr , which is true for most radio astro-
nomical observations, the weighting matrix is close to di-
agonal , and in this case, the choice

satis-
fies (26). Here, we used the diagonal and commutative proper-
ties of . Defining , the weighted LOGLS
cost function can be expressed as

vec

Further defining vec Re ,
vec Im , and , and noting
that [viz. (22)]

where , it follows that we need to solve

It is clear that this can be done in closed form as before; we omit
the details.

The conclusion is that for low SNRs, we can weight by
and make the weighted LOGLS method asymptotically efficient
to a good approximation.

E. Closed Form Using Column Ratios (COLR)

Unweighted COLR Algorithm:As a last technique, we now
set out to find a closed-form estimate of, which recovers
exactly when applied to (hence asymptotically for ). The
crux of this method is the observation that the off-diagonal en-
tries of are equal to those of and known, so that we only
need to reconstruct the diagonal entries of . We further note
that is rank 1; therefore, any submatrix of that does not
contain elements from the main diagonal is also rank 1. This
property can be used to estimate the ratio between any pair of
columns of away from the diagonal and, subsequently, to es-
timate how the main diagonal of has to be changed so that
the resulting is rank 1 or . The gain vector can
then be extracted by an eigenvalue decomposition.
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For any two elements and of the complex gain vector,
define the ratio . This ratio can be estimated from
the data by solving

where and are the th and th column of the matrix , not
including the entries , , , and because and
also depend on the unknown system noise. Solving for in
the least squares sense gives

We can subsequently estimate as for any
choice of . This estimate can be improved if all
available column ratios are used, and the fact that is real

Re

The next step is to form equal to but with the diagonal
entries replaced by the estimates of obtained above. The
resulting matrix is an estimate of , and is found from
the eigenvalue decomposition , similarly as in
(14). is obtained as diag .

With measured data, we follow the same procedure but re-
place by the sample estimate. Although there is no claim
that this procedure minimizes the LS cost function, its estimates
are rather close and asymptotically (large), the true and

are obtained. In the simulations and in the experimental re-
sults, the column ratio method will be denoted by the acronym
“COLR.”

Weighted COLR:Because of thead hocderivation of the al-
gorithm, it is difficult to establish the statistical efficiency and
the weighting matrix that might achieve this. The analysis of the
other three gain estimation methods suggests that a weighting
matrix of the form might improve
the statistical efficiency in some cases (namely, very nonuni-
form noise power). In the section on simulations, we show that
this is indeed the case. Since is initially unknown, we can
construct the weighting matrix only after a first (unweighted)
estimate of the parameters has been made. The COLR algo-
rithm is subsequently applied to . The re-
sulting gain estimate is converted to the unweighted gain
by . The diagonal estimate is obtained as before
as diag .

F. Computational Complexity

When a fast update rate for the parameter estimation is needed
or when a very large number of telescopes/antenna sensors is
used, the computational complexity of the algorithms become
important. This is especially the case for future generations of
large radio telescopes, such as SKA and LOFAR, where the
number of telescopes will be very large . Table I lists
the order of the number of multiplicative operations required

TABLE I
NUMBER OF MULTIPLICATIONS. (p IS THE NUMBER OF SENSORS, N IS THE

NUMBER OF ITERATIONS)

for each of the algorithms and the additional number of multi-
plications for computing weighted estimates. The computations
for determining the initial points for the GNLS and the ALS
methods are not taken into account.

It is seen that the GNLS method is the most complex,
whereas the LOGLS method is computationally the fastest.
For the GNLS method, the most demanding operation is the
calculation of the inverse of the Hessian; for the ALS and
the COLR methods, it is the repeated evaluation of the SVD.
(In the table, we did not take into account the fact that faster
estimators for the dominant singular vector exist.) The LOGLS
algorithm only requires a few matrix–vector multiplications as
the LOGLS estimators have simple closed-form expressions,
and it is therefore the fastest method.

IV. SIMULATIONS

First, we verify the performance of the estimation algorithms
by computer simulations and then show results based on exper-
imental data collected at the WSRT.

In all simulations, we use telescope channels. Unless
denoted otherwise, the gain magnitude is kept
fixed for each simulation. The are chosen randomly in the in-
terval and , where is the nominal gain
magnitude, and is a spreading parameter. The gain phase
lies uniformly distributed between 0 and , where .
The gain phase is randomly chosen and is also kept fixed during
most simulations. The astronomical source is a zero mean com-
plex Gaussian signal with unit power. The SNR is defined as the
total received power due to the source, divided by the total noise
power, or SNR tr . Finally, the system noise magni-
tude lies uniformly distributed between SNR and
SNR , where is the noise spreading parameter

.
For a typical online gain calibration measurement at a radio

observatory, astronomical sources are used with SNRs in the
range 20 to 10 dB, the integration time of the correlation
data usually is several seconds to a few minutes for a typical
frequency bin resolution of 10 to 100 kHz. Therefore, for most
of the simulations, the following parameter settings are chosen:

, , , and .
In the simulations, is the number of complex samples on

which the covariance matrix is based and to which the gain de-
composition algorithms are applied. Finally, is the number
of simulation runs from which the estimation standard deviation
is derived. Choosing gives a reasonable standard
deviation accuracy.
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(a)

(b)

Fig. 2. Convergence speed of the cost function, weighted gain estimation
algorithms (a) applied to the trueR and (b) applied to finite sample covariance
matrices.

A. Convergence of GNLS and ALS

Fig. 2(a) shows the convergence speed (Frobenius norm of
the covariance matrix) of the weighted algorithms when applied
to a true covariance matrix (infinite sample case). The ALS
method shows a linear decrease of the error; the Gauss–Newton
curve shows a quadratic decrease in the estimation error, as is
expected and well known from literature. The closed-form es-
timators produce the correct values in one step, up to computer
accuracy. Fig. 2(b) shows the convergence speed for covariance
matrices with noise. In this case, the GNLS method does not
show quadratic convergence because after a few iteration steps,
the estimation accuracy is dominated by the noise (the CRB is
reached within a few iteration steps).

For the chosen SNRs and spread in gain and noise power,
applying weights improves the convergence speed of the ALS
method, which is reduced by a factor two. For the GNLS

(a)

(b)

Fig. 3. Weighted gain estimate standard deviation versus SNR. (a) Gain
magnitude SD. (b) Gain phase SD.

method, weighting does not have a significant effect on the con-
vergence speed for the parameter settings used.

For the ALS and the GNLS methods, an initial point that is
relatively close to the true values is needed. The results of the
noniterative methods could be used as initial point. In the simu-
lations, however, the true gain and noise values with small per-
turbations were used as initial points.

B. Influence of SNR and Number of Samples

Fig. 3 shows the results of a gain estimation simulation in
which the gain estimation standard deviation is plotted versus
SNR for samples. The four estimator results are
plotted together with the statistical efficiency bound (CRB). For
the parameter range under consideration, all methods perform
close to the bound, except for SNRs dB, in which case,
the gain estimators are biased, as is shown in Fig. 4. The fig-
ures show that the LOGLS and COLR methods break down at
slightly higher SNRs than the ALS and GNLS methods.
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(a)

(b)

Fig. 4. Weighted gain estimate bias versus SNR. (a) Gain magnitude bias. (b)
Gain phase bias.

For high SNR values, the variance of the gain estimates sat-
urates toward a fixed value, determined by the number of sam-
ples. Indeed, at very large SNR, the direction ofcan be esti-
mated accurately even with a single sample, but its scaling,
or the source power estimate, suffers from the finite sample ef-
fect.

In Fig. 5, the weighted gain estimates are plotted as a function
of the number of observed time samples for an SNR of dB.
The performance of the four weighted methods do not differ
much for the parameter setting used.

C. Influence of Parameter Spread

We next investigate the influence of deviations of the gains
and system noise values from their nominal values. The number
of samples was fixed at and the SNR at nominal
dB. The gain magnitude and noise parameter ranges are defined
by and SNR , where and

(a)

(b)

Fig. 5. Weighted gain estimate standard deviation versus number of samples.
(a) Gain magnitude SD. (b) Gain phase SD.

are spreading parameters with values ranging from 0 to 10
dB, and and are random vectors with elements uniformly
distributed in the interval [ 1, 1].

Figs. 6 and 7 show the gain estimation standard deviation as
a function of gain spreading for the nonweighted and weighted
simulations, respectively. For dB, all gains are unity;
for dB, the gains vary between and 10 dB (with
respect to the nominal value of 1). The effect of the weighting on
the statistical efficiency of the LOGLS method is dramatic for
a large gain spreading parameter. The weighting does not influ-
ence the gain magnitude estimation of the COLR method. This
is expected as the COLR weighting is a real diagonal matrix.
The ALS and GNLS methods coincide with the CRB curve, ex-
cept for a large gain spread parameter value in the nonweighted
case.

Figs. 8 and 9 show the gain estimation standard deviation as
a function of noise spreading for the nonweighted and weighted
simulations, respectively. All nonweighted method standard de-
viations lie well above the CRB curves for dB and
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(a)

(b)

Fig. 6. Nonweighted gain estimation standard deviation versus dispersion of
the gain magnitudes. (a) Gain magnitude SD. (b) Gain phase SD.

coincide with the CRB curves in the weighted case, except for
the gain magnitude estimation for the COLR method.

We conclude that weighting does not have much influence if
the gain and noise values of the different telescopes are approx-
imately equal, as in this case the methods are already asymptot-
ically efficient. The improvement, however, is large if gain and
noise spread become significant. In that case, weighting makes
the methods (except COLR) asymptotically efficient.

V. EXPERIMENTAL RESULTS

A. Measurement Setup

So far, the accuracy of gain parameter estimations has been
verified by means of simulations. In this section, we present
an experimental verification based on collected radio telescope
data. In the experiment, we observe a strong point source in the
sky with a radio telescope interferometer array, in our case the

(a)

(b)

Fig. 7. Weighted gain estimation standard deviation versus dispersion of the
gain magnitudes. (a) Gain magnitude SD. (b) Gain phase SD.

WSRT. The point source requirement is that the source angular
size is much smaller than the telescope main beam power.

The time series at the baseband digital output of the tele-
scopes are segmented into short intervals, Fourier transformed,
and subsequently spatially cross-correlated, resulting in com-
plex covariance matrices for each of the frequency bins, to
which the gain decomposition algorithms are applied.

In our experiments, we used 8 of the 14 WSRT tele-
scopes, in single linear polarization mode, with a maximum dis-
tance (baseline) of 1 km. The telescopes tracked the strong as-
tronomical point source “3C48” at a sky frequency of 1420.4
MHz with a receiver bandwidth of 1.25 MHz. An eight-channel
data recorder, equipped with eight ADCs and 832 MBytes
of memory, was connected to the telescope baseband IF system
outputs. The time sample data was recorded on CDROM and
processed offline. In our experiment, the earth-rotation related
phase drift was compensated for, which means that during the
experiment the telescope–interferometer phase was constant.
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(a)

(b)

Fig. 8. Nonweighted gain estimation standard deviation versus dispersion of
the system noise. (a) Gain magnitude SD. (b) Gain phase SD.

We split the data into 32 frequency bins, each with a bandwidth
of 39 kHz, which fits the narrowband assumption reasonably
well (propagation delays across the array).

The data model in the experiment is , where
is the source flux (known from tables). The outcome of the

algorithms forms estimates for and . To compare this to
known telescope parameters, we first note that the gain vector

and the noise vector contain a common unknown electronic
amplification factor (a diagonal matrix), which is frequency
dependent and cannot be obtained separately. Thus, define

where and are the telescope gain vector and telescope
noise covariance matrix at a location in the system prior to am-
plification. Note that the ratio is independent from
the electronic gain. Hence, . The
right-hand side is the SNR at the input of the low-noise ampli-

(a)

(b)

Fig. 9. Weighted gain estimation standard deviation versus dispersion of the
system noise. (a) Gain magnitude SD. (b) Gain phase SD.

fiers. Its nominal value depends on the construction of the
telescopes (collecting area), the telescope system noise, and
the source flux and is known from calibration tables. Thus, we
can compare the estimate for to the literature. In
our experiment, the 3C48 source emits spectrally continuum
radiowaves at 1420.4 MHz with a source power, according to
calibration tables, which lies 13 dB below the WSRT system
noise or .

B. Experimental Results

The weighted LOGLS method was applied to a WSRT tele-
scope data set consisting of telescopes and
samples in 32 frequency bins. The estimates of , , and

for as function of frequency are shown in
Fig. 10.

Fig. 10(a) confirms that the received SNR is about dB
for each antenna. Note that there is a bump in the noise power
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(a)

(b)

Fig. 10. Gain magnitude, (a) noise power estimates, and (b) gain phase
estimates, as a function of frequency. Estimates are obtained using the weighted
LOGLS method, based on an observation of the astronomical source 3C48.

curves at 1420.4 MHz. This corresponds to the spectral line of
neutral hydrogen and is caused by the galactic emission of our
Milky Way. As the Milky Way is a spatially wide source of ra-
diowaves, it is not resolved by the WSRT interferometers and is
therefore visible only in the noise estimates. Fig. 10(b) shows
the estimated phases of the telescopes, which are frequency de-
pendent because of the geometric delay of the incident source
across the array. The horizontal line corresponds to the first tele-
scope: the steepest line to the farthest. The phase slope over a
frequency band is given by , where
is the geometric delay of telescope. For the longest telescope
distance, the calculated phase slope over the passband is 1.9 rad,
which matches the observed value.

Next, all four weighted gain estimation methods are applied
to the same dataset but for one frequency bin only. The ratio of
the gains and noise vector components and the ob-

(a)

(b)

Fig. 11. (a) Observed SNR and (b) estimated gain phase for the astronomical
source 3C48 atf = 1420:7 MHz and channel bandwidth�f = 39 kHz.

served phases are plotted in Fig. 11. All four estimators yield the
same ratios of about 0.05, which is the expected value. Note that
although the variation among the telescopes of gain magnitudes
and noise power in Fig. 10 is about 3 dB, the fluctuation in the
gain-noiseratios(Fig. 11) is only 25% around the average. This
is because the electronic gain variation is quite large, and this is
factored out by the division.

Finally, we investigate the effect of the data sample size
on the estimates. The data set was split into subsets increasing
in size from to 65 536 in steps of a factor two. The
number of subsets decreased correspondingly from

down to 2, as the total number of available samples is con-
stant (131 072). Both the estimation standard deviation and the
CRB are shown in Fig. 12, where the CRB was derived from
the “true” values estimated from the complete data set. There
is a fair match between the observed standard deviation and the
theoretical bound, except at the edges where eitheror
are too small to obtain reliable statistics.
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(a)

(b)

Fig. 12. Gain estimation standard deviation as function of the integration
length (f = 1420:7 MHz, �f = 39 kHz). (a) Gain magnitude SD. (b) Gain
phase SD.

VI. CONCLUSIONS

In this paper, we have derived several algorithms for esti-
mating gain and noise parameters of a phased array from an ob-
served covariance matrix. We have shown asymptotically effi-
cient weighted least square estimators and have derived several
closed form estimators that, under certain conditions, are also
asymptotically efficient. For low SNRs, in the regime where
all algorithms under consideration are biased, the LS estima-
tors perform slightly better than the closed-formad hocalgo-
rithms. Nonetheless, the closed-form algorithms provide the es-
sential starting points for the iterative methods (alternating LS
and Gauss–Newton LS optimization).

For uniform gain and noise vectors, the performance of the
unweighted algorithms is close to the CRB, and weighting does
not improve much. However, for parameters with a large spread
( 3 dB), the weighting dramatically improves the performance,

making all algorithms (except COLR) asymptotically efficient,
and improving the speed of convergence for the ALS algorithm
by a factor two.

An advantage of the LOGLS method is its low computational
expenditure, proportional to rather than , as for the other
algorithms. Unfortunately, this method is not easily generalized
to the estimation of multiple gain vectors, which are needed, for
example, in the calibration of dual-polarized telescope arrays.

APPENDIX

DERIVATION OF FISHERINFORMATION MATRIX COMPONENTS

In this Appendix, we elaborate on the form of the Fisher in-
formation matrix in (4) and (5). can be written as

where , and where
. It follows readily that

(27)

(28)

where is a selection matrix that is equal to the identity ma-
trix with its first column removed so that the derivative tois
omitted.

The FIM can be partitioned as

(29)

We now show that

(30)

(31)

so that2

which indicates that the phase parameters are decoupled from
the gain magnitude and noise parameters.

To show (30), we start with ,
where inserting the Jacobians (27) and (28) produces

2Here,� denotes certain sections of the matrix that are not of interest.
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Factoring out this equation produces four terms

This can be expanded using and by defining
, where is a matrix containing the absolute

values of the elements of the matrix. The result is

By noting that , it follows that all factors and
cancel each other. Since the second and the third term of the
equation cancel each other, and so do the first and fourth term,

. In the same way, it can be shown that . The
nonzero FIM components can be derived following the same
procedure. The results are, using the definition ,
and using the fact that is Hermitian

The FIM components are real and do not depend on. This
proves that the estimation accuracy bounds are independent of
the particular values of the phases.
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