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Non-Hermitian topological effects are of crucial importance both in fundamental physics and
applications. Here we discover the gain-loss-induced hybrid second-order skin-topological effect and
the PT phase transition in skin-topological modes. By studying a non-Hermitian Haldane model, we find
that the topological edge modes are localized on a special type of corner, while the bulk modes remain
extended. Such an effect originates from the interplay between gain, loss, and the chiral edge currents
induced by the nonlocal flux, which can be characterized by considering the properties of the edge sites as a
one-dimensional chain. We establish a relation between the skin-topological effect and the PT symmetries
belonging to different edges. Moreover, we discover the PT phase transition with the emergence of
exceptional points between pairs of skin-topological modes. Our results pave the way for the investigation
of non-Hermitian topological physics and PT phase transition in higher-dimensional systems.
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Introduction.—Non-Hermitian Hamiltonians emerge as
a simple but effective method to describe most real physical
systems which are open in the environment [1]. In general,
non-Hermitian Hamiltonians possesses complex eigenval-
ues and biorthogonal eigenmodes, which are distinctly
different from the properties of Hermitian Hamiltonians.
Exceptional points (EPs) appear when two or more
eigenmodes coalesce, which also leads to the parity-time
(PT ) phase transition in a system with PT symmetry
[2–9]. Recently there are growing efforts, both theoreti-
cally [10–15] and experimentally [16–21], to study the
basic topology and dynamics under the non-Hermitian
Hamiltonians. A most intriguing example is the non-
Hermitian skin effect, where the non-Hermicity drives
the system eigenmodes to approach the boundary, with
the breakdown of the Hermitian bulk-boundary corres-
pondence [22–29].
The nontrivial interplay between the non-Hermitian skin

effect and the topological effect has led to the concept of
hybrid skin-topological effect, where the skin effect acts
only on the topological edge modes but not the bulk modes
[30–32], showing both the properties of non-Hermitian

localization and topological localization. It represents a
kind of higher-order skin effect [33–35], which exhibits
higher-dimensional (more than one dimension) robust-
ness, without the requirement of higher-order topologi-
cal phenomena. There are two kinds of non-Hermitian
Hamiltonians, describing nonreciprocal systems with
asymmetric coupling strengths [36–43] and gain-loss
systems [44–54]. Except for some special cases in one-
dimensional (1D) systems [36,46,55], they are inequivalent
due to different origins of non-Hermicity, especially in
higher-dimensional systems. At present, the higher-order
skin effects have only been studied in systems with
asymmetric coupling strengths [33–35], while the explora-
tion of higher-order skin effect in gain-loss systems remains
a challenge. Compared with asymmetric coupling
strengths, there are more mature technologies to generate
gain and loss in various systems. Moreover, the introduc-
tion of PT symmetry will greatly enrich the physics in
higher-dimensional systems.
Here we find that hybrid second-order skin-topological

effect can be induced by on-site gain and loss, by analyzing
a non-Hermitian Haldane model. The discovered skin-
topological modes are localized on a special type of corner,
with exponential distributions along the edges, showing
both the characteristics of non-Hermitian skin modes and
topological edge modes. Such an effect originates from the
interplay between gain, loss, and the chiral edge currents
induced by the nonlocal flux, which are distinctly different
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from the conventional skin-topological modes where asym-
metric coupling strengths are indispensable. We find that
the skin-topological effect can be intuitively obtained by
only considering the properties of the edge sites as a 1D
chain. At the same time, we show that the skin-topological
effect can be predicted by analyzing the PT symmetries
belonging to different edges, e.g., zigzag and armchair
edges. Moreover, we discover the PT phase transition with
the emergence of exceptional points between pairs of skin-
topological modes. Beyond the EPs, the PT symmetry is
spontaneously broken and the skin-topological modes have
different distributions along gain and loss edges. Besides
the Chern insulator phase where we obtain skin-topological
modes, the calculation of the Chern number reveals a phase
diagram with rich phases and non-Hermitian topologies.
Model.—The Haldane model is a crucial model to

describe topological insulators [56,57]. Here we consider
a non-Hermitian Haldane model on the honeycomb lattice
with complex on-site mass terms �ðmþ iγÞ for the two
sites in each subcell, as shown in Fig. 1(a). The imaginary
parts�γ correspond to the on-site gain and loss, which play
the key role in this Letter. The nearest-neighbor couplings

are t1 ¼ 1, and the next-nearest-neighbor couplings are
t2eiϕ with amplitude t2 and phase ϕ. In the periodic
boundary condition (PBC) along both x and y directions,
the k-space Hamiltonian is given by Hk ¼ h0I þ h1σxþ
h2σy þ ðh3 þ iγÞσz, where I is the identity matrix, σx;y;z are
Pauli matrices, and

h0 ¼ 2t2 cosϕ
X

j¼1;2;3

sinðk · cjÞ;

h1 ¼ t1½1þ cosðk · c2Þ þ cosðk · c3Þ�;
h2 ¼ t1½sinðk · c2Þ − sinðk · c3Þ�;
h3 ¼ m − 2t2 sinϕ

X

j¼1;2;3

sinðk · cjÞ: ð1Þ

Here k ¼ ðkx; kyÞ is the wave vector, and the lattice

vectors are c1 ¼ ð ffiffiffi
3

p
; 0Þ, c2 ¼ ð− ffiffiffi

3
p

=2;−3=2Þ, and c3 ¼
ð− ffiffiffi

3
p

=2; 3=2Þ. In the Hermitian case, topological phase
transition occurs at m ¼ �3

ffiffiffi
3

p
t2 sinϕ between phases

characterized by different Chern numbers. The nonzero
Chern number ensures the existence of chiral topological
edge modes in the open boundary condition (OBC) [56].
Skin-topological modes.—In the non-Hermitian case,

we find that the topological edge modes have exponen-
tial distributions localized in the corners, as shown in
Figs. 1(b)–1(f). For the system with size L × L, all the edge
modes with the number scaling as OðLÞ are localized into
the corners continuously without the change of the intrinsic
topology. Note that these modes are neither second-order
topological modes [scaling as Oð1Þ], nor first-order skin
modes [scaling as OðL2Þ]. Instead, these are hybrid skin-
topological modes, which possess the properties of both
skin modes and topological modes.
It is clearer when we take the zigzag edges separately as

a 1D chain. As shown in Fig. 1(b), there is nonlocal flux ϕ
over each triangular plaquette. This leads to the existence of
chiral edge currents, i.e., excitations on different sublattices
move in different directions [58]. When we include the on
site gain and loss in the sublattices, the eigenmodes of the
1D chain are all localized to one side, leading to the 1D skin
effect, as shown in Fig. 1(c). The localized direction is
along (opposite to) the edge current of the gain (loss)
modes. The asymmetric currents indicate another kind of
nonreciprocal coupling, which come from the complex
next-nearest-neighbor couplings, i.e., the nonzero coupling
phases. When we consider the 2D honeycomb lattice, the
nonreciprocity cancels out in the bulk as there are only local
flux with no asymmetric currents. The gain and loss are
also balanced in the bulk, so the first-order skin effect
disappears in the bulk. However, the net reciprocity is
spontaneously broken at the zigzag edges with nonlocal
flux, leading to the second-order skin effect. As compared
in Figs. 1(d)–1(f), the skin effect of the edge modes appears
when γ ≠ 0, and the localized directions agree well with the

FIG. 1. Hybrid skin-topological modes in non-Hermitian
Haldane model. (a) Schematic of the non-Hermitian lattice.
The red (blue) circles denote sites with opposite on-site mass
terms �ðmþ iγÞ. (b) Zigzag edge of the honeycomb lattice as a
1D chain, which has non-Hermitian skin effect with on-site gain
and loss. The long solid (dashed) arrow indicates the chiral
edge current along (opposite to) the localized direction [similar
in (d) and (f)]. The black arrows in (a) and middle-line arrows
in (b) indicate the directions of the next-nearest-neighbor
couplings t2eiϕ. (c) Profile of all eigenmodes for the 1D chain
in (b) with 20 sites. The on-site gain and loss are γ ¼ 3. (d)–(f)
The chiral edge mode for γ ¼ 0 (e) become skin-topological
modes for γ ¼ −0.6 (d) and γ ¼ 0.6 (f) with different localized
directions. Every triangle with a gray circle denotes a site. Here
the chiral edge mode propagates clockwise. Other parameters
are t2 ¼ 0.2 and ϕ ¼ π=2.
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law we obtained from the 1D results. There are two types of
corners with localized directions at both sides toward or
away from the corner. The distributions of the skin-
topological modes are mainly at the first one.
Such a skin-topological effect depends on the type of the

edges, as the net flux varies for different edges. Both zigzag
and bearded edges support skin-topological modes, while
the armchair edges do not due to the canceled flux (see the
Supplemental Material [59]).
This effect can also be understood using the projected

band structures, which allow us to study the properties of
each type of edge separately. As plotted in Figs. 2(a) and
2(e), we consider two perpendicular directions to truncate
the lattices and obtain effective 1D models in PBC along
the x direction (xPBC=yOBC) with zigzag edges, and
xOBC=yPBC with armchair edges. In Figs. 2(b)–2(c) and
2(f)–2(g), we plot the energy spectra in the above two
cases. In the first case, the eigenenergies of the edge bands
are not real and form a loop [Fig. 2(c)]. According to the
result in the 1D model that the bands with loops enclosing
a point gap with nonzero winding numbers will exhibit skin
effect [27,29], we can find that the skin-topological
modes appear in this case, i.e., along the zigzag edges
(x direction). In the second case, two edge bands coincide
into a line in the real axis [Fig. 2(g)], indicating the absence
of skin-topological modes along the armchair edges
(y direction).
PT symmetries.—Because of the diversity of the parity

operations, different PT symmetries can be defined for
the above two cases. Letting P1 ¼ fδp;2nþ1−qg (δp;q is the

Kronecker function, p and q are matrix indices) and
P2 ¼ ⨁

n
σx with n being the number of unit cells along

the open boundary direction, we obtain

P1T HkxðP1T Þ−1 ¼ Hkx;

P2T HkyðP2T Þ−1 ¼ H0
ky
; ð2Þ

where T is the time-reversal operator and Hkx and Hky

(H0
ky
) are the Bloch Hamiltonians of the two cases. We note

that Hky and H0
ky

are obtained from the Fourier transform

with different unit cells but are equivalent in the operator
form as they describe the same structure [59]. In the first
case, P1T is a global operation which maps any mode
localized in one boundary into the other boundary; thus
along the open boundary directions (y direction) the skin-
topological modes cannot exist. This is verified in Fig. 2(d),
which plots the mode profiles of the two edge modes
marked in Fig. 2(c). They are localized at opposite
boundaries, indicating no skin effect along the y direction.
Differently, in the second case P2T is a local operation
with mapping inside each subcell, so skin effect is allowed.
As shown in Fig. 2(h), the two edge modes marked in
Fig. 2(g) are localized at the same boundary, which reveals
that skin effect exists along the x direction.
PT phase transition and exceptional points.—Here we

concentrate on the lattice with a hexagonal boundary and
zigzag edges, which still possesses PT symmetry for
m ¼ 0. The parity operator here becomes a mirror operator,

FIG. 2. Projected band structures along different axes and edge modes. (a)–(d) xPBC=yOBC. (e)–(h) xOBC=yPBC. (a),(e) Schematic
of the Fourier transform. The dotted parallelograms are choices of unit cells for Fourier transform. (b),(f) Energy spectra (black curves)
in E − kx space (b) and E − ky space (f). The red and blue curves are 2D projections on the corresponding plane. (c),(g) Projection of the
real and imaginary parts of the energy spectra in (b) and (f). (d),(h) Two edge modes with eigenenergies indicated by the purple dots in
(c) and (g). The horizontal axes correspond to the site numbers along the open boundary direction. The parameters are m ¼ 0, γ ¼ 0.5,
t2 ¼ 0.2, and ϕ ¼ π=2.
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and there are three mirror axes across the corners due to the
C3 symmetry. When the gain-loss parameter γ is small, the
system will be in the PT -symmetric phase, with symmetric
distribution of the skin-topological modes and real eige-
nenergies. When increasing γ, EPs emerge between pairs of
skin-topological modes, with spontaneous breaking of PT
symmetry. For even site numbers along every edge, EPs of
edge modes will appear in pairs with nonzero eigenener-
gies, as shown in Figs. 3(a)–3(c). In the PT -symmetry-
broken phase with a large γ, the distributions of the
skin-topological modes are PT -asymmetric, as shown
in Figs. 3(d)–3(e).
The skin-topological modes have exponential distribu-

tion along the edges, so we can define jψp;nj ∝ e−λn, where
λ is the decay coefficient and ψp;n is the amplitude at the
nth site in the p-type edges, with p ¼ GðLÞ representing
the edges with gain (loss) modes in the outermost layer. In
Fig. 3(f), we plot the decay coefficients along G (red) and
L (blue) edges as functions of γ. In the PT -symmetric
phase, the decay coefficients along two kinds of edges have
the same values and follow a linear scaling with γ. In
the PT -symmetry-broken phase, the decay coefficients
become different, where the skin-topological modes have
more distributions and a smaller decay coefficient along
one type of edge.
Phase diagram.—The phase diagram of the gain-loss

Haldane model is determined by the Chern number, which
can be obtained from the integral of the Berry curvature
over the first Brillouin zone [60]. As shown in Fig. 4(a), the
first Brillouin zone can be mapped into a surface S in the

3D space R3. In the Hermitian case, when the surface S in
the 3D space R3 encloses the origin O, i.e., the only gap-
closing point, the lattice becomes a Chern insulator with
nonzero Chern number. However, in the non-Hermitian
case, the origin O is no longer the gap-closing point. On
the contrary, the bulk bands are degenerate at a circle
L: (h21 þ h22 ¼ γ2, h3 ¼ 0), and the system topology
depends on whether the surface S encloses the circle L.
Figure 4(b) presents the phase diagram as functions of

the scaled on-site mass m=ðt2 sinϕÞ and the gain-loss
parameter γ. There are two gapped phases and one gapless
phase. The first gapped phase with C ¼ 1 in red is the non-
Hermitian Chern insulator phase. The nonzero Chern
number ensures the existence of skin-topological modes
in this phase. In the above discussion about the skin-
topological effect, we have usedm ¼ 0, t2 ¼ 0.2, ϕ ¼ π=2,
and jγj < 1, which are all in this phase. We note that the
skin-topological effect exists in all the red area, even for
m ≠ 0 and ϕ ≠ π=2, i.e., without the particle-hole sym-
metry. Another gapped phase with C ¼ 0 in blue is the non-
Hermitian conventional insulator phase, which is trivial
with no topological or skin modes.
When the circle L intersects with the surface S, EPs

emerge between two bulk bands at the intersections. In this
way, we obtain the gray area where the bulk bands are
gapless with EPs. It has two phase boundaries indicated by
the solid curves in Fig. 4(b). The inside boundary with
small jγj corresponds to the case that S encloses L except
for the intersections, while the outside boundary corre-
sponds to the contrary case. These two phase boundaries

FIG. 3. The energy spectra and EPs of the lattice with
hexagonal boundary. (a) The real part of the eigenenergies as
a function of the gain-loss parameter γ. The red and blue curves
represent four skin-topological modes. (b) Enlarged view of the
yellow area in (a). The purple circles indicate the EPs. (c) The
imaginary part of the eigenvalues for the four skin-topological
modes highlighted in (a) and (b). (d),(e) The distribution of the
eigenmodes indicated by blue (d) and red (e) points in (c). (f) The
decay coefficients of the eigenmode amplitudes along the edges
as functions of γ. The red (blue) curve corresponds to the edge
indicated by the red (blue) arrows in (d) and (e). Other parameters
are m ¼ 0, t2 ¼ 0.2, and ϕ ¼ π=2.

FIG. 4. The topology and phase diagram of the non-Hermitian
Haldane model. (a) The surface Smapped from the first Brillouin
zone, i.e., mapping from ðkx; kyÞ to ðh1; h2; h3Þ. The color map
represents the magnitude of h3. The parameters are m ¼ 0,
t2 ¼ 0.2, and ϕ ¼ π=2. The density map below is the projection
of the surface. The bottom figure is half of the top figure for
h3 < 0. (b) The phase diagram. The red area is the non-Hermitian
Chern insulator phase where C ¼ 1. The blue area is the non-
Hermitian conventional insulator phase where C ¼ 0. The gray
area is a gapless phase with EPs between two bulk bands. The
black curves are phase boundaries. The purple points indicate the
Hermitian phase boundary with the emergence of Dirac points.
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coincide when γ ¼ 0, where the six EPs become six Dirac
points [59].
Conclusion.—In summary, we discover the gain-loss-

induced hybrid skin-topological effect, where on-site gain
and loss are used to obtain the hybrid second-order skin-
topological modes. By investigating the non-Hermitian
Haldane model, we find that the topological edge modes
are localized on a special type of corner, while the bulk
modes remain extended, showing that the skin effect only
acts on the topological edge modes but not the bulk modes.
Such an effect originates from the interplay between gain,
loss, and the chiral edge currents induced by the nonlocal
flux, and it can be intuitively obtained by only considering
the properties of the edge sites as a 1D chain. We establish a
relation between the skin-topological effect and the PT
symmetries belonging to different edges. For example, the
P2T symmetry of the zigzag edges allows for the existence
of skin-topological modes, while the P1T symmetry of the
armchair edges does not. We also discover the PT phase
transition with the emergence of EPs between pairs of skin-
topological modes. Furthermore, we obtain a rich phase
diagram in the non-Hermitian situation, and find that the
Chern number reveals non-Hermitian topology in the 3D
space R3 between the Hamiltonian surface S and the
exceptional circle L. Our Letter offers the opportunity
for manipulating non-Hermitian and topological properties
through gain-loss control, and sheds light on studying PT
phase transition in higher-dimensional systems.
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