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GAIN PHYSICS OF R{-LINAC-DRIVEN XUV
FREE-ELECTRON LASERS"

John C. Goldstein, Brian D. Mc\Vey, and Brian E. Newnam
University of California. Los Alamos National Lahoratory
Los Alamos, New Mexico 87545 USA

ABSTRACT

In an rf-linac-driven XUV free-electron laser oscillator, the gain depends
on the details of the shape of the electron beam’s phase-space distribution.
particularly the distribution of clectrons in the transverse (1o the direction of
propagation) position and velocity coordinates. This strong dependence occurs
because the gain in this device is inhomogencously broadened. Qur previous
theoretical studins have assumed that the transverse phase space distribution is
a product of uncorrelated Gaussian functions.

In the preseiit work. we shall present the results of a theoretical study of the
gain for non-Gaussian phase-space distributions. Such distributions arise either
from a betier representation of the electron beam from an rl-linac or from an
emittance filter applied to the beam after the linac.

INTRODUCTION

In several previous theoretical studies!'# we have investigated the proper-

tics of a free-electron laser (FEL). operating in the extreme ultraviolet (XUV,
10-100 nm) portion of the optical spectrum, which is driven by an electron beam
produced by a radio-frequency linear accelerator. The primary problem to be
overcorne by any FEL oscillator operating in this spectral region is the necessity
of achieving large small-signal gain values (at least several hundred percent) in
order to exceed the threshald of laser oscillation in an optical resonator with rel-
atively poor reflectars. Mirror reflectances of 50%-B0%¢ are expected to become
availuble in the XUV spectral range.4* Extraploations from presently available
accelerator technology suggest that both rf-linacs and electron storage rings can
generate pulses of high-energy electrons having sufficiently large peak currents
to drive XUV FELs. However, one expects that electron pulies from an rf-linac
will have 8 larger emittance (i.e., occupy a larger volume in phase-space) than
those fromn a storage ring in which synehrotron radiation effects reduce the emit-
tance. A direct conseguence is that the gain of an rf-linac-driven XUV FEL will
be severely inhomogeneously broadened. Nonetheless, our previous theoretical
studies 1'3? indicate that suflicient gain will be available te¢ allow for laser os-
cillation and that an rf-hnac-driven XUV FEL would exceed by 4 or 5 orders
of magnitude the light intensity in this spectral range available from present or

*Work perfoimed under the auxpices of, and supported by, the Division of
Advanced Encergy Projects of the U.S. Department of Energy, Office of Basice
Energy Sciences.



planned synchrotron sources. Other points related to the design and operation
of an rf-linac-driven XUV FEL are discussed in the paper by Newnam et al. in
these proceedings.

This paper presents the results of a theoretical investigation of the depen-
dence of the magnitude of the small signal gain of an rf-linac- driven XUV FEL
upon the shape of the distribution that leads to the inhomogeneous broadening.
It is analogous to changing the distribution of atomic velocities in a low-pressute
Doppler-broadened gas laser from a Maxwellian to other distribution functions.
In a gas, the Maxwellian is the unique physically important distribution; there
can he many different distributions in the case of an eiectron beam. The “cor-
rect” distribution function of electrons' transverse motion depends upon details
of the design and operation of a linear accelerator and is not known a priori. In
an FEL. the magnitude of the transverse emittance determines the amount of
inhormnogeneous broadening and, therefore. the accompanying reduvction of the
small- signal gain, much like the value of the temperature deterinines the amount
of Doppler broadening in a low-pressure gas laser. However. the physics of an
rf-accelerator allows the possibiiity of generating electron beams with the same
value of the transverse emittance but having different underlying distributions
of transverse particle motion. The dependence of the gain upon different distri-
butions. cach one having the same value of the emittance, is the subject of this
study.

This problem is of some importance because our previous studies® have
assumed that the transverse phase-space distribution of the electron beam is &
product of uncorrelated Gaussian functions. The inhomogeneous broadening re-
duces the gain from very large values (thousands) fer a perfec. (zero enittance)
clectron beam to about ten for a beam with a finite emittance. We would like
to assure ourselves that the gain is not reduced further through a dependence
on the shape of the phase-: pace distribution  Also. it is important to quantita-
tively understand the reduction of small-signal gain due o the inhomogencous
broadening in order to place realistic limits on other parameters (such as the
peak current, intrinsic energy spread, and wiggler length) in order to assure suf-
ficiently large gain for the laser to exceed threshold with the available mirrors.

TRANSVERSE EMITTANCE

Let # be the axis of the optical resopator and the wiggler magnet  The
transverse coordinates of an clectron are r, 7,y and p! where 1! - dr/d:z ~ (J,
and y¢  dy/az ~ [3,. We are considering the case of highly relativistic electrons
having 7o ~ 400, where q,me? is the total energy of an electron, for which the
transverse velocities ;¢ and fye are very small compared to the axial velocity
(i.e., B2.0, <« 1). The distribution of ciectrons in the beam ix described by
a function P(zx,21,) y1), which is normalized ‘o one, such that the current of
clectrons with coorainates x to x + dx, x/ to x/ 4 dx/, etc. is given by

di(z,z1,y,y1) 1.P(z,21,y.y) dt (1)



Here d7 = dr dz1 dy dy! and I, is the total current. The mean value of any
function f(z,z1,y,y) of the transverse variables is given by (f = [drPf. We
think of electron trajectories in which the transverse coordinates are functions
of the axial coordinate z.

We shall use the definition of Fraser et al® for the transverse emittance:

1/2
(; = 47.'[ 2 1 - 2] (2)
1°2
Gy = 4#['11,",-1/"'- -y ’] 3)
€y Gty (4)

In what follows below, we will assume that ¢, ¢, = ¢ and we will calculate
small-signal gain values for an XUV FEL driven by electron Leams having the
same total current /. and emittance ¢ but having different phase-space distri-
bution functions P.

We shall restrict our attentien to a particular class of distributions P. Let
us define B by

B (z 2 ()= (v9) - (v 0) (3)

where X.71. 4. ana ! are fixed constants. We shall only consider distributions P’
of the form

PooPR) (6)

We shall assume that our FEL has an usmtapered parabolic-pole-face’ wig-
gler magnet. Such a wiggler magnet, with equal focu<ing in x and y. induces elec-
trons to make harmonic oscillations in the transverse variables. The wavenumber
of these betatron oscillations ix x4:

Qy k.,
(21.)

where ky, = 27 /Ay, Ay is the wavelength of the constant-period wiggler magnet,
and

kg

(7)

le| By
(rmeky) (¥)

where B, in the peak on-axis value of the magnetic field of the wiggler.



Since the transverse motion of an electron is simple harinonic with wave-
number ks (neglecting the wiggle motion itself which is the source of the basic
FEL rnechanism). one can show that if the following matching conditions are
satisfied, the form of the function P(B) is the stame anywhere inside the wiggler:
that is, for any two values of z inside the wiggler. say 2z, and z;, P (B(z))) = P
(B(z2))- Agein. this neglects high-frequency variations due to the wiggle motion
itsell. The matching conditions connect the four constant parameters of P:

Tl - kpt (9)

P = kay (10)

Since. under these conditions. the fundamental form of P is invariant anywhere
inside the wiggler, so is any mean value calculated from P such as the electron
beam dimensions x?:, (y?,, and .r¥ .r? T

FOUR SPECIFIC TRANSVERSE
PHASE-SPACE DISTRIBUTIONS

We will consider the following tour distribution functions which are functions of
the transverse coordinates through the variable B which is defined by Eq. (5).

Case 1: Gaussian
Pydi1  Nexrpl - B)d: (11)

Case 2 “Almost Gaussian™

wdi 167097 Nexrp(- F'*)dr (12)
Case 3: “Almost Uniform™

Padr - 2.25305Nexp( BY)d: (13)

Case 4: Uniform
har  2Nd: (14)
for all valves of r. 7. y.and y that lie within the

four-dimensional ellipsoidal surface defined ty B 1.

The factor N is a normalization factor:

N . (r*xr 2y y) ! (15)
We exhibit explicitly for these four distribntions expressions for the emittance.

Let Z (2) refer to any of the four quantities r, 11, y, y? (2. 21, ¥, ¥/).
Case 1: Gaussian

(Z2?) - 0.52? (16)



=2 IX;, =2ng g (17)

Case 2: Almost Gaussian

(Z% = 0.2782° (1%)
€= LN2r >3 ¢, - 111225 g @ (19)

Case 3: “"Almost Uniform™
(Z* = 0.171752° (20)
t; - 0.6877 1 1. ¢, - O0.6K7r y g (21)

Case 4: Uniform

Z: . (1 6) Z° (22)
t; 23)rzrn - 237yy (23)

In the numerica! examples below. we will always assume that ¢, - ¢, c.
Hence. specilving ¢. together with the matching conditions Eqs. (9) and (10" is
sufficient to fully determine the four parameters of each distribution function.

EFFECTIVE ENERGY DISTRIBUTION FUNCTION

The eflects upon FEL performance of a beam with a fin'te transverse emit-
tance can he understood in terms of the shape of the associated effective energy
distribution.?* If one has a monoenergetic beam in which cach electron has
energy .me? but also has a nonzero transverse motion, then to the FEL the
electron behaves as if it had an cnergy 4, 77me? where 4.5 is given by

1+05a? b ,

Veff = ey 2, a2 41, @2 2 2 (24)
1 0.5a2 - 42 32+ A2 4 (ka1)? 4 (kpy)?,

Here the electron’s transverse coordinates and velocities are x, y and 8¢, ¢,
and ks and a,, are given by kqs. (7) and (B). Physically, the FEL resonance is
a relation between the wiggler magnet properties, the optical wavelength, and
the electron’s axial velocity. In a beam with a finite emittance, an electron’s
axial velocity is reduced if it has a finite transverse motion. This reduction is
expressed by using 4,7y instead of 4, in the FEL equations of motion.

Note that given a distribution of trunsverse coordinates I’, we can uniquely
obtain an associated distribution of 4,77, f(7ess). Alno, our selection of a class



of distributions P which can be matched to the wiggler means that f(q.sys) is
the same a.ywhere within the wiggler. as is P (this of course is true for uniform
wiggler magnets whose characteristics do not depend on the longitudinal position
z of an electron, and also holds anly if the FEL interaction converts only a small
fraction of the electron’s initial energy 7ome? into light). Our previous studjes?-
have shown that, for cases of interest for an XUV FEL. the significance of (1)
is that the grin is approximately proportional to df /dqesys: that is, maximum
gain occurs where the slope is largest (and positive), and. therefore, distributions
f that have iary» maximum slones are desirable in that they lead to large values
of the gain.

Another corsequence of considering distributions P that can be matched to
the wigzler is that. if the beam is not matched, then the distribution f(4.ss)
would be diffcrent at different axial positions z aiong the wiggler. Hence. con-
ceptually. the conditions of peak gain would vary along the wiggler in this non-
stationary situation. and it would be much harder to understand the processes
that iead to the gain.

The specific distributions of effective energy f(4.ss) that correspond 1o the
four transverse nhase-space distributions P above are shown in Figs. 1-4. The
wiggler and electron beam properties used to derive these curves are summarized
in Table 1. Note that we are considering the electron beam to have zero intrinsic
energy spread. that is. to be monoenergetic. From the discussion above. it is
clear that one would expect Case 4. the uniform distribution. to yield the highest
gain since f(~.y,) for that case, Fig. 4. has a prominent sharp edge where the
slope is very large.

RESULTS OF NUMERICAL SMALL-SIGNAL
GAIN CALCULATIONS

We emphasize that the ideas associated with f(q.s7) are helpful in physi-
cally understanding the gain mechanisin. However, we have used the 3-1) FEL
sitnulation code FELEX"® to numerically compute the results presented below.
In this code, the 3-1) particle motion and optical diffraction are handled numer-
ically,. FELEX does not directly use the distribution function f(4.yss) in com-
puting the optical gain. All of the results presented below are single-pass gains.
not multiple-pass calculations in which the optical inode shape and the gain are
calculated iteratively until a self-cons.stent solution for both is reached.® We as-
sume that the light at the entrance to the wiggler is in the lowest-order Gaussian
mode which is specified by a Kaylcigh range and an ortical wavelength.” The
amplitude of the optical field is fixed by specification of an initial light intensity.
For each value of the Rayleigh range, the optical wavelength is varied to obtain
the maximum gain. These are single wavefront calculations which neglect the
pulsed nature of the electron and optical beams.

Figure 5 shows the results of numericully calculating the small-signal power
gain vessus thr Rayleigh range of the initial light. The other system parameters



are specified in Table 1, and these results are for a 12-m wiggler. The four curves
correspond to the four distributions listed above. Note that the dotted curve,
which is for Case 4, the uniform distribution, has been reduced in ordinate by a
factor of ten. Hence. this case, which gives 2 maximum gain of about 130 at a
Rayleigh range of 600 cm, yields the highest gain of the four cases all of which
have the same normalized emittance (7,¢ = €,) of 397 » 10~* ¢m rad. Note
that the highest gain exceeds the lowest gain by almost a factor of ten. Also,
note the different dependence on Rayleigh range for the four cases: if one knew
that the electron beam was Gaussian, one would need an opti- al resonator that
produced a Rayleigh range of 300 cm, whereas 600 cm is needed if the beam is
correctly described by distribution Pj.

Figure 6 shows resul's for identical conditions but using a 6-m wiggler. T' -
magnitude of the gain is lower than for the 12-m wiggler, but Case 1, the Gaus-
sian. shows the highest gain. Note that the optimum Rayleigh range for each
case has also changed. For a simple two-mirror optical resonator with mirrors
of fixed radii of curvature. the Reyleigh range can be changed by changing the
length of the resonator.” However, in an FEL oscillator, the length of the op-
tical resonator is not arbitrary but is closely tied to the time interval between
successive electron pulses from the accelerator.!" Hence, different phase-space
distributions can substantially impact the design of the optimum FEL optical
resonator.

Figure 7 shows the effect of relaxing one assumption made up to this point:
the gain for three different distributions is plotted versus intrinsic fractional
energy spread (A9,9.). The transverse emittance is the same as hefore. but
one sees that for large energy spreads ~ 0.4%, all cases look similar (and have
substantially depressed gains). In this regime, the physics of the inhomogeneous
broadening is totally dominated by the real energy spread of the electron beam.
not the emittance. The distribution f(q.ss) would be almost identical with
J(7). the distribution of actual electron energies which in these calculations is
taken to be Gaussian in shape about 4, = 400. The full width at ¢ ! points is
the abscissa of Fig. 7. Evidently the intrinsic energy spread must be held to a
few tenths of a percent if this laser is to exceed threshold.

Figure 8 shows the eflect of changing the current upon the magnitude of the
smull-signal gain for two of the phase space distributions only. The upper pair
of curves, one rolid and one dotted which intersect at a current of 100 A and a
geain of 130, are for the uniform distribution, Case 4. The lower pair of curves,
which intersect at a current of 100 A and a gain of 32, are for the Gaussian
distribution, Case 1. The solid lines show the eflect of changing the current
while the emittance is held constant. The dotted lines show the effect of keeping
the brightness constant: the brightness is proportional to the current divided by
the square of the emittance. Hence, for the dotted curves the emittance changes
like the square root of the change in current.

We emphasize that the most important parameter in determining the mag-



nitude of the gain is the value of the emittance (whatever the underlying dis-
tribution). Looking at the upper pair of curves for the uniform distribution, we
see that gain drops by almost a factor of 10 for a v/2 - 1 ~ 40% increase in the
emittance at 200 A current.

SUMMARY AND CONCLUSIONS

The dependence of the small-signal gain of an ri-linac-driven XU\ FEL
upon the shape of the electrons’ transverse phase-space distribution function
has been studied. Single-pass small-signal gain values were calculated using the
three-dimensional FEL simulation code FELEX.® A particular class of distribu-
tion functions was censidered. Electron beams characterized by a distribution
belonging to this class can always be matched to the wiggler magnet so that
the phase-space distribution, as well as averages computed from it, are invariant
with respect to axial position along the magnet’s length.

We have found that, for a given value of the emittance. different transverse
phase-space distributions can yield substantially uifferent (by factors of three
10 ten) small-signal gain values. The dependence of the magnitude of the gain
upon the Rayleigh range of the incident light is diferent for different phase-space
distributions. This dependence for a Gaussian electron beam shape has been
discussed by Colson and Elleaume!! for low-gain conditions with no inhomoge-
neous broadening or betatron motion. and fixed lowest-order Gaussian optical
mode shape.

We have found that. for the range of other parameters of interest for an
rf-linac-drive XUV FEL, the particular distribution that vields the highest gain
depends upon the length of the wiggler magnet used. Also, the physical in-
sight provided by tlie shape of the eflective energy distribution f(4.ss) must be
supplemented by consideritions of the transverse spatial overlap between (he
electron and light beams. We have not seen strong optical guiding effects!* in
any of these calculations: rather, the optical mode is distorted from that of free-
spact propagation. Hence. we use opticul beam size variations—in the qualita-
tive arguments below—based upon free-space propagation mode sizes. In frec
space, the mean squared optical mode radius (w?) averaged over the wiggler
length for a mode focused at the middle of the wiggler can be written as

(w?) = (3) IRR + (Ly./2)?/(3RR)] (25)

‘vhere L, is the wiggler length. RR is the Rayleigh range, and X is the optical
wavelength For a fixed Ly.. the minimum (w?) occurs for RR = L./(21/3). In
that case

(W )min = A Lu/mV3 (26)

The results +f Figs. 5 and 6 show that maximum gain for Case 1, the Gaussian
phase-space distribution, is achieved under approximately this condition. On



the other hand, maximum gain for Case 4, the uniform distribution, is attained
for large values of (w?) where Eq. (25) reduces approximately to

N>

(w?) ~ =RR (27)
i.e., the Rayleigh range is large and (w?) is approximately independent or the
wiggler length. We note that the physical-space current densities corresponding
to Case 1 and Case 4, obtained from J(z,y) = I.,f dz! dy! P, are

Jy = (2kg I,/€) ezp ( - [(:r/i)2 + (y/ﬂ)’]) (28)

Jo = (aka 1730) [1 = (22)? - (y/5)?] (29)

so that the Gaussian case has a higher current density on axis than the uniform
case by 50‘¢ for the same emittance:

J4(0.0). J;(0.0) = 0.67 (30)

Hence, for small optical spot sizes (w'?,. the Gaussian has the higher gain. The
electrons that contribute to the sharp edge of Fig. 4, f(¢sr) for the uni-
form distribution, have a large transverse energy, since 7.5y = 4, — Const. -
(transverse energy). Those electrons clearly lie near the ¢ .:face of the ellipsc
B =1 and are in some sense on the “outside™ of the real-space current density
J4. In order for those electrons to be eflective in generating gain. there must be
light at large radius, and so maximum gain in this case occurs for Jaige (u? .
- The fact that Case 4 gives the highest gain for a long wiggler, but not for the
shorter wiggler, may be connected with the finite “delay length™ needed before
exponential gain becomnes apparent; Case 1 may never be in the exponential gain
regime. Note that the variation with wiggler length of the gain is also differcr!
for the four cases.

As pointed out in Ref. 11, the small-signal power gain curves of Figs. 5 and
6 roll off at large Rayleigh range because the energy extracted from the electron
beam, with a fixed on-axis intensity of light at the wiggler's entrance, becomes
smaller relative to the total power in the light beam due to the increased optical
beam transverse dimension with increasing Rayleigh range. The curves roll off
at small Rayleigh range due to this eflect as well as the rapid rhase variation
of the light (¢ a tan~! (z/RR)) which shifts the light out of resonance with
the electron beam. We note that arbitrary values of RR are not allowed since
the optical beam must be smaller than the wiggler gap. In our case, this means
that 60 < RR < 1500 for the 6-m case and 240 < RR < 1500 for the 12-m case
to avoid severe vignetting at the ends of the wiggler.



Figure 7 shows that intrinsic energy spreads larger than a few tenths of
a percent drastically reduce the gain for the cases studied. Recent numerical
simulations of the energy spread ia a 500 Mev linac using the code PARMELA'®
show that by proper phasing of the ri-fields in accelerator cavities the energy
spread can be held to less than 0.1%.

Figure 8 reminds us that. for zero intrinsic energy spread, the dominant
property that determines the small-signal gain is the magnitude of the emittance.
Fipure 8 suggests that the variation of the gain with emittance is different for
the four different cases. but we have not yet made such calculations. Also to be
done in the future is a study of how the saturated gain varies among these four
different transverse phase-space distributions. as well as calculations that extend
the results of this paper to other optical wavelengths. i.e.. 50 nm and 12 nm.
Multiple-pass self-consistent oscillator solutions® should be calculated to obtain
information about the optical quality of the light beam. and 10 obtain more
accurate values of the small-signal gain particularly in high-gain cases. Finally.
we remark that gain calc]ations using numerically calculated transverse nhase-
space distributions generated by PARMELA. or some other linear accclerator
simulation code, may be done in the future.
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TABLE 1
PARAMETER VALUES FOR GAIN CALCULATIONS

Optical Parameters

a) wavelength variable, near 82 nm

b) Rayleigh range variable, 50-1200 cm
Uniform REC Undulator Parameters

a) wavelength, Aw 1.6 cm

b) peak magnetic field, Bw 0.75 T

¢) a, 1.12

d) full gap 0.4 cm

e) length 6-m or 12-m

{) parabolic-pole-face with
equal focusing in x and ¥

Electron Beam Parameters

a) peak current 100 A

b) E 'mc? 10 = 400

c) ¢ 3.0630 » 10" % cm rad
d) ¢n =10 € 397 mm-mrad

e) A\i = 2 n/kg 1.143 » 10 cm

f) fractional intrinsic
energy spread Aq/9. 0



Figure 1:
Figure 2:
Figure 3:
Figure 4.:
Figure 5.:
Figure 6:
Figure 7:
Figure 8:

FIGURE CAPTIONS

Effective energy distribution function for Case 1.

Effective energy distribution function for Case 2.

Effective energy distribution function for Case 3.

Effective energy distribution function for Case 4.
Small-signal power gain vs. Rayleigh range for 12-m wiggler.
Small-signal power gain vs. Rayleigh range for 6-m wiggler.
Gain reduction caused by intrintic energy spread.

Variation of gain with current for 12-m wiggler.
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