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Abstract

In this paper, a velocity-based linearisation framework is employed to develop a novel rigorous
approach to gain-scheduling design. The proposed approach enables knowledge concerning the plant
dynamics at non-equilibrium operating points to be incorporated directly into the controller design.
Since the velocity-based linearisation framework supports the analysis of the transient response,
performance considerations can be accommodated.  The approach retains continuity with linear
methods, which is central to the existing conventional gain-scheduling methodology, and, since a single
type of linearisation is employed throughout, the design procedure is both straightforward and
conceptually appealing.

1. Introduction

Whilst nonlinear dynamic systems are widespread, the analysis and design of such systems remains
relatively difficult.  In contrast, techniques for the analysis and design of linear time-invariant systems
are rather better developed even though systems with genuinely linear time-invariant dynamics do not,
in reali ty, exist.  It is, therefore, attractive to adopt a divide and conquer philosophy whereby the design
of a nonlinear system is decomposed into the design of a family of linear time-invariant systems.  This
type of strategy forms the basis of one of the most widely, and successfully, applied techniques for the
design of nonlinear controllers; namely, gain-scheduling.

Gain-scheduled controllers are linked by the design approach employed, whereby a nonlinear
controller is constructed by  interpolating, in some manner, between the members of a family of linear
time-invariant controllers.  In the conventional, and most common, gain-scheduling design approach
(see, for example, Astrom & Wittenmark 1989, Hyde & Glover 1993), each linear controller is
typically associated with a specific equili brium operating point of the plant and is designed to ensure
that, locally to the equili brium operating point, the performance requirements are met.  (The existence
of a family of equilibrium operating points, which spans the envelope of plant operation, is central to
most gain-scheduling arrangements and it is not sufficient to restrict consideration to a single, isolated,
equili brium operating point).  By employing a first-order series expansion approximation which,
locally to the equilibrium operating point, has similar stabilit y properties to the plant, linear techniques
may be applied to this local design task.  However, the requirement is usuall y for a controller which
functions well not only when operating in the vicinity of a single equili brium point but also during
transitions between equili brium operating points and periods of sustained non-equilibrium operation.
Conventionally, this requirement is addressed by employing extensive simulation studies to iteratively
refine the gain-scheduled design, but this quickly becomes extremely time-consuming and inefficient
for any but the simplest nonlinear plants.  There is, therefore, a considerable incentive to directly
incorporate, into the analytical part of the design procedure, knowledge of the plant dynamics during
transitions between equili brium operating points and during sustained non-equilibrium operation.

In Leith & Leithead (1997b,c),  a framework is proposed for the analysis of gain-scheduled and
nonlinear systems which associates a family of velocity-based linearisations with a nonlinear system.
Each operating point of the nonlinear system, including operating points far from equili brium, has an
associated member of the velocity-based linearisation family which describes the dynamic
characteristics in the vicinity of that operating point.  Hence, in contrast to the conventional series
expansion linearisation about an equilibrium operating point, the velocity-based linearisation family
indicates the plant dynamics not only in the vicinity of a single equili brium operating point but also
during transitions between equilibrium operating points and when operating far from equili brium.  The
purpose of this paper is to investigate the direct exploitation of information concerning the plant
dynamics at non-equilibrium points in gain-scheduling design by employing velocity-based



linearisation families.  The paper is organised as follows.  In section 2, the existing gain-scheduling
design approaches are reviewed and,  in section 3, the velocity-based linearisation famili es are
described.  A framework employing velocity-based linearisations for the analysis and design of gain-
scheduled controllers is developed in section 4 and specialised to the class of plants satisfying an
extended local li near equivalence condition in section 5.  The conclusions are summarised in section 6.

2. Conventional gain-scheduling design

Consider the nonlinear plant with dynamics,�
x = F(x, r ), y = G(x, r ) (1)

where F(·,·) and G(·,·) are continuous with Lipschitz continuous first derivatives, r∈ℜm denotes the
input to the plant, y ∈ ℜp the output and x ∈ ℜn the state. When necessary, assume
[∇rF  ∇xF∇rF  …  (∇xF)n-1∇rF] has rank n ∀x,r .  The set of equili brium operating points of the
nonlinear plant, (1), consists of those points, (xo, yo, r o), for which

F(xo, r o) = 0, yo = G(xo, r o) (2)
Let Φ:ℜn×ℜm denote the space consisting of the union of the state, x, with the input, r . The set of
equili brium operating points of the nonlinear plant, (1), forms a locus of points, (xo, r o), in Φ and the
response of the plant to a general time-varying input, r (t), is depicted by a trajectory in Φ.

The gain-scheduled design approach constructs a nonlinear controller, with certain required
dynamic properties, by interpolating, in some sense, between the members of an appropriate family of
linear time-invariant controllers.  The conventional gain-scheduling design approach may be applied
directly to a broad range of nonlinear plants and the design procedure typically involves the following
steps (see, for example, Astrom & Wittenmark 1989 section 9.5, Shamma & Athans 1990, Hyde &
Glover 1993, Leith & Leithead 1996).

1. The equili brium operating points of the plant are parameterised by an appropriate quantity, ρρ, which
may involve the plant input, output and/or state.

2. The plant dynamics, (1), are approximated, locally to a specific equili brium operating point,
(xo,r o,yo), at which ρρ equals ρρo, by the series expansion linearisation,

δ
� �
x = ∇xF(xo(ρρo), r o(ρρo))δ

�
x  + ∇rF(xo(ρρo), r o(ρρo))δr     (3)

δ
�
y  = ∇xG(xo(ρρo), r o(ρρo))δ

�
x  + ∇rG(xo(ρρo), r o(ρρo))δr      (4)

δr  = r  - r o(ρρo),
�
y  = δ

�
y  + yo(ρρo),δ

�
x  = 

�
x  - xo(ρρo)     (5)

3. For a suitable controller input, e, with equilibrium value, eo(ρρo), a linear time-invariant controller is
designed,

δ
�
z= A(ρρo)δz + B(ρρo)δe     (6)

δr = C(ρρo)δz + D(ρρo)δe     (7)
δe = e - eo(ρρo), r  = δr + r o(ρρo)     (8)

which ensures appropriate closed-loop performance when employed with the plant linearisation,
(3)-(5).  It should be noted that ρρo is assumed to be constant when designing this linear controller.

4. Repeat steps 2 and 3 as required for a family of equili brium operating points, ensuring that the
linear controller designs have compatible structures; for example, when a smoothly gain-scheduled
controller is required, the linear controller designs are selected to permit smooth interpolation, in
some appropriate manner, between the designs.  A family of linear time-invariant controllers is
obtained corresponding to the family of equili brium operating points; both the controller family and
the equili brium operating points are parameterised by ρρ.

5. Implement the controller input and output transformations, (8).  Typically, the controller input,
e=y-yref, is zero in equili brium (that is, eo(ρρo)=0 and δe = e) and either the plant exhibits pure
integral action, so that r o(ρρ) is identically zero, or each linear controller contains integral action
which implicitly generates r o(ρρ) through the action of the feedback loop (see, for example, Astrom
& Wittenmark 1989 section 9.5, Shamma & Athans 1990, Hyde & Glover 1993, Leith & Leithead
1996).  Alternatively, the controller output transformation may be implemented by explicitly
calculating the equili brium controller output as a function of ρρ (see, for example, Rugh 1991,
Shamma & Athans 1990).  However, the latter approach may involve rather complex calculations
which are sensitive to modelli ng errors and, consequently, seems to be largely of theoretical interest
(Hyde & Glover 1991).

6. Substitute ρρ (or some related quantity) for ρρo in the family of local l inear controllers, (6)-(8), to
obtain a nonlinear controller.  It is noted that the scheduling variable need not be continuous; for



example, it may be piece-wise constant, corresponding to switching between the members of the
family of local li near controllers.  Typicall y, the selection of an appropriate scheduling variable is
based on physical insight (Astrom & Wittenmark 1989).

The gain-scheduling design process is frequently iterative, with the controller revised in the light of
subsequent analysis until a satisfactory design is achieved.

The effectiveness of the gain-scheduled design approach depends on the dynamic characteristics of
the nonlinear system, composed of the nonlinear plant and the nonlinear gain-scheduled controller,
being related to those of the members of an associated family of linear systems, composed of the plant
linearisations and corresponding local l inear controllers.  The existing results relating the dynamic
characteristics of a nonlinear system to those of an associated family of linear systems is reviewed in
Leith & Leithead (1997b,c) and summarised below. Series expansion linearisation theory is well
established but is strictly confined to the dynamic analysis, locally to a single trajectory or equili brium
operating point, of smooth nonlinear systems.  When the family of equili brium operating points can be
parameterised by the input to the nonlinear system (as distinct from the scheduling variable), frozen-
input techniques cater for the analysis of smooth nonlinear systems relative to a family of equilibrium
operating points and relate the stability of a nonlinear system to the stabili ty of a family of frozen-input
nonlinear systems.  A slow variation requirement is necessary which seems to be inherent to this type
of analysis, implicitly restricting the class of allowable inputs and initial conditions; that is, implicitly
restricting the trajectories to remain sufficiently close to the equili brium operating points.  In order to
relate the stabili ty of the nonlinear system to the properties of a family of linear time-invariant systems,
a further explicit restriction on the allowable trajectories is necessary to ensure they remain sufficiently
close to the equili brium operating points that series expansion linearisations are valid.  This latter
restriction is not a priori necessary yet may be very strong since the neighbourhoods within which the
series expansion linearisations are valid may, in general, be excessively small .  The utility of frozen-
input theory is, thus, somewhat diminished since it may imply a high degree of unnecessary
conservativeness.  Series expansion linearisation theory and frozen-input theory consider only the
stabili ty properties of the nonlinear system and provide littl e direct insight into other dynamic
properties, such as the transient response.  When the scheduling is not continuous, few techniques,
other than extensive simulation testing, appear to be available for analysing the dynamic behaviour of
the controlled system.

Although frozen-input theory can support the analysis of a nonlinear gain-scheduled control system,
it provides littl e insight into the controller design procedure since the frozen-input representation of the
controlled system is quite distinct from the mixed series-expansion/frozen-scheduling variable
representation employed in step 3 of the design procedure.  Series expansion linearisations of the plant
are employed but the corresponding local controller designs are frozen-scheduling variable
linearisations of the resulting nonlinear controller.  In contrast, when analysing the dynamic behaviour
of the controller locally to a single equilibrium operating point, the series expansion linearisation is
employed instead of the frozen-scheduling variable linearisation.  Furthermore, since the scheduling
variable, ρρ, is varying in the nonlinear controller but constant in the local designs, the nonlinear
controller need not have the designed dynamics, locally to an equilibrium operating point.  Moreover,
the analysis of the controlled system in the vicinity of the family of equili brium operating points does
not reduce to either the series expansion analysis (see, for example Shamma 1988 p110) or the mixed
series-expansion/frozen-scheduling variable analysis employed in the design procedure.

The analysis of conventional gain-scheduling design by means of existing results, relating the
dynamic characteristics of a nonlinear system to those of an associated family of linear systems, is,
therefore, rather complex and inefficient.  The use of a variety of different local approximations
obscures insight and is surely unnecessary.    In addition, the analysis is confined to stabilit y properties
and does not directly extend to other dynamic characteristics such as the transient response.  Hence, the
existing theory does not provide an adequate framework to support the analysis and design of gain-
scheduled controllers.

3. Velocity-based linear isation families

An alternative approach, not discussed in section 2, to the analysis of a nonlinear system by relating
its dynamic characteristics to those of an associated family of linear systems, is developed in Leith &
Leithead (1997b).  Consider, the behaviour of the nonlinear system, (1), when there are no restrictions
on the class of allowable inputs and initial conditions.  The solutions to (1) may trace trajectories
anywhere in Φ and are not confined to the vicinity of either a single equili brium operating point or the



locus of equilibrium operating points.  Suppose that the nonlinear system is evolving along a trajectory,
(x(t), r (t)), in Φ and at time, t1, the trajectory has reached the point, (x1, r 1).  It is emphasised that the
point, (x1, r 1), need not be an equili brium operating point and, indeed, may lie far from the locus of
equili brium operating points.  From Taylor series expansion theory, the subsequent behaviour of the
nonlinear system, (1), can be approximated, locally to (x1, r 1), by the first order representation,

δ
� �
x  = F(x1, r 1) + ∇xF(x1, r 1) δ

�
x  + ∇rF(x1, r 1) δr (9)

δ
�
y  = ∇xG(x1, r 1) δ

�
x  + ∇rG(x1, r 1) δr (10)

δr  = r  - r 1 ,   
�
y  = y1 + δ

�
y ,   

�
x  = δ

�
x  + x1, 

� �
x  = δ

� �
x (11)

provided x1+δ
�
x  ⊆ Nx r 1+δr⊆ Nr, where the neighbourhoods, Nx and Nr, of, respectively,  x1 and r 1 are

sufficiently small .  When (9)-(11) and (1) have the same initial conditions, (x1, r 1), the solution to (9)-
(11) is, initially, tangential to the solution of  (1) and, indeed, locally to time t1, provides a first-order
approximation to 

�
x (t) and a second-order approximation to x(t) (Leith & Leithead 1997b,c).

The solution to the first-order series expansion, (9)-(11), provides a valid approximation only while
the solution, x(t), to the nonlinear system remains in the vicinity the operating point, (x1, r 1).  However,
the solution, x(t), to the nonlinear system need not stay in the vicinity of a single operating point.
Consider, therefore, the approximation to x(t) over a time interval, [t1,t2], obtained by partitioning the
interval into a number of short sub-intervals. Over each sub-interval, the approximate solution is the
solution to the first-order series expansion relative to the operating point reached at the initial time for
the sub-interval (with the initial conditions chosen to ensure continuity of the approximate solution).
The number of local solutions employed is dependent on the duration of the sub-intervals, but the local
solutions are now accurate to second order; that is, the approximation error is proportional to the
duration of the sub-interval cubed.  Hence, as the number of sub-intervals increases, the approximation
error associated with each rapidly decreases and the overall approximation error reduces.  Indeed, the
overall approximation error tends to zero as the number of sub-intervals becomes unbounded (Leith &
Leithead 1997b,c).  Hence, the family of first-order series expansions, with members defined by (9)-
(11), can provide an accurate approximation to the solution of the nonlinear system.  Moreover, this
approximation property holds throughout Φ and is not confined to the vicinity of a single equili brium
operating point or even of the locus of equili brium operating points.

The state, input and output transformations, (11), depend on the operating point relative to which
the series expansion is carried out.  Combining (9)and (10) with the local input, output and state
transformations, (11), each member, (9)-(11), of the family of first-order representations may be
reformulated as,� �

x  = { F(x1, r 1) - ∇xF(x1, r 1) x1 - ∇rF(x1, r 1) r 1 } + ∇xF(x1, r 1) 
�
x  + ∇rF(x1, r 1) r (12)�

y  = { G(x1, r 1) - ∇xG(x1, r 1) x1 + ∇rG(x1, r 1)r 1 } + ∇xG(x1, r 1) 
�
x  + ∇rG(x1, r 1) r (13)

The state, input and output is now the same at every point in Φ, but the dynamics, (12)-(13), are
nonlinear.  By differentiating, (12)-(13) may be reformulated in the equivalent velocity-based form,� �

x  = 
�
w ,

� �
w = ∇xF(x1, r 1)

�
w  + ∇rF(x1, r 1)

�
r ,

� �
y  = ∇xG(x1, r 1)

�
w  + ∇rG(x1, r 1)

�
r  (14)

With appropriate initial conditions, namely,�
x (t1) = x(t1),

�
w (t1) = 

� �
x (t1) = 

�
x ( t1) = F(x1, r 1),

�
y (t1) = y(t1) = G(x1, r 1)     (15)

the transformed system is dynamically equivalent to the original system.  However, in contrast to
(12)-(13), the transformed system, (14), is linear.  There exists a velocity-based linearisation, (14), for
every point in Φ.  Hence, a velocity-based linearisation family, with members defined by (14), can be
associated with the nonlinear system, (1).

The relationship between the nonlinear system and its velocity-based linearisation family is direct.
Differentiating (1), an alternative representation of the nonlinear system is�

x  = w ,
�

w = ∇xF(x, r )w + ∇rF(x, r )
�
r ,

�
y  = ∇xG(x, r )w + ∇rG(x, r )

�
r (16)

Dynamically, (16), with appropriate initial conditions corresponding to (15), and (1) are equivalent
Evidently, the velocity-based linearisation, (14), is simply the frozen form of (16) at the operating
point, (x1, r 1).  (When w = F(x, r ), y = G(x, r ) is invertible at every operating point, (x, r ), in an
appropriate neighbourhood enclosing the locus of equili brium operating points, so that x may be
expressed as a function of w, r  and y, then the transformation relating (16) to (1) is, in fact, algebraic).
The solutions to the members of the family of velocity-based linearisations, (14), can be pieced
together to approximate the solution to the nonlinear system, (16).  In this case, the 

�
x (t) are still

second-order approximations to the x(t) but the 
�
w (t) are first-order approximations to the w(t).

However, it is straightforward to show that the piece-wise approximation converges to the exact
solution (Leith & Leithead 1997b,c).



In contrast to the previous approaches discussed in section 2, the velocity-based linearisation
analysis has several advantages.  There exists a linearisation of the nonlinear system at every operating
point and not just the equili brium operating points.  Stabili ty conditions are derived for nonlinear
systems which avoid the restrictions, to trajectories lying within an unnecessarily, perhaps excessively,
small neighbourhood about the locus of equili brium operating points, inherent to previous approaches
based on frozen-input theory (Leith & Leithead 1997b,c).  A restriction on the allowable class of inputs
and initial conditions is still required.  However, in contrast to previous results, it is emphasised that
this restriction is purely a consequence of the slow variation requirement and, in this sense, is a weak as
possible.  Indeed, for systems where there is no restriction on the rate of variation, the analysis is global
in nature.  Hence, the stabili ty conditions derived using the velocity-based linearisations are inherently
much less conservative than those obtained previously.  The stabili ty analysis is also extended to
include nonlinear systems with non-smooth dynamics, such as gain-scheduled controllers which switch
between local controllers rather than employing smooth interpolation (Leith & Leithead 1997b,c).
Furthermore, the velocity-based linearisation analysis is not confined to stabili ty.  Since the members
of the family of velocity-based linearisations can be pieced together to approximate the solution to a
nonlinear system, the transient behaviour of the nonlinear system can also be investigated.  This
approximation is not confined to the vicinity of the equili brium operating points but is valid throughout
the operating envelope, including during transitions between equili brium operating points and at
operating points which are far from equili brium.  Consequently, the velocity-based linearisation theory
has considerable potential for supporting the design and analysis of gain-scheduled controllers.

4. Gain-scheduled design using velocity-based linear isation famili es

The requirement is to directly exploit the advantages of velocity-based linearisations; particularly,
to avoid the restriction to operation in the vicinity of the equilibrium operating points which is inherent
in existing gain-scheduling design approaches.   Since the velocity-based linearisation family
associated with a nonlinear plant describes the dynamic behaviour at every operating point, not just
equili brium operating points, it clearly has the potential to meet this requirement.

Consider the nonlinear plant, (1), and the nonlinear controller�
xc = Fc(xc, r c), yc = Gc(xc, r c) (17)

where rc
m∈ℜ c denotes the input to the controller, yc ∈ℜ pc the output and xc ∈ℜnc the state.

Since the requirement is to design a feedback controller, it is assumed without loss of generali ty that
the input vector, r , to the plant includes the output, yc, of the controller and the input vector, r c, to the
controller includes the output, y, of the plant.  Let r rp

denote the vector consisting of the elements of r

which are not elements of yc, and let r rc
denote the vector consisting of the elements of r c which are not

elements of y. In addition, it is assumed that the that the inverse plant mapping from F(x,r ) to (x,r ) is
bounded; that is, x is bounded when F(x,r ) and r  are bounded. By differentiating, the plant may be
reformulated in velocity-based form as�

x  = w ,
�

w = A(ρρ)w + B B
y

rr

c

rp p

( ) ( )

��ρρ ρρ
��� 	
 � �

���
	

 �� ,

�
y  = C(ρρ)w + D D

y

rr

c

rp p

( ) ( )

��ρρ ρρ
��� 	
 � �

���
	

 �� (18)

and the controller may be reformulated in velocity-based form as�
xc = wc,  

�
wc = Ac(ρρc)wc + B B

y

rc c r c
r c

( ) ( )

��ρρ ρρ
c

��� 	
 �
�
��

	

 � ,  

�
yc  = Cc(ρρc)wc + D

c
D

y

rr
rc c

( ) ( )

��ρρ ρρ
��� 	
 � �

��
	

 � (19)

where
A F x r B F x r B F x r

C G x r D G x r D G x r

A F x r B F x ,r B F x ,r

C G x r D

x r r y

x r r y

c c x c c c r c r c c c c c y c c c

c c x c c c r c

p rp c

p rp c

c c r c

c c

( ) ( , ), ( ) ( , ), ( ) ( , )

( ) ( , ), ( ) ( , ), ( ) ( , )

( ) ( , ), ( ) ( ), ( ) ( )

( ) ( , ), ( )

ρρ ρρ ρρ

ρρ ρρ ρρ

ρρ ρρ ρρ

ρρ ρρ

= ∇ = ∇ = ∇

= ∇ = ∇ = ∇

= ∇ = ∇ = ∇

= ∇ =

                 

                

  

∇ = ∇r c c c c c y c c cr c
G x r D G x r( , ), ( ) ( , )ρρ

(20)

and ρρ(x,r ), ρρc(xc,r c) embody the dependence of the dynamics on the states and inputs of the plant and
controller, respectively.

The combined closed-loop dynamics are depicted in figure 1a.  Assuming y=G(x,r ), yc=Gc(xc,r c),
with r  related to yc and r c related to y as described above, has a solution, y H x x r rc r rp c

= ( , , , ) , the

velocity-based form for the closed-loop system may be represented directly in terms of the velocity-



based form of the plant, (18), and the velocity-based form of the controller, (19), as depicted in figure
1b (see Appendix).  The velocity-based linearisation famili es associated with the plant and the
controller consist simply of  the frozen forms of, respectively, (18) and (19), obtained for constant
values of ρρ and ρρc.  In addition, each member of the velocity-based linearisation family for the
closed-loop system may be obtained by enclosing the appropriate members of the plant and controller
famili es in a feedback loop.   Given this direct relationship between the velocity-based form of the
nonlinear systems and their associated velocity-based linearisation famili es and the strong
correspondence in their dynamic behaviour as discussed in section 3, the velocity-based linearisation
famili es constitute a much more appropriate framework for the analysis and design of gain-scheduled
controllers than conventional approaches.

The foregoing analysis suggests the following gain-scheduling design procedure.

1. Determine the velocity-based linearisation family associated with the nonlinear plant dynamics.
2. Based on the plant velocity-based linearisation  family, determine the required controller velocity-

based linearisation family such that the resulting closed-loop family achieves the performance
requirements.   Since each member of the plant family is linear, conventional linear design
methods can be utilised to design each corresponding member of the controller family.

3. Realise a nonlinear controller corresponding to the family of linear controllers designed at step 2.
The velocity-based form of the controller can be obtained directly from the family of linear
controllers by simply permitting the ρρ to vary with the operating point.  Since the velocity-based
form of the system, composed of the nonlinear plant, (1), together with the velocity-based form of
the controller, (19), is identical to the velocity-based form of the system composed of the velocity-
based form of the plant, (18), together with the velocity-based form of the controller, (19), see the
Appendix, an alternative to the realisation of figure 1a is that shown in figure 1c with the velocity-
based form of the controller.  The latter has the advantage of avoiding the need to determine a
nonlinear controller, (17), corresponding to the velocity-based form, (19).

This design procedure retains a divide and conquer philosophy and maintains the continuity with linear
design methods which is an important feature of  the conventional gain-scheduling approach.
However, in contrast to the conventional gain-scheduling approach, the resulting nonlinear controller is
valid throughout the operating envelope of the plant, not just in the vicinity of the equili brium
operating points.  This extension is a direct consequence of  employing the velocity-based linearisation
framework  rather than the conventional series expansion linearisation about an equili brium operating
point.

With regard to step 3 of the design procedure, it should be noted that there are a number of issues
which must be considered when determining the nonlinear controller realisation corresponding to the
family of linear controllers designed at step 2.  In particular, the output, yc, of the controller is an input
to the plant and the input, r c, of the controller is an output from the plant.  Hence, the value of r c and yc

at an equili brium operating point of the plant is  (r co, yco) with r co dependent on yco via the plant.
However, since r c is the controller input and yc is the controller output, (r co, yco) must also be an
equili brium operating point of the controller with yo dependent on r o via the controller.  Requiring
consistency imposes, in general, a strong restriction on the allowable nonlinear controllers.  However,
this restriction is circumvented by adopting the velocity-based realisation of figure 1c since, in
equili brium, the output of the differentiation term before the controller and the input to the integral
term after the controller are both zero.  Of course, the presence of a derivative and integral action on the
forward path in the velocity-based realisation of figure 1c requires to be treated with some care.
However, when the controller contains integral action, the differentiation operator at the input and the
pure integrator within the controller may be formally absorbed together1 so that the input to the
controller becomes r c rather than 

�
r c .  The integration of the controller output then explicitly provides

the required integral action (Leith & Leithead 1997a). A further issue that must be addressed is the
most appropriate manner in which to implement the scheduling variable, ρρc. It is straightforward to
implement ρρc when it is a function of yc and r c alone. When ρρc is also a function of xc, a number of
approaches can be adopted to obtain an appropriate realisation of the scheduling variable.  For
example, when [Fc  Gc]

T is invertible such that xc may be expressed as a function of wc, r c and yc, then
so can ρρc. It should be noted that, in these circumstances, the direct formulation, (17), is related to the
velocity-based formulation, (19), by an algebraic transformation. These issues are discussed in detail in

                                                          
1 It is emphasised that this operation is purely formal in nature: no unstable pole-zero cancellation
occurs within the implemented controller.



Leith & Leithead (1997a) and the implementation approaches discussed there, whilst developed in the
context of the conventional gain-scheduling design approach, may be readily extended to the class of
controllers considered here.

Example 1

Consider the first order plant with dynamics�
( ),x G r x y x= − =10             (21)

where G(s)=tanh(s)+0.01s.  The requirement is to design a controller such that the closed-loop system
has a rise time of around 0.3 seconds with less than 25% overshoot in response to demanded step
changes in  y of magnitude less than 100 units.  At an equilibrium operating point, (ro, xo, yo),

G(ro-10 xo)=0 (22)
which requires that

 ro-10 xo = 0 (23)
Hence, the series expansion linearisation of (21) relative to the equili brium operating point, (ro, xo, yo),
is

δ δ δ δ δ
�

( ) ( ) ,x G x G r y x= − ∇ + ∇ =10 0 0     (24)

δ δ δr r r x x x y y yo o o= − = − = +, , (25)

Since the first derivative of the nonlinear function, G, is
∇ = −G s s( ) . tanh101 2 (26)

the series expansion linearisation at an equili brium operating point may be reformulated as
δ δ δ δ δ

�
. . ,x x r y x= − + =101 101     (27)

δ δ δr r r x x x y y yo o o= − = − = +, , (28)

Hence, based on the conventional series expansion linearisation at an equilibrium operating point, an
appropriate local controller is the PI-type controller
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δ δe e e r r ro o= − = +, (30)

with e=yref-y, Ko=3.86,  K1=100.0.  The transfer function of the controller, (29), is K
K

s so +
��� �� �

+
1 50

50
.

The Bode plot of the closed-loop transfer function obtained by combining (27) and (29) is depicted in
figure 2.

The dynamics, (27), are the same at every equili brium operating point and so the controller, (29),
may be employed at every equili brium operating point.   Owing to the integral action in the controller
,eo is zero and ro is implicitly generated by the feedback.   Hence, on the basis of the family of
linearisations at the equilibrium operating points, a linear PI-type controller seems to be appropriate;
namely, �� ,
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The step response of the closed loop system obtained by combining the nonlinear plant, (21), with the
linear controller, (31), is depicted in figure 3.  Evidently, the linear controller does not achieve the
required performance.  Indeed, simulation results indicate that, for step demands greater than
approximately 0.3 units, this controller is unable to satisfy the overshoot requirements.

In order to incorporate information about the plant dynamics at non-equili brium operating points
into the controller design, reformulate the nonlinear plant, (21), by differentiating, as�

( ) ( )
�
,

�
w G r x w G r x r y w= − ∇ − + ∇ − =10 10 10             (32)

The velocity-based linearisation family associated with the nonlinear plant, (21), consists of the frozen
forms of (32) obtained when r and x are constant,� �
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�
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� �
w G r x w G r x r y w= − ∇ − + ∇ − =10 10 101 1 1 1             (33)

The required velocity-based linearisation family of the controller is determined by using linear methods
to design a local controller for each of the members of the plant velocity-based linearisation family.
Employing a PI-type controller structure once again, consider the linear controller family� �
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where Ko= -10.0+14.0/∇G(r1-10x1) and  K1=100.0/∇G (r1-10x1).  At equili brium operating points, the
members of the linear controller family correspond to the controller dynamics, (31), determined
previously.  However, at non-equili brium operating points, where r1-10x1 is non-zero, the gains Ko and
K1 are now different from their equili brium values and are designed to compensate for the variation in
the dynamics of the members of the plant velocity-based linearisation family.  Since the controller
contains integral action, a nonlinear controller with the velocity-based linearisation family, (34), can be
obtained by directly implementing the velocity form of the controller, see figure 4.  The step response
of the closed-loop system thereby obtained is depicted in figure 5.  It can be seen that the performance
requirements are met for the full range of step demands.

5. Plants satisfying the extended local li near equivalence condition

Assume that the plant dynamics are of the form�
x = Ax + Br  + f(ρρ), y = Cx + Dr  + g(ρρ) (35)

where, r∈ℜm, y ∈ ℜp
, x ∈ ℜn , ρρ(x, r )∈ℜq , A, B, C, D are constant matrices, f(•) and g(•) are

differentiable nonlinear functions and ∇∇xρρ, ∇∇rρρ are functions of ρρ alone.  In addition, assume that ρρ
minimally parameterises the locus of equili brium operating points, (xo,r o), of the plant. The variable,
ρρ(x,r ), equals the constant value, say ρρ1, upon a surface of co-dimension q in Φ and ∇∇xρρ and ∇∇rρρ are
constant over each surface.  Hence, the normal to each surface is identical at every point on the surface
and each surface is, therefore, aff ine.  Moreover, to ensure that ρρ is a unique function of x and r , these
surfaces must be parallel for all ρρ.  Consequently, it may in fact be assumed, without loss of generali ty,
that ∇∇xρρ and ∇∇rρρ are constant.

The velocity-based linearisation family associated with the nonlinear plant, (35), is� � �
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(36)

The members of the family are parameterised by ρρ; that is, the velocity-based linearisation is the same
at operating points lying on a surface of constant ρρ.

The union of the surfaces of constant ρρ covers the entire operating space, Φ, and, since ρρ minimally
parameterises the locus of equili brium operating points, each surface of constant ρρ intersects the
equili brium locus at a unique point.  Each operating point in Φ is, therefore, associated, via a surface of
constant ρρ, with an equili brium operating point which has the same velocity-based linearisation.
Hence, ρρ may be interpreted as the “scheduling variable” associated with the plant, in the sense that, at
any operating point in Φ, ρρ indicates which member of the family of equili brium linearisations of the
plant is valid.

For the class of plants considered here, the velocity-based linearisation of the plant at the
equili brium operating points, when taken together with the scheduling variable, ρρ, completely
determines the velocity-based linearisation family associated with the plant.  The conventional series
expansion linearisation of the nonlinear plant, (35), relative to the equili brium operating point, (xo,
r o,yo), at which ρρ equals ρρ1, is
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(37)

It can be seen that, whilst the state, input and output differ, the series expansion linearisation at an
equili brium operating point, (37), has the same form as the corresponding velocity-based linearisation,
(36), at that equili brium operating point.  Hence, provided some care is taken, it is possible to employ
either type of linearisation to characterise the plant dynamics.  Recall that the conventional gain-
scheduling design approach utilises the series expansion linearisations of the plant at the equilibrium
operating points.  Clearly, for the class of plants considered here, the potential exists for employing the
conventional gain-scheduling design approach to obtain a nonlinear controller which is valid not only
in the vicinity of the equili brium operating points but throughout the operating envelope.  In that
context, the present framework provides rigorous insight into the role of the choice of controller
scheduling variable and realisation: the nature of the velocity-based linearisation family associated with
the resulting nonlinear controller and so the controller dynamics, particularly at non-equilibrium



operating points, are influenced by them.  Clearly, the controller dynamics need to be compatible with
the corresponding plant dynamics at non-equili brium operating points.

The class of plants considered here consists precisely of those satisfying the extended local li near
equivalence condition originally proposed by Leith & Leithead (1996,1997a) in the context of
determining appropriate realisations for gain-scheduled controllers.  It is natural to select a controller
with a nonlinear structure which reflects that of the plant and so it is attractive to require, for the class
of plants considered here, that the controller also satisfies the extended local li near equivalence
condition.  In these circumstances, the gain-scheduling design procedure proposed in section 4
specialises to:

1. Determine the linearisation of the plant at each equilibrium operating point.  In addition, determine
the scheduling variable, ρρ, associated with the plant; typically, this information might be derived
from physical understanding of the plant.

2. Select an appropriate scheduling variable for the controller.  An obvious choice is to employ the
plant scheduling variable, ρρ, or an estimate thereof.  However, an alternative choice might be
suggested by other considerations.

3. Design a suitable linear controller for each member of the family of plant equili brium
linearisations.  In order to ensure the existence of a corresponding controller satisfying the
extended local li near equivalence condition, the variations between the members of the resulting
family of linear controllers should be compatible with the choice of scheduling variable.  The
compatibility requirement is not overly restrictive in general, see Leith & Leithead (1997a).

4. Realise a nonlinear controller, compatible with the choice of scheduling variable and family of
linear controllers determined at steps 2 and 3, which satisfies the extended local li near equivalence
condition (see Leith & Leithead 1996, 1997a).

Example 2

Consider the nonlinear plant, depicted in figure 6, with second-order dynamics�� ( )
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where A, B are differentiable nonlinear functions with sA(s)>0, ∇B(s)>0 ∀s∈ℜ.  The nonlinear plant,
(38), is of the form, (35), with ρρ equal to r, and satisfies the extended local li near equivalence
condition. The velocity-based linearisation of the nonlinear plant at the general operating point,
(x11,x21,r1), is� �
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At an equili brium operating point, (x10,x20,r0),  ,
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b

a
A r B r x

a
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1= − = −( ) ( ), ( ) (40)

and so the equilibrium operating points may be parameterised by r.  The velocity-based linearisation at
the equili brium operating point at which r equals r0 is� �
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Hence, the velocity-based linearisation at the general operating point, (x11,x21,r1), corresponds precisely
to the velocity-based linearisation at the equili brium operating point at which r equals r1.   The series
expansion linearisation at the equili brium operating point at which r equals r0 is
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δ δ δ δx x x x x x r r r y y y1 1 10 2 2 20 0 0= − = − = − = +, , , (43)

Whilst the state, input and output of  (42) and (41) differ, it is clear that (42) has the same form as (41).
Employing the conventional gain-scheduling design approach, a linear controller is designed for

each member of the family of series expansion linearisations, (42), at the equili brium operating points.
Consider the family of linear controllers
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The closed-loop transfer function obtained by combining (42) and (44) is
1

13 2s bs as+ + +
(45)

 The plant input, r, is a natural choice of controller scheduling variable since it is also the plant
“scheduling variable”.  Employing one of the approaches proposed in Leith & Leithead (1996, 1997a),
an appropriate nonlinear controller realisation is�� �
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It may be shown that the nonlinear controller, (46), satisfies the extended local li near equivalence
condition with the scheduling variable, r, and the family of series expansion linearisations relative to
the equili brium operating points, (44) (Leith & Leithead 1996, 1997a).  The form of the controller
realisation is clearly directly related to that of the linear family, (44).  

In Leith & Leithead (1996, 1997a), controller realisations of the form, (46), (and more general
forms of realisation) are derived to minimise the slow variation conditions inherent to the conventional
gain-scheduling approach.  However, in the more general framework considered here, it is evident that
(46) is simply a third-order example, with the nonlinearity purely a function of r, of the velocity-based
controller, (19).  Hence, the velocity-based linearisation family of  the controller consists of the frozen
forms of  (46) and the velocity-based linearisation family associated with the closed-loop system is
obtained by combining (39) and (46) (or, alternatively, (41) and (46)).  The nonlinear controller, (46),
although designed by the conventional gain-scheduling approach of using only the plant equilibrium
linearisations, is valid throughout the operating envelope, not just in the vicinity of the equili brium
operating points.  Indeed, it is straightforward to show that the combined plant and controller dynamics
consist of linear dynamics with transfer function, (45), and an exponentially stable, unobservable
nonlinear component.

6. Conclusions

In this paper, the velocity-based linearisation framework is employed to develop a novel rigorous
approach to gain-scheduling design. The approach addresses many of the deficiencies of the
conventional gain-scheduling design approach.  Whilst retaining continuity with linear methods, which
is central to the conventional gain-scheduling methodology, the approach
• Enables knowledge concerning the plant dynamics at non-equili brium operating points to be

incorporated directly and rigorously into the controller design.   In contrast, the conventional gain-
scheduling approach util ises only equili brium linearisations of the plant and so is inherently
restricted to situations where only rather small and/or slowly-varying control demands and
disturbances are encountered.

• Enables transient performance requirements, instead of stabili ty alone, to be considered directly
during the controller design.

• Encompasses both smooth and non-smooth scheduling within the same analysis and design
framework.

• Employs a streamlined analysis and design framework which utilises a single type of linearisation
throughout.  Consequently, in comparison with the conventional gain-scheduling approach, the
design procedure proposed here is both straightforward and conceptually appealing.

These benefits stem directly from adoption of the velocity-based linearisation framework for the
analysis of nonlinear systems.
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Appendix

Consider the nonlinear system with inputs, r  and z,�
( , , ), ( , , )x F x r z y G x r z= =      (47)

Transforming into velocity-based form, (47) is equivalent to�
x  = w�
w = ∇xF(x,r ,z)w + ∇zF(x,r ,z)

�
z  +∇rF(x,r ,z)

�
r (48)�

y  = ∇xG(x,r ,z)w + ∇zG(x,r ,z)
�
z  + ∇rG(x,r ,z)

�
r

Assuming that
y=G(x,r ,y) (49)

has a suitable solution
y=N(x,r ) (50)

the system, (47), is enclosed is a feedback loop by setting z=y.  The resulting closed-loop system is�
( , ), ( , )x M x r y N x r= =    (51)

with
M x r F x r N x r( , ) ( , , ( , ))= (52)

Transforming into velocity-based form, (51) is equivalent to�
x  = w�
w = ∇xM (x,r )w +∇rM (x,r )

�
r (53)�

y  = ∇xN(x,r )w +∇rN(x,r )
�
r

Combining (49) and (50)
N x r G x r N x r( , ) ( , , ( , ))= (54)

Hence,
∇ = ∇ + ∇ ∇
∇ = ∇ + ∇ ∇
∇ = ∇ + ∇ ∇
∇ = ∇ + ∇ ∇

x x z x

r r z r
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(55)

and, by substituting (55) into(53), the closed-loop system, (53), can be directly reformulated as�
x  = w�
w = ∇xF(x,r ,z)w + ∇zF(x,r ,z)

�
z  +∇rF(x,r ,z)

�
r (56)�

y  = ∇xG(x,r ,z)w + ∇zG(x,r ,z)
�
z  + ∇rG(x,r ,z)

�
r

 z  = y = N(x,r )
Since N(x,r ) satisfies (54), it is clear that (56) is the system obtained when the system, (48), is enclosed
in a feedback loop by setting z=y.  It follows that the velocity-based form of a closed-loop system is
identical to the system obtained by enclosing the velocity-based form of the open-loop system in a
feedback loop.



Consider, now, the nonlinear system�
( , , ), ( , , )x F x r z y G x r z1 1 1 1 1 1 1 1 1 1= =      (57)

for which the velocity-based form is�
x1  = w1�
w1 = ∇x1

F1(x1,r 1,z1)w1 + ∇ z1
F1(x1,r 1,z1)

�
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and the nonlinear system�
( , , ), ( , , )x F x r z y G x r z2 2 2 2 2 2 2 2 2 2= =      (59)

for which the velocity-based form is�
x 2  = w2�
w2 = ∇x2
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F2(x2,r 2,z2)
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The systems, (57) and (59), are cascaded together by setting z2=y1.  The resulting system is�
( , , ), ( , , )x F x r z y G x r z= =      (61)
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Transforming into velocity-based form, (61) is equivalent to�
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Evidently, (63) is just the system obtained when the systems, (58) and (60), are cascaded together.  It
follows that the velocity-based form of a system consisting of two cascaded sub-systems is identical to
the system obtained by cascading together the velocity-based forms of the two sub-systems.
Furthermore, except for the output being y2 rather than 

�
y2 , both are equivalent to velocity-based

system, (58), cascaded together with the nonlinear system, (59).
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Figure 1 Different formulations of nonlinear feedback system.  Note, the differentiation operators are
purely formal in nature.
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Figure 2 Bode plot of open-loop transfer function at the equili brium operating points (Example 1).

Figure 3 Responses to steps of magnitudes 0.1, 0.5 and 1.0 with linear controller designed using
equili brium information only (Example 1).
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Figure 4 Nonlinear controller realisation (Example 1)

Figure 5 Responses to steps of magnitudes 10, 50 and 100 with nonlinear controller designed using
off-equilibrium information provided by plant velocity-based linearisation family (Example 1).
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Figure 6 Nonlinear plant considered in Example 2
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