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SUMMARY

This paper presents synthesis conditions for the design of gain-scheduled dynamic output feedback
controllers for discrete-time linear parameter-varying systems. The state-space matrix representation of
the plant and of the controller can have a homogeneous polynomial dependency of arbitrary degree on
the scheduling parameter. As an immediate extension, conditions for the synthesis of a multiobjective
H∞ and H2 gain-scheduled dynamic feedback controller are also provided. The scheduling parameters
vary inside a polytope and are assumed to be a priori unknown, but measured in real-time. If bounds
on the rate of parameter variation are known, they can be taken into account, providing less conservative
results. The geometric properties of the uncertainty domain are exploited to derive finite sets of linear
matrix inequalities based on the existence of a homogeneous polynomially parameter-dependent Lyapunov
function. An application of the control design to a realistic engineering problem illustrates the benefits of
the proposed approach. Copyright � 2011 John Wiley & Sons, Ltd.

Received 7 December 2009; Revised 12 January 2011; Accepted 13 January 2011

KEY WORDS: linear parameter-varying systems; discrete-time systems; H∞ and H2 performance;
gain-scheduled dynamic output feedback

1. INTRODUCTION

Dating back from the 1960s, classical gain-scheduling control techniques have been successfully

applied in many engineering applications for the control of nonlinear systems. These techniques can

be described as divide and conquer approaches, where the nonlinear control design is decomposed

into a number of linear subproblems [1]. However, in the absence of a sound theoretical analysis,

the classical gain-scheduled control designs come with no guarantees on robustness, performance or

even nominal stability, as pointed out in the pioneering works [2–5]. As a result, these critical issues

have been constantly reconsidered and reevaluated by the control community and a continuing

effort is apparent to develop gain-scheduled control design techniques that guarantee stability and

performance. Consequently, a distinction is made in the literature between the classical ad hoc

gain-scheduling techniques and the so-called modern gain-scheduling approaches [1, 6].

In the classical techniques (see, for instance, [7–10]), the procedure to synthesize a gain-

scheduled controller consists of the following steps. First, determine a family of linear time invariant
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(LTI) models by selecting different operating conditions of the system and then design an LTI

controller for each LTI model. Next, based on the actual value of the varying parameters (measured

or estimated online), schedule the local controllers using some interpolation method. The final

step consists of checking the closed-loop stability and performance using extensive simulation.

Although the system performance can be improved by increasing the number of local models (at

the expense of increasing the computational burden), this approach may be unreliable, since the

closed-loop stability and performance are only verified through simulations.

On the other hand, the modern design approaches start from a linear parameter-varying (LPV)

representation of the system and derive direct synthesis conditions for a parameter-dependent

controller. These techniques can be classified into Lyapunov-based approaches for parameter-

dependent state-space systems and small-gain approaches for systems with a parameter-dependent

linear fractional transformation (LFT) structure. One of the most critical issues in these modern

methods is the choice of the Lyapunov function used to establish stability and performance.

For linear systems, the most common approach is to choose a Lyapunov function V that is

quadratic in the system state x(t), that is, V (t, x(t))= x(t)′P(t)x(t), where matrix P(t) needs to

be positive definite for all time instants. For LPV systems, the question then turns to choosing

a parameterization for the dependency of matrix P(t) on the scheduling parameters. Initially,

many of the approaches used the concept of quadratic stability where the Lyapunov matrix is

assumed independent of the scheduling parameter, since this choice results in numerically tractable

optimization problems. However, quadratic stability generally leads to conservative results for

practical applications since it assumes that the variation of the scheduling parameters is arbi-

trarily fast. Consequently, many works using parameter-dependent Lyapunov functions have been

published to mitigate some of the conservatism associated with the quadratic stability-based

approaches.

Using the small-gain theory, a finite number of convex conditions forH∞ control synthesis was

derived based on quadratic stability in [11, 12], while multiobjectiveH2/H∞ synthesis conditions

were presented in [13]. Besides using a parameter-independent Lyapunov function to assess the

stability of the closed-loop system, another source of conservatism in these techniques is the use

of a subclass of full-block scalings. To reduce this conservatism, the use of more general full-block

scalings has been introduced in [14] while the use of parameter-dependent Lyapunov matrices was

suggested in [15, 16].

Based on the Lyapunov theory (see, for example, [17]), conditions for the design of H∞ gain-

scheduled dynamic output feedback controllers are derived for discrete-time [18] and continuous-

time [19] LPV state-space systems using the concept of quadratic stability and for continuous-time

LPV systems with bounded parameter variation using affine and polytopic Lyapunov matrices

[20, 21]. Observer-based dynamic output feedback synthesis techniques are derived using piecewise

Lyapunov matrices in [22, 23]. More general, polynomial Lyapunov matrices have been used in

[24] for continuous-time LPV systems with bounded variation to assess stability and in [25] to

synthesize H∞ state feedback controllers. Up to now, it seems that synthesis for dynamic output

feedback based on polynomial Lyapunov matrices has not been discussed in the literature. Several

other Lyapunov-based techniques have been proposed to derive a finite set of computable conditions

to assess stability or to synthesize a controller for LPV systems. For example, in [26] a parameter-

dependent weighted sum of Lyapunov matrices is suggested, together with a gridding technique to

derive synthesis conditions for a gain-scheduled dynamic controller for continuous-time systems

with a bound on the rate of parameter variation. Sum-of-Squares decomposition techniques have

been exploited in [27] for both analysis and synthesis.

The aim of this paper is to provide synthesis conditions for the design of H∞ and H2

gain-scheduled dynamic output feedback controllers for discrete-time homogeneous polynomially

parameter-dependent linear systems with time-varying parameters belonging to a polytope. It

is worth to emphasize that the contributions of this paper extend the recent results [28–30]

and the state-of-the-art in the literature in the following directions. First, full-order dynamic

output feedback controllers, instead of static gains, are addressed. Second, the plant system

matrices can have a polynomially parameter-dependent representation of arbitrarily degree rather
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than the particular polytopic one. Likewise for the controller matrices. Third, polynomially

parameter-dependent Lyapunov functions are used to guarantee closed-loop stability and perfor-

mance. Fourth, a recently developed framework to incorporate known bounds on the rate of

parameter variation inside a unit-simplex is exploited to reduce the conservatism of the proposed

synthesis procedures. Fifth, as an extension of the proposed conditions for H∞ and H2 dynamic

output feedback control, a suboptimal multiobjective H2/H∞ control design problem can be

conveniently solved. Furthermore, an application of the proposed control design technique to a

realistic vibroacoustic problem, based on experimentally obtained data, illustrates the benefits

of the proposed approach and shows that the techniques can be used for realistic engineering

problems.

The paper is organized as follows. First, some necessary notation is introduced in Section 2.

Then, the H∞ and H2 performance of discrete-time LPV systems are recapitulated in Section 3

and the modeling of the uncertainty domain where the varying parameters and their rate of

variation assume values is presented in Section 4. Afterwards, synthesis conditions are derived for

H∞, H2 and multiobjective gain-scheduled dynamic output feedback controllers in Section 5.

These synthesis procedures are applied to a vibroacoustic problem with realistic numerical data in

Section 6. Conclusions follow in Section 7.

2. NOTATION AND TERMINOLOGY

The set of real numbers is denoted by R and the set of natural (nonnegative integer) numbers

by N. Prime, ′, is used to indicate the transpose. The space of square-summable sequences on N

is given by

ℓn2�

{
f :N→R

n |
∞∑
k=0

f (k)′ f (k)<∞

}
.

The corresponding 2-norm is defined as ‖x(k)‖22=
∑∞

k=0 x(k)
′x(k). The trace operator is denoted

by Tr{·}, whereas the expectation operator is denoted by E{·}. Identity matrices (resp. zero matrices)

are denoted as I (resp. 0) in case the size is clear from the context. The convex hull of a set X is

denoted by co{X}.

Definition 1 (Unit-simplex)

The unit-simplex �N of dimension N ∈N, with N�2, is given by

�N =

{
�= (�1,�2, . . . ,�N )∈R

N |
N∑
j=1

� j =1, � j�0, j=1, . . . ,N

}
.

Thus, the unit-simplex �N contains all vectors consisting of N nonnegative real numbers that sum

up to 1.

For N ∈N and g∈N, let KN (g) be the set of N -tuples obtained from all possible combinations

of N nonnegative integers k j , j=1, . . . ,N , with sum k1+k2+·· ·+kN =g, that is

KN (g)=

{
k= (k1,k2, . . . ,kN )∈N

N |
N∑
j=1

k j =g

}
.

Definition 2 (Homogeneous polynomial)

Given a unit-simplex �N of dimension N ∈N, a polynomial p(�) with �∈�N defined on R
N

is called a homogeneous polynomial of degree g∈N if all its monomials have the same total

degree g.
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For example, let �= (�1,�2,�3)∈�3, then the polynomial p(�)=2�41+�21�
2
3−5�32�3+3�1�2�

2
3 is

a homogeneous polynomial of degree g=4. In general, homogeneous polynomials of arbitrary

degree g are parameterized as

A(�)=
∑

k∈KN (g)

�k Ak,

where �k is a shorthand notation for �k =�
k1
1 ·�

k2
2 · . . .·�

kN
N =

∏N
j=1�

k j
j .

By definition, for N -tuples k∈N
N and k̃∈N

N , k�k̃ if k j�k̃ j , for j =1, . . . ,N . Operations of

summation k+ k̃ and subtraction k− k̃ (whenever k�k̃) are defined componentwise. Finally, for an

N -tuple k∈N
N , the coefficient �(k) is defined as the product

�(k)�
N∏
j=1

k j !

3. PERFORMANCE FOR DISCRETE-TIME LPV SYSTEMS

For discrete-time LPV systems, this section defines the H∞ and H2 performance and provides

a characterization to compute guaranteed upper bounds for them. Note that this material has been

presented with more details in [28].

The discrete-time LPV system H considered in this section is assumed to have a finite-

dimensional state-space realization:

H :=

{
x(k+1) = A(�(k))x(k)+Bw(�(k))w(k), x(0)=0,

z(k) = Cz(�(k))x(k)+Dzw(�(k))w(k),
(1)

where x(k)∈R
nx is the state, w(k)∈R

nw the exogenous input and z(k)∈R
nz the system output. The

system matrices A(�(k))∈R
nx×nx , Bw(�(k))∈R

nx×nw , Cz(�(k))∈R
nz×nx and Dzw(�(k))∈R

nz×nw

are real and bounded and have a homogeneous polynomial parameter-dependency of degree g

on the scheduling parameter �(k) that assumes values in the unit-simplex �N . To the best of

the authors’ knowledge, control design for this class of models has not yet been addressed in

the literature. It is worth to emphasize there already exist LPV modeling techniques that provide

models with polynomial dependency on the scheduling parameter (see, for instance, [31–34]). For

this system H , its H∞ performance is defined as follows.

Definition 3 (H∞ performance)

Suppose that the system H is exponentially stable. Then, its H∞ performance is defined as

‖H‖∞ = sup
‖w(k)‖2 �=0

‖z(k)‖2

‖w(k)‖2
with w(k)∈ℓ

nw

2 and z(k)∈ℓ
nz
2 .

Based on the bounded real lemma, an upper bound for the H∞ performance of system H can be

computed using an extended LMI characterization, as shown in the following theorem.

Theorem 1 (Extended H∞ performance)

Consider system H given by (1). If there exist a bounded matrix G(�)∈R
nx×nx and a bounded

symmetric positive-definite matrix P(�)∈R
nx×nx , for �∈�N , such that

⎡
⎢⎢⎢⎢⎣

P(�(k+1)) A(�(k))G(�(k)) Bw(�(k)) 0

G(�(k))′A(�(k))′ G(�(k))+G(�(k))′−P(�(k)) 0 G(�(k))′Cz(�(k))
′

Bw(�(k))
′ 0 �I Dzw(�(k))

′

0 Cz(�(k))G(�(k)) Dzw(�(k)) �I

⎤
⎥⎥⎥⎥⎦

>0, (2)
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then the system H is exponentially stable and

‖H‖∞� inf
P(�),G(�),�

�.

The proof can be found in [35] and is a straightforward extension of the work presented in [36] for

LTI systems. Matrix P(�) is called a Lyapunov matrix, whereas G(�) is called a slack variable.

Like in [28, 37–39], the H2 performance of discrete-time LPV systems is defined in this paper

as follows.

Definition 4 (H2 performance)

Suppose that the system H is exponentially stable. Then, its H2 performance is defined as

‖H‖2= limsup
T→∞

E

{
1

T

T∑
k=0

z(k)′z(k)

}

when the system input w(k) is a zero-mean white noise Gaussian process with identity covariance

matrix.

The next theorem provides an extended LMI characterization for a guaranteed upper bound on the

H2 performance of system H .

Theorem 2 (Extended H2 performance)

Consider system H given by (1). If there exist a bounded matrix G(�)∈R
nx×nx and bounded

symmetric positive-definite matrices P(�)∈R
nx×nx and W (�)∈R

nz×nz , for �∈�N , such that

⎡
⎢⎢⎣

P(�(k+1)) A(�(k))G(�(k)) Bw(�(k))

G(�(k))′A(�(k))′ G(�(k))+G(�(k))′−P(�(k)) 0

Bw(�(k))
′ 0 I

⎤
⎥⎥⎦>0, (3a)

[
W (�(k))−Dzw(�(k))Dzw(�(k))

′ Cz(�(k))G(�(k))

G(�(k))′Cz(�(k))
′ G(�(k))+G(�(k))′−P(�(k))

]
>0, (3b)

then the system H is exponentially stable and

‖H‖22� inf
P(�),G(�),W (�)

Tr{W (�)}.

The proof can be found in [28].

4. MODELING OF THE UNCERTAINTY DOMAIN

This section briefly presents the modeling of the uncertainty domain where the varying parameters

and their rate of variation assume values (for a more detailed presentation, see [28, 30]). In this

modeling, the rate of variation of the parameters in one time instant, defined as

�� j (k)=� j (k+1)−� j (k) for j=1, . . . ,N, (4)

is assumed to be limited by an a priori known bound b∈R such that

−b��� j (k)�b for j=1, . . . ,N, (5)

with b∈ [0,1]. Since �(k)∈�N , it is clear from (4) that

N∑
j=1

�� j (k)=
N∑
j=1

� j (k+1)−
N∑
j=1

� j (k)=0. (6)
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As explained in [28, 30], the region where the vector‡ (�,��)∈R
2N assumes values can be

modeled by the polytope

�b =

{
�∈R

2N |�∈co{g1, . . . ,gM}, gi =

(
f i

hi

)
, f i ∈R

N , hi ∈R
N ,

N∑
j=1

f ij =1 with f ij�0, j =1, . . . ,N,
N∑
j=1

hij =0, i =1, . . .,M

}
,

defined as the convex combination of M vectors gi . The vertices gi of �b can be constructed in a

systematic way for a given b by searching for all possible solutions of the equalities
∑N

j=1� j =1

and
∑N

j=1�� j =0 using the extreme points of the constraints given in (5), for j =1, . . .,N . Once

the vertices of the set �b are defined, the convex characterization

(�,��)=
M∑
i=1

(
f i

hi

)
�i =

[
F

H

]
� with F= [ f 1 . . . f M ], H= [h1 . . . hM ] and �∈�M (7)

can be exploited in the derivations of the LMI conditions.

The next section derives synthesis conditions for gain-scheduled dynamic output feedback

controllers based on the convex characterization (7).

5. FULL ORDER DYNAMIC OUTPUT FEEDBACK

This section considers the design of gain-scheduled dynamic output feedback controllers for the

following discrete-time LPV system with a homogeneous polynomial parameter-dependency of

degree g on the scheduling parameter � that takes values in the unit-simplex �N

H :=

⎧
⎪⎨
⎪⎩

x(k+1) = A(�(k)) x(k)+Bw(�(k))w(k)+Bu(�(k))u(k),

z(k) = Cz(�(k)) x(k)+Dzw(�(k))w(k)+Dzu(�(k))u(k),

y(k) = Cy(�(k)) x(k)+Dyw(�(k))w(k),

(8)

where x(k)∈R
nx is the state, w(k)∈R

nw the exogenous disturbance input, z(k)∈R
nz the perfor-

mance output, y(k)∈R
ny the measured output and u(k)∈R

nu the control input. The aim is to

provide a finite-dimensional set of LMIs for the synthesis of a strictly proper full-order dynamic

output feedback controller

K :=

{
xc(k+1) = Ac(�(k)) xc(k)+Bc(�(k)) y(k),

u(k) = Cc(�(k)) xc(k),
(9)

with the controller state xc(k)∈R
nx and the system matrices Ac(�(k))∈R

nx×nx , Bc(�(k))∈R
nx×ny

and Cc(�(k))∈R
nu×nx , such that the closed-loop system

Hcl :=

{
xcl(k+1) = Acl(�(k)) xcl(k)+Bcl(�(k))w(k),

z(k) = Ccl(�(k)) xcl(k)+Dcl(�(k))w(k),
(10)

‡In the modeling of the uncertainty domain, the vectors �∈R
N and ��∈R

N represent column vectors, that is, �∈R
N×1

and ��∈R
N×1. Likewise, the vector (�,��) is a column vector (�,��)∈R

2N×1. For reasons of compactness, this
is not explicitly mentioned throughout the remainder of the paper.
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with state xcl(k)= [x(k)′ xc(k)
′]′ ∈R

2nx and system matrices

Acl(�(k)) =

[
A(�(k)) Bu(�(k))Cc(�(k))

Bc(�(k))Cy(�(k)) Ac(�(k))

]
, Bcl(�(k))=

[
Bw(�(k))

Bc(�(k))Dyw(�(k))

]
,

Ccl(�(k)) = [Cz (�(k)) Dzu(�(k))Cc(�(k))], Dcl(�(k))= [Dzw(�(k))],

(11)

is exponentially stable for all possible trajectories of the parameter �(k)∈�N , with a guaranteed

upper bound on the closed-loop H∞ or H2 performance. The proposed LPV control synthesis

procedures extend the techniques presented for LTI systems in [36], which in turn are inspired by

Scherer et al. [40] and Masubuchi et al. [41]. In the following sections, the H∞ control design is

first discussed, after which the H2 design follows as a straightforward extension.

Note that the design of controllers with a feedthrough term from the measured output to the

control input Dc(�(k)) y(k) is also possible. However, in this work strictly proper controllers are

chosen since this considerably simplifies the derivation of the synthesis procedures.

5.1. Gain-scheduled H∞ dynamic output feedback control

The aim of this section is to derive a finite-dimensional set of LMI synthesis conditions for

the design of strictly proper full-order gain-scheduled H∞ dynamic output feedback controllers.

Following the condition of Theorem 1, the H∞ performance of the closed-loop system (10) is

bounded by � if there exists a symmetric positive-definite matrix P(�)∈R
2nx×2nx and a matrix

G(�)∈R
2nx×2nx such that the following matrix inequality holds:

⎡
⎢⎢⎢⎢⎣

P(�(k+1)) Acl(�(k))G(�(k)) Bcl(�(k)) 0

⋆ G(�(k))+G(�(k))′−P(�(k)) 0 G(�(k))′Ccl(�(k))
′

⋆ ⋆ �I Dcl(�(k))
′

⋆ ⋆ ⋆ �I

⎤
⎥⎥⎥⎥⎦

>0

for k�0. (12)

It is clear that substituting for the closed-loop matrices (11) in the matrix inequality (12) yields

a nonlinear matrix inequality, due to the multiplication of the unknown matrices of the controller

(10) and the slack variable G(�). Therefore, a suitable change of variables needs to be defined to

transform the nonlinear matrix inequality (12) into an equivalent LMI. In the following, matrix

G(�) is chosen to be independent of the scheduling parameter �, that is, G(�)=G. After the

introduction of the nonlinear change of variables, some remarks about this choice are given.

5.1.1. Nonlinear change of variables. To start, define and partition matrices K (�), P(�), G and

G
−1 as

K (�) :=

[
Ac(�) Bc(�)

Cc(�) 0

]
, P(�) :=

[
P(�) P2(�)

P2(�)
′ P3(�)

]
, G :=

[
X Z1

U Z2

]
, G

−1 :=

[
Y ′ Z3

V ′ Z4

]
.

From the definition of G and G
−1, it is clear that the following relation must hold:

GG
−1=

[
X Z1

U Z2

][
Y ′ Z3

V ′ Z4

]
=

[
XY ′+Z1V

′ XZ3+Z1Z4

UY ′+Z2V
′ UZ3+Z2Z4

]
=

[
I 0

0 I

]

and, consequently, XY ′+Z1V
′ = I andUY ′+Z2V

′ =0. Now, introduce the parameter-independent

transformation matrix

T :=

[
I Y ′

0 V ′

]
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and define the following nonlinear parameter-dependent change of variables:

[
Q(�) F(�)

L(�) 0

]
:=

[
V Y Bu(�)

0 I

]
K (�)

[
U 0

Cy(�)X I

]
+

[
Y

0

]
A(�)[X 0], (13a)

[
P(�) J (�)

J (�)′ H (�)

]
:=T

′
P(�)T (13b)

S := Y X+VU. (13c)

The linearizing property of this transformation relies on the following identities:

T
′Acl(�)GT=

[
A(�)X+Bu(�)L(�) A(�)

Q(�) Y A(�)+F(�)Cy(�)

]
,

T
′Bcl(�)=

[
Bw(�)

Y Bw(�)+F(�)Dyw(�)

]
,

Ccl(�)GT= [Cz(�)X+Dzu(�)L(�) Cz(�)], Dcl(�)=Dzw(�), T
′
GT=

[
X I

S Y

]
.

Multiplying (12) with T :=diag(T,T, I, I ) on the right and with T ′ on the left yields the

following linear matrix inequality in matrices X , L(�), Y , F(�), Q(�), S, J (�), and the symmetric

positive-definite matrices P(�) and H (�)

�(�(k)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P(�(k+1)) J (�(k+1)) �13(�(k)) A(�(k)) Bw(�(k)) 0

⋆ H (�(k+1)) Q(�(k)) �24(�(k)) �25(�(k)) 0

⋆ ⋆ X+X ′−P(�(k)) I+S′− J (�(k)) 0 �36(�(k))

⋆ ⋆ ⋆ Y +Y ′−H (�(k)) 0 Cz (�(k))
′

⋆ ⋆ ⋆ ⋆ �I Dzw(�(k))
′

⋆ ⋆ ⋆ ⋆ ⋆ �I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

>0,

(14)

where

�13(�(k))= A(�(k))X+Bu(�(k))L(�(k)),

�24(�(k))= Y A(�(k))+F(�(k))Cy(�(k)),

�25(�(k))= Y Bw(�(k))+F(�(k))Dyw(�(k)),

�36(�(k))= X ′Cz(�(k))
′+L(�(k))′Dzu(�(k))

′.

The congruence transformation T is full rank when T is full rank, which in turn is full rank if V is

full rank. Based on an argument from [42], V can be assumed full rank without loss of generality.

If the LMI (14) is satisfied, a gain-scheduled H∞ controller can be recovered by inverting the

nonlinear transformation (13a)

K (�)=

[
V−1 −V−1Y Bu(�)

0 I

][
Q(�)−Y A(�)X F(�)

L(�) 0

][
U−1 0

−Cy(�)XU
−1 I

]
,
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yielding the following system matrices for the controller:

Ac(�) = V−1(Q(�)−Y A(�)X−Y Bu(�)L(�)−F(�)Cy(�)X )U
−1,

Bc(�) = V−1F(�),

Cc(�) = L(�)U−1.

(15)

It is clear that the controller matrices can be calculated whenever matricesU and V are nonsingular.

In [36], it is shown that there always exist nonsingular matrices U and V for which (13c) holds,

such that VU = S−Y X . For invertible matrices U and V , (15) provides the matrices of a strictly

proper full-order gain-scheduling H∞ dynamic output feedback controller. Note that from each

pair of feasible nonsingular matrices U and V , a new pair of nonsingular matrices Ũ = T̃−1U

and Ṽ =V T̃ can be constructed using any nonsingular matrix T̃ since Ṽ Ũ =V T̃ T̃−1U =VU .

Applying this new pair Ũ and Ṽ to construct the controller matrices (15) reveals that T̃ constitutes

a similarity transformation for the controller state xc.

Remark 1

At this point, the choice of a constant slack variable G can be clarified. It is clear that a parameter-

dependent G implies that matrices X , Y , U and V are parameter-dependent as well. This in turn,

means that T and the congruence transformation T are parameter-dependent and therefore T needs

to take the form

T (�(k)) :=diag(T(�(k+1)),T(�(k)), I, I ),

where the first block is T(�(k+1)) to ensure that when (12) is multiplied with T (�(k)) on the right

and with T (�(k))′ on the left, the nonlinear transformation (13b) can be used for both P(�(k+1))

in the first and P(�(k)) in the second diagonal block of (12). Applying this parameter-dependent

congruence transformation T (�(k)) yields (among others), the following expression:

T(�(k+1))′Acl(�(k))G(�(k))T(�(k))

=

[
A(�(k))X (�(k))+Bu(�(k))L(�(k)) A(�(k))

Q(�(k)) Y (�(k+1))A(�(k))+F(�(k))Cy(�(k))

]
,

where the change of variables (13a) now becomes

Q(�(k)) = Y (�(k+1))A(�(k))X (�(k))+Y (�(k+1))Bu(�(k))Cc(�(k))U (�(k))

+V (�(k+1))Bc(�(k))Cy(�(k))X (�(k))+V (�(k+1))Ac(�(k))U (�(k)),

F(�(k)) = V (�(k+1))Bc(�(k)),

L(�(k)) = Cc(�(k))U (�(k)).

(16)

Note that this change of variables depends on the actual and the future value of the scheduling

parameter. Since the construction of the controller matrices involves inverting this nonlinear trans-

formation, the resulting controller not only depends on the actual value of the scheduling parameter

�(k), but also on its future value �(k+1). Since in most applications, this value is not available

in real-time, the gain-scheduled controller obtained by solving the matrix inequality (12) with a

parameter-dependent slack variable G(�) cannot be implemented in practice.

The fact that a constant slack variable G is used has the following side-effect. From (15), it is

clear that parameter-independent matrices U , V , X and Y in combination with a homogeneous
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polynomial parameterization for Q(�), F(�) and L(�) yield controller matrices that have a homoge-

neous polynomial parameter-dependency as well. Furthermore, from (11) it is clear that a controller

with homogeneous polynomially parameter-dependent controller matrices results in a closed-loop

system that also has a homogeneous polynomial parameter-dependency. Inversion of (16), on the

other hand, yields a more complex, rational dependency on the scheduling parameter �(k) and

�(k+1).

5.1.2. Finite-dimensional set of sufficient LMI conditions. It is worth to emphasize that evalu-

ating the LMI condition (14) for �(k) at all time instants k�0 leads to an infinite-dimensional

problem. However, using the following four steps, a finite-dimensional set of sufficient LMI

conditions can be derived. The first step is to impose some particular structure on the

Lyapunov matrix P(�). In this paper, P(�) is chosen to have a homogeneous polynomially

parameter-dependent parameterization of a given degree p on the scheduling parameter �∈�N ,

that is,

P(�)=
∑

ℓ∈KN (p)

�ℓPℓ, �∈�N . (17)

In the second step, the modeling of the uncertainty domain �b of Section 4 is exploited. Using

the linear relation (7), it is clear that at each time instant, there exists a �(k)∈�M , such that

�(k)=F�(k). Consequently, using Theorem A.1 from Appendix A.2, a homogeneous polynomi-

ally parameter-dependent matrix P̂(�)=
∑

t∈KM (p) �
t P̂t can be constructed, such that P̂(�(k))≡

P(F�(k))≡ P(�(k)). Naturally, Theorem A.1 can also be used to construct homogeneous poly-

nomial system matrices depending on �, that are equivalent to the original system matrices of

(8), for example Â(�)=
∑

n∈KM (g) �
n Ân , such that Â(�(k))≡ A(F�(k))≡ A(�(k)). Moreover, since

�(k+1)=�(k)+��(k), it is clear from (7) that

�(k+1)=F�(k)+H�(k)= (F+H)�(k)

and consequently a homogeneous polynomially parameter-dependent matrix, P̃(�)=
∑

t∈KM (p) �
t

P̃t can be constructed, such that at each time instant P̃(�(k))≡ P((F+H)�(k))≡ P(�(k+1)). The

same procedure can be used to construct homogeneous polynomials J̃ (�(k))≡ J ((F+H)�(k))≡
J (�(k+1)), Q̂(�(k))≡Q(F�(k))≡Q(�(k)), etc.

For the third step, one has that, as a result of the representation of the system matrices, the

slack variable and the Lyapunov matrix at time instant k and k+1 can be written in terms of �(k).

Thus, the LMI (14) can be rewritten with a dependency on �(k) as follows:

�(�(k)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P̃(�(k)) J̃ (�(k)) �13(�(k)) Â(�(k)) B̂w(�(k)) 0

⋆ H̃ (�(k)) Q̂(�(k)) �24(�(k)) �25(�(k)) 0

⋆ ⋆ X+X ′− P̂(�(k)) I +S′− Ĵ (�(k)) 0 �36(�(k))

⋆ ⋆ ⋆ Y +Y ′ − Ĥ(�(k)) 0 Ĉz(�(k))
′

⋆ ⋆ ⋆ ⋆ �I D̂zw(�(k))
′

⋆ ⋆ ⋆ ⋆ ⋆ �I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

>0, (18)

with

�13(�(k))= Â(�(k))X+ B̂u(�(k))L̂(�(k)),

�24(�(k))= Y Â(�(k))+ F̂(�(k))Ĉy(�(k)),

�25(�(k))= Y B̂w(�(k))+ F̂ (�(k))D̂yw(�(k)),

�36(�(k))= X ′Ĉz(�(k))
′+ L̂(�(k))′ D̂zu(�(k))

′.
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Notice that due to the change of variables, this LMI now depends on the time instant k only, as

opposed to the LMI (14) that depends on both k and k+1. Therefore, a sufficient condition for

the LMI (18) to hold for all time instants k�0 is that the LMI

�(�)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P̃(�) J̃ (�) Â(�)X+ B̂u (�)L̂(�) Â(�) B̂w(�) 0

⋆ H̃ (�) Q̂(�) Y Â(�)+ F̂(�)Ĉy (�) Y B̂w(�)+ F̂(�)D̂yw(�) 0

⋆ ⋆ X+X ′− P̂(�) I +S′− Ĵ (�) 0 X ′Ĉz(�)
′ + L̂(�)′ D̂zu (�)

′

⋆ ⋆ ⋆ Y +Y ′ − Ĥ (�) 0 Ĉz(�)
′

⋆ ⋆ ⋆ ⋆ �I D̂zw(�)
′

⋆ ⋆ ⋆ ⋆ ⋆ �I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

> 0, (19)

holds for all �∈�M . It is important to stress that although the LMI is now independent of the time

instant k, it is still infinite-dimensional since it needs to hold for all values of �. However, in the

fourth and final step, a finite-dimensional set of sufficient LMI conditions can be derived. This is

the context of the following theorem.

Theorem 3 (Gain-scheduled H∞ dynamic output feedback control design)

Consider system H , given by (8). Let p∈N be given. Let matrices F and H, defined in (7), that

characterize the uncertainty domain �b be given. Then, the strictly proper full-order gain-scheduled

dynamic output feedback controller (9) with controller matrices (15) stabilizes H with a guaranteed

upper bound on the closed-loop H∞ performance

‖Hcl‖∞� min
Pℓ,Hℓ, Jℓ, Fℓ, Lℓ,Qk , X,Y, S,�

�,

if there exist matrices Fℓ ∈R
nx×ny , Jℓ ∈R

nx×nx and Lℓ ∈R
nu×nx and symmetric positive-definite

matrices Hℓ ∈R
nx×nx and Pℓ ∈R

nx×nx , for ℓ∈KN (p), and if there exist matrices Qk ∈R
nx×nx ,

for k∈KN (g+ p), and matrices S∈R
nx×nx , X ∈R

nx×nx and Y ∈R
nx×nx such that

� j=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
k∈KM (g)

j�k

g!

�(k)
P̃ j−k

∑
k∈KM (g)

j�k

g!

�(k)
J̃ j−k �13, j

∑
k∈KM (p)

j�k

p!

�(k)
Â j−k

∑
k∈KM (p)

j�k

p!

�(k)
B̂w, j−k 0

⋆
∑

k∈KM (g)

j�k

g!

�(k)
H̃ j−k Q̂ j �24, j �25, j 0

⋆ ⋆ �33, j �34, j 0 �36, j

⋆ ⋆ ⋆ �44, j 0
∑

k∈KM (p)

j�k

p!

�(k)
Ĉ ′
z, j−k

⋆ ⋆ ⋆ ⋆
(g+ p)!

�( j)
�I

∑
k∈KM (p)

j�k

p!

�(k)
D̂′
zw, j−k

⋆ ⋆ ⋆ ⋆ ⋆
(g+ p)!

�( j)
�I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

> 0, (20)
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for all j ∈KM (g+ p), where

�13, j =
∑

k∈KM (p)

j�k

p!

�(k)
Â j−kX+

∑
t∈KM (p)

j �t

B̂u, j−t L̂ t ,

�24, j =
∑

k∈KM (p)

j�k

p!

�(k)
Y Â j−k+

∑
t∈KM (p)

j�t

F̂t Ĉy, j−t,

�25, j =
∑

k∈KM (p)

j�k

p!

�(k)
Y B̂w, j−k+

∑
t∈KM (p)

j �t

F̂t D̂yw, j−t,

�33, j =
(g+ p)!

�( j )
(X+X ′)−

∑
k∈KM (g)

j�k

g!

�(k)
P̂j−k,

�34, j =
(g+ p)!

�( j )
(I +S′)−

∑
k∈KM (g)

j�k

g!

�(k)
Ĵ j−k,

�36, j =
∑

k∈KM (p)

j�k

p!

�(k)
X ′Ĉ ′

z, j−k+
∑

t∈KM (p)

j�t

L̂ ′
t D̂

′
zu, j−t ,

�44, j =
(g+ p)!

�( j )
(Y +Y ′)−

∑
k∈KM (g)

j�k

g!

�(k)
Ĥ j−k .

(21)

The matrix coefficients Ân , B̂w,n , B̂u,n , Ĉz,n, D̂zw,n, D̂zu,n , Ĉy,n and D̂yw,n, for n∈KM (g),

associated with the system matrices and the matrix coefficients P̃t , P̂t , H̃t , Ĥt , J̃t , Ĵt , F̂t and

L̂ t , for t ∈KM (p), and Q̂i , for i ∈KM (g+ p), associated with the optimization variables can be

constructed using the linear relation (A2) of Theorem A.1 from Appendix A.2.

Proof

Take any �∈�M . Following the derivation in Appendix A, multiplying (20) with � j and summing

for j ∈KM (g+ p) yields (19). Since this LMI condition holds for any �∈�M , the inequality

�(�(k))>0 holds for all time instants k�0. Owing to the linear relation (7) involving �(k), �(k+1)

and �(k), feasibility of �(�(k))>0 implies feasibility of (14), which, through the nonlinear trans-

formation (13), proves that (12) holds for all time instants k�0. Consequently, the closed-loop

system (10) with system matrices (11) is exponentially stable with an upper bound � on its H∞

performance. �

5.2. Gain-scheduled H2 dynamic output feedback control

Following a similar approach as above, LMI synthesis conditions can be derived for the design

of strictly proper full-order gain-scheduled H2 dynamic output feedback controllers. First, the

closed-loop matrices (11) are substituted in the conditions of Theorem 2 to ensure an upper bound

on the H2 performance of the closed-loop system (10). Then, the change of variables (13) is used

to linearize the obtained conditions. Finally, following the steps of Section 5.1.2, the modeling of
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the uncertainty domain �b can be exploited to derive the parameter-dependent LMI conditions

�(�)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

P̃(�) J̃ (�) Â(�)X+ B̂u(�)L̂(�) Â(�) B̂w(�)

⋆ H̃ (�) Q̂(�) Y Â(�)+ F̂ (�)Ĉy(�) Y B̂w(�)+ F̂(�)D̂yw(�)

⋆ ⋆ X+X ′− P̂(�) I+S′− Ĵ (�) 0

⋆ ⋆ ⋆ Y +Y ′− Ĥ (�) 0

⋆ ⋆ ⋆ ⋆ I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

>0,

(22a)

�(�)=

⎡
⎢⎢⎣

Ŵ (�)− D̂zw(�)D̂zw(�)
′ Ĉz(�)X+ D̂zu(�)L̂(�) Ĉz(�)

⋆ X+X ′− P̃(�) I +S′− Ĵ (�)

⋆ ⋆ Y +Y ′− Ĥ (�)

⎤
⎥⎥⎦>0, (22b)

which need to hold for all �∈�M . The next theorem provides a finite-dimensional set of sufficient

LMI conditions for (22).

Theorem 4 (Gain-scheduled H2 dynamic output feedback control design)

Consider system H , given by (8). Let p∈N be given. Let matrices F and H, defined in (7), that

characterize the uncertainty domain �b be given. Then, the strictly proper full-order gain-scheduled

dynamic output feedback controller (9) with controller matrices (15) stabilizes H with a guaranteed

upper bound on the closed-loop H2 performance

‖Hcl‖
2
2� min

Pℓ,Hℓ, Jℓ, Fℓ, Lℓ,Qk , X,Y, S,Wℓ,W

Tr{W },

if there exist matrices Fℓ ∈R
nx×ny , Jℓ ∈R

nx×nx and Lℓ ∈R
nu×nx and symmetric positive-definite

matrices Hℓ ∈R
nx×nx , Pℓ ∈R

nx×nx and Wℓ ∈R
nz×nz , for ℓ∈KN (p), and if there exist matrices

Qk ∈R
nx×nx , for k∈KN (g+ p), and matrices S∈R

nx×nx , X ∈R
nx×nx and Y ∈R

nx×nx and a

symmetric positive-definite matrix W ∈R
nz×nz such that

� j=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
k∈KM (g)

j�k

g!

�(k)
P̃ j−k

∑
k∈KM (g)

j�k

g!

�(k)
J̃ j−k �13, j

∑
k∈KM (p)

j�k

p!

�(k)
Â j−k

∑
k∈KM (p)

j�k

p!

�(k)
B̂w, j−k

⋆
∑

k∈KM (g)

j�k

g!

�(k)
H̃ j−k Q̂ j �24, j �25, j

⋆ ⋆ �33, j �34, j 0

⋆ ⋆ ⋆ �44, j 0

⋆ ⋆ ⋆ ⋆
(g+ p)!

�( j)
I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

> 0, (23a)

�i=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11,i �12,i

∑
k∈KM (g+p)

i�k

(g+ p)!

�(k)
Ĉz,i−k

⋆
(2g+ p)!

�(i)
(X+X ′)−

∑
k∈KM (2g)

i�k

(2g)!

�(k)
P̂i−k

(2g+ p)!

�(i)
(I +S′)−

∑
k∈KM (2g)

i�k

(2g)!

�(k)
Ĵi−k

⋆ ⋆
(2g+ p)!

�(i)
(Y +Y ′)−

∑
k∈KM (2g)

i�k

(2g)!

�(k)
Ĥi−k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

> 0, (23b)

p!

�(ℓ)
W −Wℓ > 0, (23c)
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for all j ∈KM (g+ p), i ∈KM (2g+ p) and ℓ∈KN (p), respectively, where �13, j , �24, j , �25, j ,

�33, j , �34, j and �44, j are given in (21) and

�11,i =
∑

k∈KM (2g)

i�k

(2g)!

�(k)
Ŵi−k−

∑
n∈KM (2g)

i�n

p!

�(i−n)

∑
ℓ∈KM (g)

n�ℓ

D̂zw,ℓ D̂
′
zw,n−ℓ,

�12,i =
∑

k∈KM (g+p)

i�k

(g+ p)!

�(k)
Ĉz,i−kX+

∑
j∈KM (g+p)

i� j

g!

�(i− j )

∑
t∈KM (p)

j �t

D̂zu, j−t L̂ t .

The coefficients Ân , B̂w,n , B̂u,n , Ĉz,n , D̂zw,n , D̂zu,n , Ĉy,n and D̂yw,n , for n∈KM (g), associated

with the system matrices and the matrix coefficients P̃t , P̂t , Ŵt , H̃t , Ĥt , J̃t , Ĵt , F̂t and L̂ t ,

for t ∈KM (p), and Q̂i , for i ∈KM (g+ p), associated with the optimization variables can be

constructed using the linear relation (A2) of Theorem A.1 from Appendix A.2.

The proof can be constructed in an analogous way as the proof of Theorem 3, being thus

omitted.

5.3. Multiobjective gain-scheduled dynamic output feedback control

The synthesis conditions for gain-scheduled H∞ and H2 dynamic output feedback controllers of

Sections 5.1 and 5.2 can be combined to impose different types of performance characterizations on

different closed-loop input–output channels, thus yielding multiobjective gain-scheduled dynamic

output feedback controllers [40]. To achieve this, selection matrices SI,s and SO,s can be used to,

respectively, select the proper input and output channel for each performance specification, for

s=1, . . . ,ns, yielding the different open-loop channels

HIO,s :=

⎧
⎪⎨
⎪⎩

x(k+1) = A(�(k)) x(k)+Bw(�(k))SI,sw(k)+Bu(�(k))u(k),

z(k) = SO,sCz(�(k)) x(k)+SO,sDzw(�(k))SI,sw(k)+SO,sDzu(�(k))u(k),

y(k) = Cy(�(k)) x(k)+Dyw(�(k))SI,sw(k).

Afterwards, the synthesis conditions of Theorems 3 and 4 can be applied to these different open-

loop channels to obtain the multiobjective gain-scheduled dynamic output feedback controller.

Obviously, the same matrices Fℓ, Lℓ, Qk , S, X and Y , associated with the construction of the

controller matrices (9), need to be used in the LMI conditions for the different performance

specifications. On the other hand, to reduce the conservatism, different matrices Pℓ, Hℓ and Jℓ can

be defined for each different performance specification. This can be seen as an extension of the G

shaping paradigm, presented for LTI systems in [36], to the design of full-order gain-scheduled

dynamic output feedback controllers.

6. NUMERICAL RESULTS

This section presents the numerical results using the system data taken from [28], which in turn

is based on the vibroacoustic setup used in [43]. The goal of the application is to attenuate the

structural noise of a vibroacoustic system whose dynamics is highly sensitive to the ambient

temperature. Since the temperature variation is slow, taking physical bounds on this variation

into account during the control design can reduce the conservatism typically associated with

control synthesis procedures based on quadratic stability that allow arbitrarily fast parameter

variation.

Using the State-space Model Interpolation of Local Estimates technique presented in [33, 34],

a homogeneous polynomially parameter-dependent 10th-order 2-input 1-output LPV model in the

state-space form (8) is obtained. The two inputs, respectively, correspond to the disturbance input w

and the control input u. The output y of the model is the sound pressure measured by a microphone.
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For all designs, the microphone signal y is used as both measured as well as performance output.

For details on the setup, see [43]. For this system, the polynomial degree is chosen to be g=1

which implies that the resulting LPV model has in fact a polytopic parameter-dependency on �.

In the following, first H∞ and H2 gain-scheduled dynamic output feedback controllers are

designed using Theorems 3 and 4. Afterwards, multiobjective control design is considered. The

resulting multiobjective controllers are verified through numerical simulation.

6.1. H∞ and H2 dynamic output feedback design

The synthesis conditions of Theorem 3 and 4 are used to compute gain-scheduled dynamic output

feedback controllers that guarantee an upper bound on the closed-loop H∞ and H2 performance

from the disturbancew to the performance output y of the vibroacoustic setup (indicated as ‖Tyw‖∞

and ‖Tyw‖2). To assess the impact of the bound b on the rate of parameter variation, controllers

are designed for 101 equidistant values of b in the interval [0,1], that is, b∈{0,0.01,0.02, . . . ,1}.
The polynomial degree of the Lyapunov matrices is chosen to be p=1. The influence of the

polynomial degree p on the achieved performance and on the computational time is analyzed in

Section 6.3. For the H∞ control design, nr=1241 (number of LMI rows) and nv=922 (number

of scalar variables), whereas for the H2 control design nv=1243 and nr=2082. All problems are

modeled in Yalmip [44] and solved using SeDuMi [45] within the Matlab environment.

The results of the H∞ and H2 control designs are presented in Figure 1, which shows the

obtainedH∞ upper bound � on ‖Tyw‖∞ (Figure 1(a)) and the obtainedH2 upper bound
√
Tr{W }

on ‖Tyw‖2 (Figure 1(b)) as a function of the bound b on the rate of parameter variation. Thin black

solid lines indicate dynamic output feedback design. For comparison, the upper bound on the open-

loop performance (thick dash-dotted), and the guaranteed closed-loop performance obtained using

gain-scheduled state feedback (thick dashed), both computed using the LMI conditions of [28], are

shown as well. It is clear that both the gain-scheduled state feedback and dynamic output feedback

controllers dramatically outperform the open-loop system. Furthermore, it can be concluded for both

theH∞ andH2 control designs that the dynamic output feedback controllers achieve worse perfor-

mance than the state feedback controllers. However, for the H∞ control designs (see Figure 1(a)),

the difference is small, as can be seen from the fact that the thick dashed line and thin black solid line

almost coincide. For theH2 design, on the other hand, the difference is more pronounced. Keep in

mind, though, that the dynamic controller is based on the measurement of the single output y only,

whereas the state feedback controller has access to all 10 states. In practice, it is usually not possible

to measure all states of the system, which makes the implementation of a state feedback controller

infeasible.
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Figure 1. Comparison between the upper bound on the open-loop performance (dash-dotted) and the guar-
anteed upper bound on the closed-loop performance of the vibroacoustic setup obtained with state feedback
(dashed) and dynamic (solid) output feedback using p=1, d=0: (a) H∞ design and (b) H2 design.
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Figure 2. Trade-off between the imposed upper bound � on ‖Tuw‖∞ and the

guaranteed upper bound
√
Tr{W } on ‖Tyw‖2. Comparison between gain-scheduled

state feedback (thick) and dynamic output feedback (thin).

6.2. Multiobjective dynamic output feedback design

For the multiobjective H2/H∞ control design, the aim is to minimize an upper bound
√
Tr{W }

on ‖Tyw‖2, while an upper bound � is imposed on the closed-loop H∞ performance from the

disturbance w to the control signal u (indicated as ‖Tuw‖∞). This strategy is used to obtain realistic

controllers that do not have excessively large control signals. Four bounds on the rate of parameter

variation are considered: b∈{0,0.1,0.5,1} and the upper bound � on ‖Tyw‖∞ takes 51 equidistant

values in the interval [0.1,50.1]. As above, the polynomial degree of the Lyapunov matrix is

chosen as p=1.

Figure 2 shows the obtained trade-off between the prescribed H∞ bound � and the obtained

H2 bound
√
Tr{W }. Thin lines indicate the dynamic output feedback control designs, whereas

thick lines indicate state feedback control designs. The four cases for the bound b are indicated

as follows: b=0 with gray solid lines, b=0.1 with black dashed lines, b=0.5 with black solid

lines and b=1 with gray dashed lines. Several conclusions can be drawn. First, it is clear that,

similar to the results presented in Figure 1, higher values of b result in a decrease in the guaranteed

H2 closed-loop performance (manifested as an increase in
√
Tr{W }). Second, tighter bounds

on ‖Tuw‖∞ yield a decrease in guaranteed closed-loop H2 performance as well. Third, like in

Figure 1, it is clear that the state feedback controllers outperform the dynamic output feedback

controllers. Fourth, it seems that for high values of �, all curves tend to a constant value. For each

value of b, this value can be found in Figure 1(b) (indicated with circles), which shows the best

guaranteed H2 performance that can be achieved since no bound on ‖Tuw‖∞ is imposed.

6.3. Influence of the polynomial degree p

To check the influence of the polynomial degree p on the achieved performance and the numerical

burden, the multiobjective control design for b=0.1 with a bound ‖Tuw‖∞�7.6 is repeated for

p∈{1,2,3,4}. For p=0, the set of LMIs is infeasible and no dynamic output feedback controller

can be designed based on quadratic stability of the closed-loop system. Table I shows the results.

It is clear that the closed-loop performance improves significantly for higher values of p, as can

be seen from column two, which shows a decrease in the obtained upper bound
√
Tr{W }, and

column three, which shows the relative difference � between the performance obtained for higher

p and the performance obtained for p=1. This, however, comes at the price of an important

increase in numerical complexity as can be concluded from the increased number of variables nv,

number of LMI rows nr and solver time (indicated by SeDuMi). For p=1, the synthesis conditions
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Table I. Numerical complexity associated with the multiobjective control design for b=0.1, ‖Tuw‖∞�7.6
and p∈{1,2,3,4}. No feasible solution has been found for p=0.

p
√
Tr{W } � (%) nv nr Calculation time (s)

1 0.7926 / 1784 3004 226.28
2 0.7510 5.2527 2425 7421 799.66
3 0.7293 7.9982 3066 15919 2313.17
4 0.7207 9.0753 3707 30829 6086.82

already involve a high numerical burden. However, it should be noticed that this computational

time is purely off-line. Now, the only online computational time involved is the time required to

compute the system matrices for the dynamic controller using formula (12). In this equation, the

matrix operations that do not depend on � can be performed off-line and the operations on the

parameter-dependent matrices basically amount to the computation of polynomial functions and

of ordinary matrix products, which are fast to perform. Therefore, the proposed gain-scheduled

controller can be implemented in a real-time application.

7. CONCLUSIONS

New LMI conditions are presented for the synthesis of strictly proper full-order gain-scheduled

multiobjectiveH2/H∞ dynamic output feedback controllers for discrete-time homogeneous poly-

nomially parameter-dependent linear parameter-varying systems based on polynomially parameter-

dependent Lyapunov functions. The synthesis procedures explicitly take an a priori known bound

on the rate of parameter variation into account, thus reducing the conservatism generally associated

with methods that allow arbitrarily fast parameter variation.

Numerical results presented for a vibroacoustic application show the potential of the proposed

control design. As the rate of temperature variation is obviously bounded in practice, the application

of synthesis procedures that consider bounds on rate of variation is particularly interesting in this

control problem. For a specified bound on the rate of parameter variation, a specific multiobjective

controller can be designed such that a variety of closed-loop performance specifications are met,

which allows to compute trade-off curves between various conflicting design criteria.

APPENDIX A

A.1. Finite-dimensional set of LMIS

The aim of this appendix is to derive finite-dimensional sets of sufficient LMI conditions that

guarantee the parameter-dependent LMIs (19) and (22). To this end, it is necessary to introduce

two calculus results for homogeneous polynomials.

A.1.1. Preliminaries. First, the product of two homogeneous polynomials R(�) and Q(�) of degree

f and g, respectively, can be computed as follows:

R(�)Q(�)=

(
∑

i∈KN ( f )

�i Ri

)(
∑

j∈KN (g)

� jQ j

)
=

∑
i∈KN ( f )

∑
j∈KN (g)

�i+ j RiQ j .

Defining k= i+ j yields i =k− j , whenever k� j , such that it is possible to rewrite the product

R(�)Q(�) as the following homogeneous polynomial of degree f +g :

R(�)Q(�)=
∑

k∈KN ( f +g)

�k
∑

j∈KN (g)

k� j

Rk− jQ j . (A1)

Second, throughout this appendix, homogenization is used as a generic tool.
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Definition A.1 (Homogenization)

For �∈�N and a given monomial m(�) of degree d, the homogenization of degree g of m(�) is

obtained by multiplying m(�) with

1=

(
N∑
j=1

� j

)g

,

which, using an extension of the well-known binomial expansion, is equal to the homogeneous

polynomial

1=

(
N∑
j=1

� j

)g

=
∑

ℓ∈KN (g)

g!

�(ℓ)
�ℓ.

A.1.2. Derivation of Theorem 3. The aim of this section is to derive a finite-dimensional set of

LMI conditions that guarantees that the parameter-dependent LMI (19) holds. The left-hand side

�(�) of this LMI is a polynomial matrix of degree g+ p. Therefore, all blocks of �(�) need to

be written as homogeneous polynomially parameter-dependent matrices of degree g+ p. In this

appendix, this derivation is shown for each block of �(�) using the two calculus results introduced

above.

Derivation for blocks (1,1), (1,2) and (2,2). Block (1,1) of �(�), P̃(�), is of degree p and

therefore a homogenization of degree g is necessary. This yields

(
M∑
i=1

�i

)g

P̃(�)=

(
∑

k∈KM (g)

g!

�(k)
�k

)(
∑

t∈KM (p)

� t P̃t

)
=

∑
j∈KM (g+p)

� j
∑

k∈KM (g)

j�k

g!

�(k)
P̃j−k .

The derivation for blocks (1,2) and (2,2) is analogous.

Derivation for blocks (3,3), (3,4) and (4,4). Block (3,3) of �(�), X+X ′− P̂(�), consists of

two parts. The first part, X+X ′, is constant and therefore a homogenization of degree g+ p is

necessary. This yields

(
M∑
i=1

�i

)g+p

(X+X ′)=
∑

j∈KM (g+p)

� j (g+ p)!

�( j )
(X+X ′).

The second block, P̂(�), is of degree p and thus, a homogenization of degree g is necessary.

Following the same steps as for block (1,1), this gives

(
M∑
i=1

�i

)g

P̂(�)=
∑

j∈KM (g+p)

� j
∑

k∈KM (g)

j�k

g!

�(k)
P̂j−k.

Combining both results yields

X+X ′− P̂(�)=
∑

j∈KM (g+p)

� j

⎛
⎜⎝
(g+ p)!

�( j )
(X+X ′)−

∑
k∈KM (g)

j�k

g!

�(k)
P̂j−k

⎞
⎟⎠ .

The derivation for blocks (3,4) and (4,4) is analogous.

Derivation for blocks (1,4), (1,5), (4,6) and (5,6). Block (1,4) of �(�), Â(�), is of degree g

and therefore a homogenization of degree p is necessary. This yields

(
M∑
i=1

�i

)p

Â(�)=

(
∑

k∈KM (p)

p!

�(k)
�k

)(
∑

ℓ∈KM (g)

�ℓ Âℓ

)
=

∑
j∈KM (g+p)

� j
∑

k∈KM (p)

j�k

p!

�(k)
Â j−k .

The derivation for blocks (1,5), (4,6) and (5,6) is analogous.
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Derivation for blocks (1,3), (2,4), (2,5) and (3,6). Block (1,3) of �(�), Â(�)X+ B̂u(�)L̂(�),

consists of two parts. The homogenization of the first part Â(�)X can be constructed by multiplying

the homogenization of block (1,4) with X on the right. The second part B̂u(�)L̂(�) is of degree

g+ p and therefore no homogenization is necessary:

B̂u(�)L̂(�)=
∑

j∈KM (g+p)

� j
∑

t∈KM (p)

j�t

B̂u, j−t L̂ t .

Combining both results yields

Â(�)X+ B̂u(�)L̂(�)=
∑

j∈KM (g+p)

� j

⎛
⎜⎝

∑
k∈KM (p)

j�k

p!

�(k)
Â j−kX+

∑
t∈KM (p)

j�t

B̂u, j−t L̂ t

⎞
⎟⎠ .

The derivation for blocks (2,4), (2,5) and (3,6) is analogous.

Derivation for blocks (5,5) and (6,6). Blocks (5,5) and (6,6) of �(�), given by �I , are constant

and therefore a homogenization of degree g+ p is necessary. This yields

(
M∑
i=1

�i

)g+p

�I =
∑

j∈KM (g+p)

� j (g+ p)!

�( j )
�I.

A.1.3. Derivation of Theorem 4. The aim of this section is to derive a finite-dimensional set of

LMI conditions that guarantees that the parameter-dependent LMIs (22a) and (22b) hold. Since

the left-hand side �(�) of (22a) is a diagonal block of the left-hand side �(�) of (19), the first set

of LMIs (23a) can be readily obtained as a diagonal block from the LMIs (20). The left-hand side

�(�) of LMI (22b) is a polynomial matrix of degree 2g+ p. Therefore, all blocks of �(�) need

to be written as homogeneous polynomially parameter-dependent matrices of degree 2g+ p. This

derivation is discussed next.

Derivation for block (1,1). Block (1,1), given by Ŵ (�)− D̂zw(�)D̂zw(�)
′, consists of two terms.

The term Ŵ (�) is of degree p, whereas the term D̂zw(�)D̂zw(�)
′ is of degree 2g. Therefore, a

homogenization is necessary to make both terms of degree 2g+ p. For the first term, this yields

(
M∑
i=1

�i

)2g

Ŵ (�)=

(
∑

k∈KM (2g)

(2g)!

�(k)
�k

)(
∑

ℓ∈KM (p)

�ℓŴℓ

)
=

∑
i∈KM (2g+p)

� i
∑

k∈KM (2g)

i�k

(2g)!

�(k)
Ŵi−k .

Likewise, for the second term, this yields

(
M∑
i=1

�i

)p

D̂zw(�)D̂zw(�)
′ =

(
∑

k∈KM (p)

p!

�(k)
�k

)(
∑

ℓ∈KM (g)

�ℓ D̂zw,ℓ

)(
∑

m∈KM (g)

�m D̂zw,m

)′

=
∑

i∈KM (2g+p)

� i
∑

n∈KM (2g)

i�n

p!

�(i−n)

∑
ℓ∈KM (g)

n�ℓ

D̂zw,ℓD̂
′
zw,n−ℓ.

Combining both results gives

Ŵ (�)− D̂zw(�)D̂zw(�)
′ =

∑
i∈KM (2g+p)

� i

×

⎛
⎜⎝

∑
k∈KM (2g)

i�k

(2g)!

�(k)
Ŵi−k−

∑
n∈KM (2g)

i�n

p!

�(i−n)

∑
ℓ∈KM (g)

n�ℓ

D̂zw,ℓ D̂
′
zw,n−ℓ

⎞
⎟⎠ .
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Derivation for block (1,3). Block (1,3), given by Ĉz(�), is of degree g and therefore a homog-

enization of degree g+ p is necessary. This yields
(

M∑
i=1

�i

)g+p

Ĉz(�)=

(
∑

k∈KM (g+p)

(g+ p)!

�(k)
�k

)(
∑

ℓ∈KM (g)

�ℓĈz,ℓ

)

=
∑

i∈KM (2g+p)

� i
∑

k∈KM (g+p)

i�k

(g+ p)!

�(k)
Ĉz,i−k .

Derivation for block (1,2). Block (1,2), given by Ĉz(�)X+ D̂zu(�)L̂(�), consists of two parts.

The homogenization of the first part can be constructed by multiplying the homogenization of

block (1,3) with X on the right. The second part is of degree g+ p and therefore a homogenization

of degree g is necessary. This yields

(
M∑
i=1

�i

)g

D̂zu(�)L̂(�)=

(
∑

k∈KM (g)

g!

�(k)
�k

)(
∑

ℓ∈KM (g)

�ℓ D̂zu,ℓ

)(
∑

t∈KM (p)

� t L̂ t

)

=
∑

i∈KM (2g+p)

� i
∑

j∈KM (g+p)

i� j

g!

�(i− j )

∑
t∈KM (p)

j �t

D̂zu, j−t L̂ t .

Combining both results gives

Ĉz(�)X+ D̂zu(�)L̂(�)=
∑

i∈KM (2g+p)

� i

×

⎛
⎜⎝

∑
k∈KM (g+p)

i�k

(g+ p)!

�(k)
Ĉz,i−kX+

∑
j∈KM (g+p)

i� j

g!

�(i− j )

∑
t∈KM (p)

j�t

D̂zu, j−t L̂ t

⎞
⎟⎠ .

Derivation for blocks (2,2), (2,3) and (3,3). Block (2,2), given by X+X ′− P̂(�), consists of

two parts. The first part is constant and therefore a homogenization of degree 2g+ p is necessary.

This yields

(
M∑
i=1

�i

)2g+p

(X+X ′)=
∑

i∈KM (2g+p)

� i
(2g+ p)!

�(i)
(X+X ′).

The second block is of degree p and therefore a homogenization of degree 2g is necessary. This

gives

(
M∑
i=1

�i

)2g

P̂(�)=
∑

i∈KM (2g+p)

� i
∑

k∈KM (2g)

i�k

(2g)!

�(k)
P̂i−k .

Combining both results yields

X+X ′− P̂(�)=
∑

i∈KM (2g+p)

� i

⎛
⎜⎝
(2g+ p)!

�(i)
(X+X ′)−

∑
k∈KM (2g)

i�k

(2g)!

�(k)
P̂i−k

⎞
⎟⎠ .

The derivation for blocks (2,3) and (3,3) is analogous.

Derivation for LMI (23c). The set of LMIs given by (23c) is a sufficient condition for W>W (�).

Since W (�) is a homogeneous polynomial of degree p, a homogenization of the constant left-hand

side W of degree p is necessary. This yields

(
N∑
i=1

�i

)p

W =
∑

ℓ∈KN (p)

�ℓ p!

�(ℓ)
>W (�)=

∑
ℓ∈KN (p)

�ℓWℓ.
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A.2. Change of variables

In this appendix, a change of variables is presented for homogeneous polynomials. It is shown

that if there exists a linear relation �=F� between two variables �∈�N and �∈�M , then for any

homogeneous polynomial of degree g in �, a homogeneous polynomial of degree g in � can be

constructed such that both homogeneous polynomials are identical under the restriction �=F�.

Theorem A.1 (Change of variables for homogeneous polynomials)

Given a homogeneous polynomial A(�) of degree g in the variable �∈�N ,

A(�)=
∑

ℓ∈KN (g)

�ℓ Aℓ.

Suppose that there exists the following linear relation �=F�, with F∈R
N×M , between �∈�N and

�∈�M . Then, there exists a homogeneous polynomial

Â(�)=
∑

t∈KM (g)

� t Ât ,

of degree g, such that A(�)≡ A(F�)≡ Â(�). Moreover, the coefficients Ât of Â(�) can be constructed

from the coefficients Aℓ of A(�), using the following linear combination:

Ât =
∑

ℓ∈KN (g)

∑
k∈KMN

(ℓ)
∑N

j=1 k j=t

�(ℓ)

�(k)

(
N∏
j=1

M∏
i=1

F
k j,i
( j,i)

)
Aℓ, (A2)

where the notation

∑
k∈KMN

(ℓ)
∑N

j=1 k j=t

implies that in this summation over k∈KMN
(ℓ), only those terms should be considered for which

t=
∑N

j=1 k j .

Proof

The proof follows by construction. First, denote the columns and the rows of matrix F∈R
N×M

as F(:,i)∈R
N×1, for i =1, . . . ,M , and F( j,:)∈R

1×M , for j =1, . . . ,N , respectively. Thus, it is

clear that

� =

⎛
⎜⎜⎜⎝

�1

...

�N

⎞
⎟⎟⎟⎠=F�= [F(:,1) . . . F(:,M)]

⎛
⎜⎜⎜⎝

�1

...

�M

⎞
⎟⎟⎟⎠=

⎡
⎢⎢⎢⎣

F(1,:)

...

F(N ,:)

⎤
⎥⎥⎥⎦

⎛
⎜⎜⎜⎝

�1

...

�M

⎞
⎟⎟⎟⎠ and � j =

M∑
i=1

F( j,i)�i

for j =1, . . . ,N.

Using this linear relation between �∈�N and �∈�M , it can be seen that

A(�)=
∑

ℓ∈KN (g)

�ℓAℓ =
∑

ℓ∈KN (g)

(
N∏
j=1

�
ℓ j

j

)
Aℓ =

∑
ℓ∈KN (g)

(
N∏
j=1

(
M∑
i=1

F( j,i)�i

)ℓ j
)
Aℓ,
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and, using an extension of the well-known binomial expansion, it follows that

A(�)=
∑

ℓ∈KN (g)

(
N∏
j=1

(
∑

k j∈KM (ℓ j )

ℓ j !

�(k j )
F
k j
( j,:)�

k j

))
Aℓ

=
∑

ℓ∈KN (g)

∑
k1∈KM (ℓ1)

∑
k2∈KM (ℓ2)

. . .
∑

kN∈KM (ℓN )

ℓ1!

�(k1)
F
k1
(1,:)�

k1
ℓ2!

�(k2)
F
k2
(2,:)�

k2 . . .
ℓN !

�(kN)
F
kN
(N ,:)�

kN Aℓ

=
∑

ℓ∈KN (g)

∑
k1∈KM (ℓ1)

∑
k2∈KM (ℓ2)

. . .
∑

kN∈KM (ℓN )

�(ℓ)
∏N

j=1�(k j )

(
N∏
j=1

M∏
i=1

F
k j,i
( j,i)

)
�

∑N

j=1
k j Aℓ.

Now, defining the vector MN = (M,M, . . . ,M)∈N
N and denoting the Cartesian product of the

sets KM (ℓ j ), for j=1, . . . ,N as

KMN
(ℓ)=KM (ℓ1)×KM (ℓ2)×·· ·×KM (ℓN ),

the MN -tuple k can be defined as k= (k1,k2, . . . ,kN )∈KMN
(ℓ). Then,

∏N
j=1�(k j ) can be written

in shorthand as
∏N

j=1�(k j )=�(k) and it follows that A(�) can be written as

A(�)=
∑

ℓ∈KN (g)

∑
k∈KMN

(ℓ)

�(ℓ)

�(k)

(
N∏
j=1

M∏
i=1

F
k j,i
( j,i)

)
�

∑N

j=1
k j Aℓ.

Defining

N∑
j=1

k j = t such that t ∈KM

(
N∑
j=1

ℓ j

)
=KM (g)

yields

A(�)=
∑

t∈KM (g)

� t
∑

ℓ∈KN (g)

∑
k∈KMN

(ℓ)∑N

j=1
k j=t

�(ℓ)

�(k)

(
N∏
j=1

M∏
i=1

F
k j,i
( j,i)

)
Aℓ =

∑
t∈KM (g)

� t Ât = Â(�),

with Ât given by (A2). �

Note that since the coefficients Aℓ of the homogeneous polynomial can be both scalars and

matrices, the theorem holds for homogeneous polynomials as well as homogeneous polynomially

parameter-dependent matrices.

Example A.1

Consider, as an example, a homogeneous polynomially parameter-dependent matrix of degree

g=1, that is, matrix A(�) is a polytopic matrix, given by

A(�)=
N∑

ℓ=1

�ℓAℓ.

In this case, matrix Â(�) has a polytopic structure as well and it can be shown that the generic

change of variables of Theorem A.1 becomes

Â(�)=
M∑
t=1

�t

N∑
ℓ=1

F(ℓ,t)Aℓ.

This special case for the change of variables has been presented in [28].
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