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Jeffrey M. Barker¤ and Gary J. Balas†
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and

Paul A. Blue‡
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A gain-scheduled controller for active �utter suppression of the NASA Langley Research Center’s Benchmark

Active Controls Technology wing section is presented. The wing section changes signi�cantly as a function of Mach

and dynamicpressure and is modeled as a linear system whose parameters depend in a linear fractionalmanner on

Mach and dynamic pressure. The resulting gain-scheduled controller also depends in a linear fractional manner

on Mach and dynamic pressure. Stability of the closed-loop system over a wide range of Mach and dynamic

pressure is demonstrated. Closed-loop stability is demonstrated via time simulations in which both Mach and

dynamic pressure are allowed to vary in the presence of input disturbances. The linear fractional gain-scheduled

controller and an optimized linear controller (designed for comparison) both achieve closed-loop stability, but the

gain-scheduled controller outperforms the linear controller throughout the operating region.

Nomenclature

A; B; C; D = state-space representationof a system
D = stable, rational polynomial for ¹ design
e = generic element of a state-spacematrix
Fu ; Fl = upper and lower linear fractional transformations
I = identity matrix
K = controller
M = Mach number
N = constant 2 £ 2 block matrix
P = parameter dependent plant
Nq = dynamic pressure, kPa
u = control signal
y = measured plant variables
1 = uncertainty model

±M = normalized variation in Mach

± Nq = normalized variation in dynamic pressure
¹ = structured singular value

6 = summation

Subscripts

act = actuator
d = disturbance

in = input (to plant) multiplicative
LFT = linear fractional transformation
n = noise
p = performance

I. Introduction

F LUTTER is a dynamic instability, characterized in detail in
1935 (Ref. 1) and written of as early as 1916 (Ref. 2), that can

result in catastrophicmechanicalfailureof an aircraftwing.Because
of the severity of the potential problem, aircraft today typically

operate at conditions well below the �utter boundary. However, as
aircraft design moves toward lighter weight materials in efforts to
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improve fuel ef�ciencyand aircraftagility,active�utter suppression
will likely become increasingly important.

The problem of active �utter suppressionthus has receivedmuch
attention in the form of the active �exible wing (AFW) program3;4

and the Benchmark Active Controls Technology (BACT) wing,
developed at NASA Langley Research Center speci�cally to bet-

ter understand �utter and its suppression.5¡11 The AFW has been
used for testing various single-input/single-outputand multi-input/

multi-output controllers.12 The BACT model has been used to de-
velop adaptive neural control schemes13 and generalized predictive

control.14 Other control approachesto active �utter suppressionthat
have been investigated include optimal control using acoustics,15

multirate control,16 nonlinear control,17 and H2=H1 control.18;19

This paper focuses on the design of an active �utter suppres-

sion gain-scheduled controller using linear fractional transforma-
tions (LFT). Gain-scheduled LFT control is a natural extension of
H1 control for systems that vary smoothly as a function of measur-
able parameters. Gain-scheduledLFT controller synthesis has been

successfully applied to a wide variety of problems with parameter
dependent plants, including lateral-directional control of the F-14

aircraft during powered approach.20 This control methodology is
applied here to the BACT model. Scheduling the controller as a

function of Mach and dynamic pressure allows the smooth han-
dling of transitions in the dynamic model throughout the operating

envelope. The gain-scheduled controller presented has a designed
operating range of Mach from 0.5–0.82 and a dynamic pressure

of 6.5–10.77 kPa. The range of operating conditions includes most
of the unstable operating region and demonstrates how a single

gain-scheduledLFT controller can stabilize the BACT model for a
wide range of Mach and dynamic pressure. In addition to the gain-

scheduled controller, a single linear controller is designed using a
D-K iterationtechnique,which attemptsto be robustto thechanging

�utter dynamics. Comparison of the two controllers demonstrates
the improvedperformanceobtainablethroughuse of gain-scheduled

control techniques.
The paper is presented in the following six sections. Section II

describes the BACT facility, the wing section test bed, and the lin-
ear, time-invariant (LTI) models derived at speci�c Mach numbers

and dynamic pressures. In Sec. III an LFT model of the BACT
wing section, which is a function of M and Nq, is derived from the

LTI models. This LFT model is used for control design. Section IV
presents thecontroltheoryassociatedwith gain-scheduledLFT con-

trol. The gain-scheduled control problem requires the solution of
linear matrix inequalities that can be solved ef�ciently21;22 using
convex optimization techniques. Control design and synthesis of
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Table 1 Flight conditions of LTI models

Mach Dynamic pressure, kPa

0.50 3.59 4.79 5:84a 6:32a 7:18a 8:38a 9:58a 10:77a

0.70 3.59 4.79 5.99 6:51a 6:99a 8:38a 9:58a 10:77a

0.78 3.59 4.79 5.99 6:75a 7:22a 8:38a 9:58a 10:77a

0.82 3.59 4.79 5.99 6:84a 7:33a 8:38a 9:58a 10:77a

aOpen-loop unstable.

the gain-scheduledLFT controller and a linear ¹ controller for the

BACT model are presented in Sec. V. The controllers designed in
Sec. V are analyzed and simulated in Sec. VI. The stability and per-

formance of both the gain-scheduleddesign and the ¹ controllerare
evaluated over varying M and Nq . These results of the simulations

are then compared and contrasted.The �nal section summarizes the
results and presents conclusions.

II. BACT Model

The BACT model is an elementof NASA Langley Research Cen-
ter’s Benchmark Models Program (BMP).5 The BMP consists of

several models used in the investigation of aeroelastic effects and
to acquire experimental data for the validationof the computational

�uid dynamics (CFD) code. The BACT model has been used to ob-
tain experimental data over a wide range of operating conditions,

which researchers use to develop active �utter suppression design
tools and to calibrate unsteady CFD code.

The BACT model is a rigid, rectangularwing with an NACA 0012
airfoil.8 The airfoil has three control surfaces driven by hydraulic

actuators: a trailing-edge �ap with a §15-deg operating range and
upper and lower surfacespoilers,each with a range from 0 to 45 deg.

The primary sensors used for controlare four linear accelerometers,
placed at the four corners of the wing section. The wing model is

mounted on a �exible device called the Pitch and Plunge Apparatus
(PAPA). PAPA is designed to allow rotation (pitch) and vertical

translation (plunge).7;8

Using Interaction of Structures, Aerodynamics, and Controls
(ISAC),23;24 a computer program for calculating the interactive ef-
fects of �exible structures, unsteady aerodynamics,and active con-

trols,NASA researchersdevelopedLTI models for the BACT wind-
tunnel model at a wide range of operating conditions.The program

uses a doublet-lattice method to calculate the three-dimensional
aerodynamicforces on the wing for a speci�ed operatingcondition.

LTI models have been generated to represent the wing at various
wind-tunnel operating conditions. The LTI models made available
(Table 1) are at four different Mach numbers and range in dynamic

pressure from 3.59 to 10.77 kPa. These LTI models have only one
control input (the trailing-edge�ap) and leading- and trailing-edge

acceleration measurements. The LTI models have 14 states: four
states correspond to the pitch and plunge dynamics, six states char-

acterize unsteady aerodynamics, two states characterize actuator
dynamics, and two states are a second-order Dryden turbulence

model.
Examination of Bode plots of the LTI models reveals that they

are primarily functions of the pitch, plunge, and actuator states,
with the unsteady aerodynamics playing a small role and the gust

model resulting in a small disturbance. Figure 1 shows representa-
tive magnitudeplots for the full (14th) order and reduced (6th) order

LTI systems. Clearly, the salient features of the �utter problem for
the BACT wing are captured in the reduced-order systems. Essen-

tially, the BACT wing appears to be well represented by a model
similar to a wing model with quasisteadyaerodynamics.This is not

surprising because the wing was designed so that the aerodynamic
instabilities would be relatively benign, which made building in

safety mechanisms easier.14

III. LFT Model Synthesis

The implementation of gain-scheduledLFT control requires the

construction of an LFT plant from the BACT LTI model data. The
32 LTI models of Table 1 are the basis for the LFT model of the

system used for control design. (The operating range of the LFT
model used for control design includes the 19 models at dynamic

Fig. 1 Full- and reduced-order transfer function models from trailing-
edge actuator to trailing- and leading-edge accelerometers at Åq =

8.38 kPa and Mach = 0.7.

pressuresof greater than 6.5 kPa.) The model, previouslydescribed
in detail,25 is presented here in a much abbreviated format.

First, a model depending on Mach and dynamic pressure was
developed in which each element of the state matrices (A; B; C; D)

is a function of M and Nq. The two state equations correspondingto
the actuator model are constant across the 32 LTI models, and the

pitch and plungestate equationsare just integrationsof thepitch-rate
and plunge-ratestates.Each element(e) of the remainingstate-space

equations could be accurately modeled over the range of operating
conditions in Table 1, as

e. Nq; M / D eo C e Nq ¢ Nq C eM ¢ M C e Nq M ¢ Nq ¢ M (1)

This relationship allows the 32 LTI models to be written as one

parameter-varyingmodel of the form

Px D A. Nq; M/ ¢ x C B. Nq; M/ ¢ u (2)

y D C. Nq; M / ¢ x C D. Nq; M / ¢ u (3)

whereA. Nq; M /,B. Nq; M /, etc., take the formof Eq. (1).Furtherstudy
of the models reveals that C. Nq; M / and D. Nq; M/ can be constructed

from A. Nq; M / and B. Nq; M/ because the outputs are accelerations
(linear combinations of the state rates).

To ascertain the accuracyof the parameter-varyingrepresentation
[Eqs. (2) and (3)], its poles were compared with the poles of the in-

dividualLTI models at the 32 �ight conditionsand were found to be
verysimilar.25 Indeed,theparameter-varyingmodelwas constructed

to match the LTI models exactly at Mach 0.5 and 0.82 and is a good
representation at intermediate Mach. Thus, the parameter-varying

model accurately describes the LTI �utter models. This parameter-
varyingmodel is used as the basis for the reduced-orderLFT model

of the system used in control design.
Using the information from Fig. 1, one can see that a sixth-order

model captures the primary effects of wing �utter for the BACT
wing. Using a reduced-ordermodel of the plant so that the resulting

controllerwill also beof low order is desirable;thus, the six unsteady
aerodynamic states and the second-orderDryden wind-gust model

are truncated from the model because they have little effect on the
dynamics of the system. For modeling purposes the wind gust is

replacedwith an input disturbanceinjectedon the actuatorposition.
Although this does not accurately replace the effects of the gust

model, the added disturbance path provides for added robustness.
Thus, the single-input,two-output design model contains six states:

the four states associated with the pitch and plunge modes and the
two-state actuator model.

Before introducingthe LFT model, some backgroundon LFTs is
appropriate. The upper and lower linear fractional transformations

of a block-partitionedmatrix

N D
N11 N12

N21 N22
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Fig. 2 Upper and lower linear fractional transformations.

Fig. 3 LFT plant as a function of
Åq and M.

with a matrix 1 are de�ned as

Fu.N ; 1/ D N22 C N211.I ¡ N111/¡1 N12

Fl .N ; 1/ D N11 C N121.I ¡ N221/¡1 N21

shown in a block-diagram representation in Fig. 2.

Equation(1) can beused to formulatetheparameter-varyingprob-
lem in LFT form25 with fourcopiesof theparameter Nq and two copies

of M . Figure 3 shows the resulting LFT plant P as a function of Nq

and M , which vary from 3.59–10.77 kPa and from Mach 0.5–0.82,

respectively.Thus the parameterizationincludesboth the open-loop
stable and unstable models. (Recall that although H1 control the-

ory speci�es stable perturbations, a stable 1 can either stabilize or
destabilizea given plant.) For control design purposes scaling Nq and
M so that they vary between ¡1 and 1 is necessary. To do this, a
constant LFT N is employed:

Fu N ;
± Nq .t/ 0

0 ±M .t/
D

Nq.t/I4 0

0 M.t/I2

The same process could be applied to the 14 state LTI models
with additional copies of parameters Nq and M . The choice to use a

six-state LFT model is thus one of engineering judgement, and the
resultingcontrollerswill of coursebevalidatedagainstthe full-order

LTI models.
The gain-scheduledLFT control design methodology is a direct

extensionof ¹-synthesistheory.Thus ¹ synthesisis a naturalchoice
for the linear control design technique.Because the controlproblem

in the ¹ framework is posedas maximizingrobustperformance,this
is equivalent to minimizing the structured singular value ¹. Thus

�nding a controller K to minimize ¹ is a reasonable objective. An
approximationto the ¹-synthesisproblemis givenby the D-K itera-

tion, which is a two-step iterative solutionmethod.First a controller
K is found through standard H1 methods. Next, the scaling matrix
D.s/ that minimizes kD.s/Fl .P; K /.s/D¡1.s/k1 is determined.
These steps are iterated until an acceptable controller is obtained.

Further details of the structured singular value theory and D-K it-
eration may be found elsewhere.26¡28

IV. Gain-Scheduled LFT Control

There are two main performance objectives for any �utter sup-
pressionsystem.The �rst is to extend the�utter boundary,i.e., to use

feedback control to stabilize the wing over a larger region of operat-
ing conditions.Second, �utter control is used to suppressvibrations

in the operating region where the wing is open-loop stable. Extend-
ing the �utter boundary implies that the boundary is a function of

measurable parameters (e.g., M and Nq ). The variation of the plant
as a functionof one or more parameters is an essential feature of the

problem. By allowing the controller to depend explicitly on these

Fig. 4a Parameter-dependent plant.

Fig. 4b Parameter-dependent controller.

parameters,attainingimprovedclosed-loopperformanceand stabil-
ity should be possible.Because the essential dynamics of the �utter

problem are well described by the LFT plant, using gain-scheduled
LFT controller synthesis techniquesfor active �utter suppressionof

the BACT model is appropriate.
The central idea of gain-scheduled LFT control is that a plant

often can be represented as a linear fractional transformation of a
nominal plant and physical parameters that vary within a known

range. If we can measure these physical parameters in real time,
then the controller can use this knowledge to schedule as a function

of these parameters.
Consider a parameter-dependent plant modeled as an LFT of a

time-varying block diagonal matrix 1.t/ and a three-input, three-
output LTI plant P (Fig. 4a). The parameter dependenceof the sys-

tem is becauseof the time-varying1 matrix. For the �utter problem
the 1.t/ block is

1.t/ D
± Nq .t/I4 0

0 ±M .t/I2

The assumption is made that 1.t/ takes values in a known set D

and that 1.t/ can be measured in real time.

The parameter-dependentcontrolleris restrictedto havinga struc-
ture similar to that of the plant (Fig. 4b). By interconnecting the

parameter-dependent plant and controller the closed-loop system
appears as a �nite dimensional LTI system subjected to the time-

varying perturbation1.t/. The perturbationhas a structure consist-
ing of two parts: the physicalparameters that affect the plant and the

measured parameters that are used by the controller.The actual and
measured parametersmay be different,but for notationalsimplicity

1.t/ will be used to represent both.
The control objective is to design the controller KLFT such that

for all allowable perturbations 1.t/ 2 D the parameter dependent
closed-loopsystem is internally exponentially stable with small in-

duced L2 norm from disturbancesto errors (includingmeasurement
noise and boundson control authority). The small-gain theorem can

be employed to bound (conservatively) the stability of the system
and the induced L2 norm of the disturbance to error channels of the

parameter-dependent closed-loop system. Scaling matrices are re-
stricted to be constant diagonal matrices so that they will commute

with the repeated structure of the perturbation. The main result of
the theory that allows the determination of such a controller is that

existence of a controller satisfying the scaled small-gain bound can
be expressed exactly as the feasibility of a �nite dimensional af�ne

matrix inequality21 (AMI). Because of the convexity of the AMI,
this problem can be computed numerically. The details of gain-

scheduled LFT control theory are covered in detail by Packard.29

V. Control Design and Synthesis

The control design methodologyis very similar for both the gain-

scheduled LFT controller and the ¹ controller, and so will be pre-
sented only once in Sec. V.A. Controller synthesis is discussed for

each method in Sec. V.B.

A. Control Design

The reduced six-stateLFT plant (4 aerodynamicstates, 2 actuator
states) is used to design both �utter suppression controllers. This

reducedplant has seven inputs and eight outputs.The �rst six inputs
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Fig. 5 LFT control design block diagram.

and outputs connect to the parameter block 1.t/ as discussed in

Sec. IV. The other input is the control signal, and the two outputs,
trailing-edgeand leading-edgeacceleration,are used for feedback.

The blockdiagram(Fig. 5) is used in the synthesisof both the LFT
gain-scheduledcontroller and the ¹ controller.This diagram corre-

sponds to the integration of performance objectives and robust sta-
bilityobjectivesintoa singlecontroldesignframework.The stability

objectives are to stabilize the wing throughout the operating region
and to be robust to uncertaintyin the modeling process and to errors

in model reduction.These objectives are incorporatedthrough both
inputmultiplicativeuncertaintyand the LFT model (which enters as

parametric uncertainty in the ¹ framework). Performance require-
ments are formulated through the choice of the weighting functions

applied to the input and output signals of the open-loop system.
The output leading- and trailing-edgeaccelerationsare the primary

performance signals. The �ap command signal from the controller
is also restricted.A disturbancesignal on the input to the open-loop

plant allows for unknown exogenous disturbances to the system,
representingwind gusts. A noise signal is also added to the leading-

and trailing-edge signals to corrupt the measurements.
Multiplicative uncertainty, represented in the block diagram by

the multiplicativeuncertaintyweight Win and the uncertaintyset1in,
is used to capture modeling error at high frequency, differences be-

tween the LFT model and the individualLTI models, and the uncer-
taintyintroducedby model reduction.For this systemthe multiplica-

tive uncertaintyweightused is Win D [0:1.s=2/ C 1]=[.s=200/ C 1],
representing10% uncertainty in the LFT model at low frequencies,

100% uncertainty at 20 rad/s, increasing to 1000% at high frequen-
cies. The level of uncertainty at high frequency ensures that the

controllers will not be amplifying the system dynamics in this fre-
quency range.

The LFT model, which is a functionof Nq and M , is treatedas para-
metric uncertainty in the ¹-synthesiscontrol design.Thus the nom-

inal plant for the linear control design is simply the plant that corre-
sponds to ± Nq D 0; ±M D 0 (correspondingto 7.18 kPa and Mach 0.66,

an unstable open-loop plant), whereas in the LFT gain-scheduled
design the variation in Nq and M is part of the model.

The primary performanceobjective for active �utter suppression
is to decreasethe peak responseof the wing at the �utter frequencies

and the pitch and plunge modes. This objective is captured via a
constant diagonal performance weighting Wp , which restricts the

maximum magnitude of the transfer functions. The constants are
�rst chosen to normalize the output channel (in cm/s2/rad) to have a

peak value of approximately one (approximately,because the peak
values of the transfer functions from �ap command to leading- and

trailing-edge acceleration vary as functions of Nq and M). These

constantsare then multipliedby two, asking that the peakmagnitude
be reduced to half of its initial value. Thus,

Wp D 2

1

27;500
0

0
1

25;000

is chosen. These constant weights, applied to the trailing- and
leading-edge acceleration output channels, request a reduction of

the maximum singular values from all inputs (disturbance on the
actuator signal, uncertainty,and noise) to these outputs. Thus these

weights correspond to asking for a decrease to 50% of the open-
loop peak response at the natural frequencies for the stable plants

and to similar magnitudes at the �utter frequency for the open-loop
unstable plants. Because the basic performance problem is one of

vibration attenuation, the constant performance weight is all that is
needed and is selected to suppress the peak singular values. Addi-

tionally, by choosing a constant performance weight, the order of
the gain-scheduledLFT controller is kept low. (A �rst-order perfor-

mance weight on each output channel would add two states to the
controller, for example.)

The trailing-edge�ap used as the actuator has limits of §15 deg
or ¼=12 rad. As in the performance weight, the actuator weight
Wact D 12=¼ is chosen to scale the largest allowable actuator com-
mand to §1. No rate limits are imposed on the actuator in this

control design formulation although the high frequency gain of the
multiplicative uncertainty effectively limits the bandwidth of the

controller.
Sensor noise is added to the feedback signals to corrupt the mea-

surements and to satisfy the H1 control algorithm used for design.
The weight Wn D diag[250; 250] was chosen so that the maximum

noise to signalratio is about10% in the frequencyrange10–50 rad/s.
Disturbances are introduced through a weighted disturbance in-

put on the actuator command to the plant. The disturbance weight
is chosen as Wd D ¼=36 rad, which represents maximum actuator

positioning error on the order of 1

3
the size of the maximum allow-

able actuator command. This constant disturbanceweight was used

for control design rather than using the Dryden gust model, which
would add two states to the plant and introduce additional copies of

the LFT parameters to the problem. The added disturbance model
helps ensure the resulting controller is not overly aggressive in its

attempt to damp out vibrations. The resulting controllers will be
tested against the full-order system with the gust model included to

validate the designs.

B. Controller Synthesis

The linear ¹ contoller (K¹ ) was synthesized via the D-K it-

erative control design techniqueusing the MATLABTM ¹-Analysis
and SynthesisToolbox.26 The weighted open-loopsystem has seven

states (the reduced six-statesystem plus one state for the multiplica-
tive uncertaintyweight). The structureduncertaintyis introducedas

a complex parameter variation. To keep the total order of the ¹-
controller low, the four copies of the parameter Nq are allowed to

vary independently (adding additional conservatism to the control
design) whereas the two copies of M vary together.Three iterations

resulted in a 43rd-order controller, and further iterations decreased
¹ by less than 1%. A balanced realization of the controller is ob-

tained,and the 29 stateswith the smallest Hankel singularvaluesare
truncated from the system. The resulting 14-state controller differs

from the full-order controller in H1 norm by less than 0.1%. (H2

norms cannot be compared because the high frequency gain of the

reduced-ordercontrolleris small but constant,resultingin an in�nite
H2 norm.) The resulting reduced-ordercontroller has ¹ < 2:7.

A gain-scheduled LFT controller (KLFT) was synthesized using
an algorithm that allows the parameters ± Nq and ±M to be complex,

which is conservative.KLFT stabilizes the open-loopLFT plant over
the full range of Mach (0.5–0.82) and a reduced range of dynamic

pressures (6.5–10.77 kPa). The gain-scheduledcontroller is synthe-
sized using a formulation of the H1 problem as a linear objective
minimization.29 The resulting controllers have the same number of

states as the weighted open-loop system. Thus the resulting con-
troller is seventh order. A fourth-order truncated balanced realiza-

tion of the controller results in a reduced-order controller differing
from the original controller in H1 norm by less than 0.1% in the

frequency range of interest.
Because of the structure of the problem, using the frequency-

varying D scalingson the LFT parameters in the manner used in the
D-K iteration26 to determine the robust stabilityof the system is not

possible.However,we are able to usea constant D scalingcalculated
just below the �utter frequencyat 20 rad/s and get an approximation
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of robust stability information. Performing the preceding scaling,
then calculating frequency-dependent scalings for only the multi-

plicative uncertainty channel, a structured singular value of under
14 is obtained. The high value of ¹ is consistent with the ¹ value

satis�ed by the ¹-synthesis controller after the �rst iteration.

VI. Results

The primary objectives were to improve the disturbance rejec-
tion characteristicsof the wing and increase the range of operating

conditions at which the wing is stable. In examining the success of
the gain-scheduled controller at meeting these goals, several per-

formance characteristics are considered. First, the stability of the
closed-loopsystemis examinedusing the full-orderLTI single-point

modelsand the point controllersobtainedby specifyingconstantdy-
namic pressureand Mach. For example, the full-order (14 state) LTI

model at Mach 0.7 and 10.77 kPa was closed with KLFT operating
at the same Mach and Nq . Second, the maximum singular value plots

of the open- and closed-loop systems are compared. Finally, time
simulations of the response of the wing to various inputs are used

to examine the disturbance rejection characteristics, as well as to
demonstrate reasonable actuator usage.

The gain-scheduled controller stabilizes the LFT plant over the
range indicated in Sec. V.B. It remains to be shown that the con-

troller also stabilizesall of the full-orderLTI plantswithin this range
( Nq > 6:5 and 0:5 < M < 0:82). For KLFT , there are 19 LTI plants to

be examined(Table 1). All 16 of the unstableLTI plants in this range
are stablewhenclosedwith theLTI controllerobtainedfrom theLFT

controller KLFT at the appropriateMach and dynamic pressure.The
three open-loop stable plants in the region remain stable. Addition-

ally, although KLFT was designed over only part of the operating
range, it actually stabilizes and improves disturbancerejection over

all 32 full-orderLTI models. For KLFT, this means that the point con-
troller at a �xed Mach M0 and 6.5 kPa stabilizesthe LTI model at M0

and3.59 kPa and rejectsdisturbancesbetter than the open-loopplant
at Mach 0.5 and 3.59 kPa. The gain-scheduledcontrollerthus shows

a greater than 50% increase in the �utter boundary as a function of
dynamic pressure, which may indicate that a single gain-scheduled

LFT controller operating over the entire range of LTI plants could
be synthesized, perhaps by using real-valued (instead of complex)

parameters in the LFT synthesis problem.
The linear ¹ controller K¹ also stabilizes the closed-loopsystem

overall of theoperatingconditions.To accomplishthis,performance

is traded off for stability, as will be shown next.
In evaluating the success of controllers in attenuating vibrations

of �exible structures,examining the magnitudeof the transfer func-
tions or the maximum singular value plots of the system is typical.

These generally give a good indicationof how well the closed-loop
systems will reject disturbances, especially in comparison to the

open-loop plant.
Figure 6 shows the full-order LTI open-loop plant and the plant

closedwith KLFT and K¹ at the two unstableextremesof the rangeof
operating conditions (at high dynamic pressure). The two left-hand

Fig. 6 Open- and closed-loop maximum singular value plots from
trailing-edge �ap to trailing- and leading-edge acceleration for both

controllers.

plots show maximum singular value plots of the open-loop plant
and the plant closed with KLFT, whereas the right-hand plots show

the open-loop plant at the same operating points closed with K¹.
The upper plots are maximum singular value plots for the system at

Mach 0.5 and 10.77 kPa for each of the controllers, and the lower
plots give the same at Mach 0.82 and 10.77 kPa. The �rst peak, at

approximately 20 rad/s, corresponds to the pitch mode in the stable
operatingrange whereas the second, at approximately26 rad/s, cor-

respondsto theplungemodein theopen-loopstablerange.Themode
that becomes unstable at the �utter boundary (at 26 rad/s) exhibits

characteristicsof both pitch and plunge, indicatingthat the pitch and
plunge modes are coupled. This instability occurs at 6.08 kPa for

Mach 0.5 and at 7.09 kPa for Mach 0.82. The signi�cant reduction
in the peak singular values with KLFT at both Mach 0.5 and 0.82

and 10.77 kPa is representativeof the reductions seen at other oper-
ating points, indicating that good vibration attenuation/disturbance

rejection throughoutthe operating range is likely. Time simulations
will show that these disturbance rejectionconclusionsare valid. K¹

also attenuates the peaks at both operating conditions, but by sig-
ni�cantly less than KLFT; this suggests that while the ¹-synthesis

controller stabilizes the plant throughout the operating range the
disturbanceattenuationwill be signi�cantly smaller at the extremes

of the operating range than that achieved by KLFT.
Time simulations of the closed-loop systems are used to investi-

gate both the response of the system to input disturbances and the
stabilityof the closed-loopsystems as Nq and Mach vary as functions

of time. Figure 7 demonstrates that the closed-loop systems remain
stable in the presence of a windgust as Nq and M vary. Here, Nq varies

linearly from 3.59 to 10.77 kPa over 12 s, and Mach varies from 0.5

to 0.82 as the function .0:25 C 0:0352t/
1
2 . This function was cho-

sen taking into account the physical relationship between dynamic

pressure and Mach. In other words air density was held nearly con-
stant while still allowing Mach to vary only over the range for which

linear models were available. The disturbance input is bandwidth-
limited (50 Hz) white noise input to the gust model. Note that the

variation in Nq and M takes the plant through the region over which
KLFT was not designed(below 6.5 kPa). While the simulated system

was in this region, KLFT operated at 6.5 kPa and at the simulated
Mach. Thus the gain-scheduled controller remained on the edge of

its operating range until Nq increased to 6.5 kPa.
Figure 7 demonstrates the greaterdisturbanceattenuationachiev-

ed by KLFT in comparison to K¹, particularly for t > 4:8 s where

the operating point has moved into the range for which KLFT was
designed. The peak leading- and trailing-edgeaccelerations for the

simulation are 35:5 and 31.4 cm/s2 for K¹ and 32:0 and 28.5 cm/s2

for KLFT. For t > 4:8 s the rms accelerations of the leading- and

trailing-edge �aps are 12:3 and 11.7 cm/s2 for K¹ and 12:2 and
11.2 cm/s2 for KLFT. Throughout KLFT’s operating range it displays

similarperformanceimprovementin comparisonto K¹. Simulations
of both controllersat the LTI models in KLFT’s operatingrange show

anaverageof a 4% reductionin peakaccelerationsandno signi�cant
improvement in rms accelerations. K¹, however, displays slightly

Fig. 7 Leading- and trailing-edge acceleration for KLFT (left) and K¹

(right) as Åq and M vary with time.
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Fig. 8 Flap de�ection and de�ection rate for KLFT (left) and K¹ (right)

as Åq and M vary with time.

better performance in terms of both peak and rms accelerations at

points outside KLFT’s operating range (below 6.5 kPa).
Figure 8 shows �ap de�ections and rates for KLFT and K¹. Both

controllersdemonstratereasonableactuatorusage for theactive�ut-
ter control problem. Flap de�ections are limited to under 0.5 deg

whereas�ap rates remain under30 deg¢ s¡1 . KLFT appears to achieve
betterperformancewith smaller�ap rateswithin its operatingrange.

For t > 4:8 s, the rms and peak �ap rates for KLFT are 5.17 deg/s and
16.16 deg/s whereas for K¹ they are 5.84 deg/s and 22.51 deg/s, re-

spectively. KLFT control-surfacede�ections are slightly larger than
de�ections for K¹, but are still reasonable.

VII. Conclusions

The LFT controller successfully meets both performance objec-

tives. It stabilizesthe wing over a large rangeof operatingconditions
and improves vibration attenuation. Both the maximum singular

value plots and time simulations show the signi�cant performance
gains achievable through gain-scheduled control, in comparison

not only to the open-loop system, but also to a linear ¹-synthesis
controller.

The LFT control framework allows the control designer to take
advantage of knowledge of how the physical system varies as a

functionof measurableparameters.Sending these parameters to the
controller in real time allows the controller to take advantageof this

knowledge, resulting in improved performance.
Successful design relies upon intelligent choices of weighting

functionsand uncertaintymodels. The �rst-ordermultiplicativeun-
certainty limits the bandwidth of the controller, so that unmodeled

high-frequencydynamics are not destabilizing.The LFT controlde-
sign method is well suited to the �utter control problem, in which

the plant dynamics change signi�cantly but smoothly as a function
of operating condition.

The gain-scheduled LFT controller was stable over the range
of operation for which it was designed and by extension as a point

controller,stabilized the model over the entireoperatingrange.Both
the gain-scheduledcontroller KLFT and the linear controller K¹ in-

creased the �utter boundary as measured in dynamic pressure by
greater than 50% for Mach between 0.5 and 0.82.
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