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Abstract— This work presents a methodology for designing
subspace-based gain scheduled predictive controller for nuclear
reactor power control. The main idea is to design a family
of predictive controllers directly from measurements and in-
tegrate them without employing any explicit process model.
The developed controller incorporates the robustness feature
of subspace identification with the adaptive capability of gain
scheduling in a predictive control set-up. The controller is
designed to handle process variations effectively. The efficacy
of the proposed controller is demonstrated for load-following
transients using a simulated model of a PWR-type nuclear
reactor. Simulation results show that the proposed strategy is
effective in addressing the load-following control problem of a
non-linear parameter-varying PWR nuclear reactor system.

I. INTRODUCTION

Nuclear power plants (NPP) are complex, highly-
constrained, non-linear systems with time-varying behaviour
at different operating power levels. System parameters as-
sociated with reactor core, thermal hydraulics, and internal
reactivity feedbacks differ significantly with variation in
neutronic power. The system response is further deteriorated
because of fuel burn-up and other modelling uncertainties.
For instance, during load-following operation, routine load
cycles can significantly degrade NPP performance due to
a broad range of power variations. The control system of
an NPP must be able to respond steadily to fast variations
in demand power without compromising the performance.
The dynamics of an NPP differ significantly across the
operating range so a linear controller can not guarantee
optimal performance over the entire range. Thus, it is of
prime importance to improve the existing reactor power
control technique for enhanced safety and operability of NPP.

Model Predictive Control (MPC) is an advanced optimal
control design approach that has been practised considerably
in industry. MPC has the ability to adapt to new operating
conditions and allows simpler constraints handling. It solves
an optimization problem to determine future control input
over a time period. Traditionally, MPC calls for an accurate
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mathematical model of the process to design the control
law [1]. The application of linear or non-linear MPC to the
constrained load-following operation of a pressurized water-
type reactor (PWR) has engaged vast research interest in
the last decade [2]–[5]. For instance, Na et al. [2] applied
linear MPC to the control of power level and axial power
distribution. The load-following problem for movable NPP
plants is attempted using the linear multiple MPC approach
[3]. Eliasi et al. [4] designed a non-linear robust MPC
strategy for bounding xenon oscillations.

System description using Linear Parameter Varying (LPV)
approach presents a framework to control non-linear systems.
For instance, Kothare et al. [6] developed a steam generator
level control using the LPV-based MPC approach. The LPV
control takes a conservative design approach by forming a
strategy based on the worst-case scenario which is prone
to poor performance. Implementation of model-based LPV
control is challenging as it demands an accurate description
of the process in between operating levels. Moreover, such
descriptions are not always present or may be difficult to
acquire, as in case of nuclear reactor systems.

On the other hand, control strategies based on gain
scheduling provide a viable alternative to the LPV control
approach [7]. Gain scheduling is a widely exercised control
design approach for complex non-linear processes either
with time-varying or operating level-dependent behaviours
[8]. Gain scheduling is particularly favoured by industries
over other non-linear control methods due to its generality,
simplicity, and ability to manage control design trade-off
[9]. Gain scheduled controllers have been used for steam
generator water level control [10]–[12]. The behaviour of a
non-linear system can be reasonably described using a family
of linearised systems. These linearised systems are evaluated
at a set of well-defined equilibrium or operating points.
Linear controllers are designed at these points, ensuring
that relevant performances are obtained in the proximity of
the operating points. These individual controllers are then
parametrized and integrated to form a family of controllers
to cover the whole operating range of the system. Thus, the
resulting controller is implemented as a single controller,
whose parameters are varied according to the scheduling
variables. In contrast, a weighing mechanism can be em-
ployed to use several controllers working in parallel such
that the resulting control action is a weighted combination
of the control outputs of the individual controllers.

An important limitation of the model-based approach is
that it entails an accurate mathematical description of the
process a priori. In case of an NPP, variation in reactor



parameters with operating power level limits the model-
based techniques to guarantee the desired performance. In
contrast, data-based approaches such as Subspace Predictive
Control (SPC) allow easy adaptation to the time-varying
characteristic of the process [13]–[18]. SPC combines the
estimation of linear predictor using subspace identification
with the formulation of receding horizon control design
[13]. Contrary to the classical MPC which first models the
process and then estimates the controller parameters, the
SPC combines these two steps into one, thereby reducing
the computation time, complexity, and errors arising due
to model-plant mismatch. Furthermore, the design does not
make a priori assumptions about process model structure or
order. SPC directly designs the controller from the recorded
measurement data. The formulation of SPC neither requires
the solution of a non-linear Riccati equation, as is the case
with linear quadratic control, nor the solution of a recursive
Diophantine equation, as with generalised predictive control.
The realization of SPC is through singular value and QR
decompositions, which makes the algorithm numerically
stable and computationally efficient.

The goal of this paper is to propose a Gain Scheduled
Subspace Predictive control (GSSPC) design strategy for
the effective control of a PWR-type NPP. Specifically, two
different variants are proposed, namely Parametrized GSSPC
and Weighted GSSPC. The main advantage of the proposed
technique is that it can be used in the absence of a plant
model. GSSPC can be employed particularly when process
knowledge is restricted to measurements at few equilibrium
points. The scheduling variables are chosen to indicate
variations in process behaviour as operating levels change.
The computational complexity of the proposed approach is
much less than other non-linear control design approaches.
Performance of the proposed technique is evaluated for
demand set-point variations during the load-following mode
of operation. The controller is effectively able to handle ramp
and step variations in the desired power.

The remainder of the paper is arranged as follows. Section
II formulates the control design problem. Section III formu-
lates the proposed GSSPC strategy. Section IV evaluates the
proposed control technique on a simulated PWR-type nuclear
reactor and discusses its efficacy through load-following tran-
sients. Finally, conclusions are drawn in Section V indicating
the main contributions.

II. PROBLEM FORMULATION

Consider a non-linear process which can be written by a
family of linear systems in a parameter-varying innovation
form at different equilibrium points as,

x[k + 1] = Aσi
x[k] +Bσi

u[k] +Kσi
e[k],

y[k] = Cσi
x[k] + e[k], i = 1, 2, . . . , S

(1)

where the state is x[k] ∈ Rn, the input is u[k] ∈ Rm, the
output is y[k] ∈ Rl, and the innovation sequence is e[k] ∈ Rl,
with the error covariance matrix E(e[k]eT [k]) = S. Aσi ∈
Rn×n, Bσi

∈ Rn×m, Kσi
∈ Rn×l, and Cσi

∈ Rl×n are

system matrices. σi and S denote equilibrium point and the
total number of equilibrium points, respectively.

The problem is to design a control input (uf ), such that
the predicted output (ŷf ) tracks a reference signal (rf ).
The control input can be computed by minimizing the cost
function given by

J = min
∆uf

(
(ŷf − rf )

T
Qf (ŷf − rf ) + ∆uf

TRf∆uf

)
, (2)

where
rf =

[
rT [t+ 1] rT [t+ 2] · · · rT [t+Np]

]T
,

ŷf =
[
ŷT [t+ 1] ŷT [t+ 2] · · · ŷT [t+Np]

]T
,

uf =
[
uT [t+ 1] uT [t+ 2] · · · uT [t+Nc]

]T
.

Nc (≤ Np) and Np are control and prediction horizons,
respectively. Rf = INc

⊗ R penalizes the rate of change of
input, where R ∈ Rm×m is a positive definite matrix, INc

is an Nc×Nc identity matrix, and ⊗ denotes the Kronecker
product. Similarly, Qf = INp

⊗ Q penalizes the error
between desired reference and output, where Q ∈ Rl×l is a
positive semi-definite matrix.

III. PROPOSED CONTROL APPROACH

A. Subspace Predictor

The formulation of SPC requires the design of a predictor
to compute the control law. A set of block Hankel matrices
can be formed from the collected measurement data at
different equilibrium points. They are given as

YP =


y[1] y[2] · · · y[N − 2f + 1]
y[2] y[3] · · · y[N − 2f + 2]

...
...

. . .
...

y[f ] y[f + 1] · · · y[N − f ]

 ; (3)

YF =


y[f + 1] y[f + 2] · · · y[N − f + 1]
y[f + 2] y[f + 3] · · · y[N − f + 2]

...
...

. . .
...

y[2f ] y[2f + 1] · · · y[N ]

 ,(4)

where f is the order of predictor matrix. YP ∈
Rfl×(N−2f+1) and YF ∈ Rfl×(N−2f+1) are called as
past and future output data Hankel matrices, respectively.
Similarly, UP ∈ Rfm×(N−2f+1), EP ∈ Rfl×(N−2f+1),
and XP ∈ Rn×(N−2f+1) are defined as past input, past
innovation, and past state matrices, respectively. The same
notation holds true with subscript F terms to define future
Hankel matrices. Using these definitions,

YP = Γσi,fXP +Hd
σi,fUP +Hs

σi,fEP ,

YF = Γσi,fXF +Hd
σi,fUF +Hs

σi,fEF , (5)

XF = Afσi
XP + ∆d

σi,fUP + ∆s
σi,fEP ,

where Γσi,f ∈ Rfl×n is the extended observability matrix.
Hd
σi,f

∈ Rfl×fm and Hs
σi,f

∈ Rfl×fl are determinis-
tic and stochastic lower block-triangular Toeplitz matrices,
respectively. ∆d

σi,f
∈ Rn×fm and ∆s

σi,f
∈ Rn×fl are

deterministic and stochastic reverse extended controllability
matrices, respectively. Thus, from (6), the predictor is given



by
ŶF = Lσi,wWP + Lσi,uUF , (6)

where WP =
[
Y TP UTP

]T ∈ Rf(m+l)×(N−2f+1).
Lσi,w ∈ Rfl×f(m+l) and Lσi,u ∈ Rfl×fm are predictor
matrices at different equilibrium points.

B. Subspace Predictive Control

In order to incorporate the above defined predictor in SPC,
it is sufficient to consider only the leftmost column of Ŷf .
Thus, (6) can be rewritten as

ŷf = Lσi,wwp + Lσi,uuf , (7)

or simply in terms of input increments as,

ŷf = Īly[k] +OlLσi,w∆wp +OlLσi,u∆uf , (8)

where

Ol =


Il 0 · · · 0
Il Il · · · 0
...

...
. . .

...
Il Il · · · Il

 ∈ RNpl×Npl, Il =


Il
Il
...
Il

 ∈ RNpl×l,

(9)
and Il is an l × l identity matrix. Rewriting (8), by using
ȳ[k] = Īly [k], L̄σi,w = OlLσi,w, and L̄σi,u = OlLσi,u, as

ŷf = ȳ[k] + L̄σi,w∆wp + L̄σi,u∆uf . (10)

For the case of unconstrained SPC design, the input incre-
ment can be computed as

∆uf = −
((
L̄σi,u

)T
Qf L̄σi,u +Rf

)−1(
L̄σi,u

)T
Qf
(
ȳ[k]− rf + L̄σi,w∆wp

)
,

(11)
or simply,

∆uf = −Kσi,u (ȳ[k]− rf )−Kσi,w∆wp (12)

where the gain matrices are defined by,

Kσi,u =
((
L̄σi,u

)T
Qf L̄σi,u +Rf

)−1(
L̄σi,u

)T
Qf ,

Kσi,w =
((
L̄σi,u

)T
Qf L̄σi,u +Rf

)−1(
L̄σi,u

)T
Qf L̄σi,w.

(13)
Finally, the control signal is updated using only the first
element of the control move

u [t+ 1] = ∆uf [1] + u [k] . (14)

C. Gain-Scheduled SPC

Gain scheduling is widely employed in the control of non-
linear processes where an approximate relationship between
the plant dynamics and operating conditions is known. Gain
scheduled SPC can be described as a two-step procedure. The
first step is to formulate linear subspace predictors for the
process from measurements. This design process calculates
a set of predictor matrices corresponding to the process
at different equilibrium points. The second step involves
implementing the family of linear controllers such that the
controller parameters are scheduled according to the current
value of the scheduling variables. Scheduling variables indi-
cate the closeness of system behaviour to an operating point.

Control input, reference input, plant output, etc., are usually
used as scheduling variables. In this work, the scheduling
strategy for the control loop took into account the reference
input. Here, two different approaches are proposed for the
second step and are discussed as follows. The block diagram
of the proposed technique is shown in Fig. 1.

1) Parametrized GSSPC: The SPC controllers designed
at different operating points are parametrized and integrated
to form a family of controllers. They are parametrized
according to the preprogrammed adjustment schedule due
to significant changes in scheduling variables. Thus, the
resulting controller is implemented as a single control law,
whose parameters are varied following the scheduling vari-
ables. The interpolation strategy is employed to arrive at
a family of controllers parameters from a set of predictor
designs at isolated values of the equilibrium points. The
algorithm works by using a controller as long as the system
state is close to the corresponding operating point. Based
on the switching parameter, it then switches to the next
controller when the system state is sufficiently close to the
next operating point. The algorithm easily combines two
or more controllers using linear interpolation. The linear
interpolation in the interval σi ≤ σ ≤ σi+1 can be denoted
as

Kσ,u =
σ − σi+1

σi − σi+1
Kσi,u +

σ − σi+1

σi+1 − σi
Kσi+1,u (15)

Kσ,w =
σ − σi+1

σi − σi+1
Kσi,w +

σ − σi+1

σi+1 − σi
Kσi+1,w (16)

where σi and σi+1 represent operating points.
2) Weighted GSSPC: A weighing mechanism is employed

to use weighted combination of the outputs of the individual
controllers. The control output of SPC controllers designed
at different operating points are weighed in accordance to
the scheduling variable. If the system state is close to an
operating point, then the corresponding control output will
dominate in the control signal while outputs from rest of the
controllers are weighed less. Hence, the overall control input
is a combination of control inputs. It is given by

u[k] =

S∑
i=1

Wσi
uσi

[k] (17)

where Wσi
is the weight corresponding to the operating point

σi and satisfies
S∑
i=1

Wσi
= 1. uσi

is the control signal from

the controller corresponding to σith operating point. It is
to be noted that the weighted GSSPC approach combines
weighted controller outputs whereas, parametrized GSSPC
employs linear controller interpolation strategy.

D. Performance Assessment

The control performance can be evaluated based on the fol-
lowing factors: Percentage root mean squared error (PRMSE)
computed between output and demand set-point analyses the
effect of control action on the output. The effect of control
action on input is analysed by computing the total variation
of input (TVI) and the L2-norm of input (‖U‖2). These are
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given by,

PRMSE =
1

N

√√√√ N∑
k=1

(y[k]− r[k])
2 × 100%, (18)

TV I =

N∑
k=1

|(u [k + 1]− u [k])|, (19)

‖U‖2 =

√√√√( N∑
k=1

(u[k])
2

)
. (20)

IV. CASE STUDY: APPLICATION TO A SIMULATED
PWR-TYPE NUCLEAR REACTOR

For identification and control, the dynamical model of
a PWR can be suitably defined using the point kinetics
equation with six groups of delayed neutrons precursors’
concentration coupled with thermal-hydraulics. The model
is based on the following assumptions: The primary loop is
characterized by a lumped model. The pressure and mass
flow rate are constants. The heat generated in the core is
transferred using a single phase coolant [2], [18].

The primary loop model equations are as follows:

dP

dt
=

ρT −
6∑
j=1

βj

Λ
P +

6∑
j=1

βjCj

Λ
, (21)

dCj
dt

= λj (P − Cj) , j = 1, 2, . . . , 6, (22)

dTf
dt

=
P

µf
− Ω

µf
(Tf − Tc) , (23)

dTc
dt

=
Ω

µc
(Tf − Tc)−

Mc

µc
(Tout − Tin) , (24)

Tc =
Tout + Tin

2
, (25)

ρT = ρ+ αfTf + αcTc. (26)

where P is normalized neutronic power; βj , λj , and Cj

TABLE I
REACTOR PARAMETERS

Group, i 1 2 3 4 5 6
λi(s

−1) 0.0125 0.0308 0.1152 0.3109 1.240 3.3287
βi 0.000216 0.001416 0.001349 0.00218 0.00095 0.000322

Λ(s) τcold(s) τhot(s) τsg(s) D1(◦Cs−1) D2 D3

5× 10−4 7.0 5.0 11.3 3.746 0.7005 −0.2995

denote fraction of delayed neutrons, decay constant, and
delayed neutron precursors’ concentration of jth group,
respectively; Λ represents prompt neutron life time; ρ and
ρT denote reactivity contributed by control input and the
total reactivity, respectively; Tf and Tc are temperatures of
fuel and coolant, respectively; αf and αc are temperature
coefficients of reactivity of fuel and coolant, respectively;
Hf , Hc, γf , and γc are proportionality constants; The
dynamic equations governing the secondary side are given
by

dTin
dt

=
1

τcold
(D2Tsg −D3Thot − Tin) , (27)

dThot
dt

=
1

τhot
(Tout − Thot) , (28)

dTsg
dt

= − 1

τsg
(Tsg − Thot)−D1LT , (29)

where Tout, Tin, Thot, and Tsg are temperatures of core-
outlet, core-inlet, hot leg and steam generator respectively.
τcold, τhot, and τsg are time constants; D1, D2, and D3 are
constants; LT is turbine load. Values of various parameters
used in (21)–(29) are listed in Tables I and II [3], [18].

The dynamic model of a nuclear reactor is perturbed by
a regulating rod (RR) movement to inject reactivity into the
system. A set of estimation datasets are constructed at differ-
ent operating power levels in which reactivity and neutronic
power (with AWGN) act as input and output, respectively.
The estimation data are used for designing the subspace
predictor and estimating predictor coefficients at different
operating levels. The control input trajectory is calculated
by solving the optimization problem. It is computed over
the control horizon while only the first control action is
executed and subsequently given to the process for tracking
the set-point. The same steps are repeated for subsequent
data samples.

In this paper, five different operating points based on the
neutronic power level are considered due to availability of
reactor data at these points [3]. Five different estimation
dataset comprises of input reactivity and corresponding out-
put power mixed with AWGN are constructed to estimate
the parameters of controllers directly from measurements.

To validate the controller design efficacy, a typical load-



TABLE II
REACTOR PARAMETERS AT DIFFERENT POWER LEVELS

P Tc (◦C) αf
(◦C−1

)
αc
(◦C−1

)
µf
(
J/◦C−1

)
µc
(
J/◦C−1

)
Ω
(
J/s◦C−1

)
Mc

(
J/s◦C−1

)
1 302.0 −2.9× 10−5 −6.30× 10−4 2.25× 107 6.90× 107 3.94× 106 7.08× 107

0.8 298.6 −3.2× 10−5 −5.59× 10−4 2.21× 107 6.80× 107 4.16× 106 6.88× 107

0.6 295.0 −3.3× 10−5 −5.56× 10−4 2.18× 107 6.70× 107 4.38× 106 6.87× 107

0.4 291.8 −3.5× 10−5 −5.22× 10−4 2.14× 107 6.61× 107 4.61× 106 6.79× 107

0.2 288.4 −3.8× 10−5 −4.86× 10−4 2.10× 107 6.53× 107 4.85× 106 6.70× 107
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Fig. 2. Variation of (a) reactor power, (b) control input, and (c) rate of change of control input for different approaches.

following transient is considered as follows:

P =



0.20P, 0s ≤ t ≤ 9s;
1.0(t− 9)/30 + 0.20, 9s < t ≤ 18s;
0.50P, 18s < t ≤ 27s;
1.0(t− 27)/30 + 0.50, 27s < t ≤ 36s;
0.80P, 36s < t ≤ 45s;
1.0(t− 45)/30 + 0.80, 45s < t ≤ 48.6s;
0.92P, 48.6s < t ≤ 63s;
−1.0(t− 63)/30 + 0.92, 63s < t ≤ 66.6;
0.80P, 66.6s < t ≤ 75.6s;
−1.0(t− 75.6)/30 + 0.50, 75.6s < t ≤ 84.6s;
0.50P, 84.6 < t ≤ 93.6s;
−1.0(t− 93.6)/30 + 0.50, 93.6s < t ≤ 102.6s;
0.20P, 102.6s < t ≤ 120.6s;
0.35P, 120.6s < t ≤ 138.6s;
0.20P, 111.6s < t ≤ 180s;

(30)

Performance of the proposed controller for tracking the
load cycle is shown in Fig. 2. The controller output is
smoothly able to track fast varying ramp of 3.33%/s and
15% step variation in the demand power as shown in
Fig. 2(a). Variations of control signal and rate of change of
control signal are shown in Figs. 2(b) and 2(c), respectively.
Performance of proposed GSSPCs are compared with the
classical SPC. GSSPCs track the demand variation very
closely and with less peak overshoot. The control efforts
remain approximately the same.

Another load following transient is considered to test the
performance in the case of fast variations in the load. It is

given as follows:

P =



1.0P, 0s ≤ t ≤ 18s & 288s < t ≤ 360s;
0.9P, 18s < t ≤ 36s & 270s < t ≤ 288s;
0.8P, 36s < t ≤ 54s & 252s < t ≤ 270s;
0.7P, 54s < t ≤ 72s & 234s < t ≤ 252s;
0.6P, 72s < t ≤ 90s & 216s < t ≤ 234s;
0.5P, 90s < t ≤ 108s & 198s < t ≤ 216s;
0.4P, 108s < t ≤ 126s & 170s < t ≤ 198s;
0.3P, 126s < t ≤ 144s & 162s < t ≤ 170s;
0.2P, 144s < t ≤ 162s.

(31)

Fig. 3 depicts the performance of the proposed controller
for tracking the load cycle. The controller output is able to
track the 10% step variation in the set-point as shown in
Fig. 3(a). Variations of the control signal and the rate of
change of control signal are shown in Figs. 3(b) and 3(c),
respectively. From both the simulation studies it can be seen
that the proposed GSSPCs can track load variation better
than the classical SPC.

A quantitative performance analysis is performed by com-
paring performance measures, PRMSE, TVI, and ‖U‖2.
Table III compares the control performances of different
approaches. It is found that the PRMSE for GSSPC ap-
proaches is less than that of the classical SPC approach
whereas the TVI and the ‖U‖2 are almost equal. Thus, it
can be concluded that the parametrized GSSPC can track the
demand variation slightly better than the weighted GSSPC.
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TABLE III
COMPARISON OF PERFORMANCES OF DIFFERENT APPROACHES

Case Technique PRMSE TVI ‖U‖2
I Classical SPC 2.8124× 10−3 2.6453× 10−2 4.0962

Parametrized GSSPC 1.6214× 10−3 2.8277× 10−2 4.1454
Weighted GSSPC 1.6538× 10−3 2.8259× 10−2 4.1422

II Classical SPC 1.6176× 10−3 3.3608× 10−2 9.7282
Parametrized GSSPC 1.0519× 10−3 3.6692× 10−2 9.7804

Weighted GSSPC 1.0587× 10−3 3.6644× 10−2 9.7800

V. CONCLUSION

Gain scheduled subspace-based predictive control strategy
that can incorporate constraints and optimize control perfor-
mance has been investigated for the PWR-type nuclear reac-
tor. Two different variants of GSSPC namely, parametrized
GSSPC and weighted GSSPC are proposed in this work.
The control strategy is directly designed from the recorded
input-output dataset and does not require any system model
a priori. Detailed simulation studies verify the performance
of the proposed algorithm in controlling a parameter-varying
non-linear PWR system. Proposed controllers follow the set-
point variation in the load very closely and with less peak
overshoot. Comparison with classical SPC approach shows
the effectiveness of proposed controllers. The designed con-
trollers are adequately able to handle different fast varying
ramp and step variations in the load.
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