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Gain Scheduler Middleware: A Methodology to
Enable Existing Controllers for Networked Control
and Teleoperation—Part II: Teleoperation
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Abstract—This paper is the second of two companion papers.
The foundation for the external gain scheduling approach to en-
able an existing controller via middleware for networked control
with a case study on a proportional-integral (PI) controller for dc
motor speed control over IP networks was given in Part I. Part II
extends the concepts and methods of the middleware called gain
scheduler middleware (GSM) in Part I to enable an existing con-
troller for mobile robot path-tracking teleoperation. By identifying
network traffic conditions in real-time, the GSM will predict the fu-
ture tracking performance. If the predicted tracking performance
tends to be degraded over a certain tolerance due to network de-
lays, the GSM will modify the path-tracking controller output with
respect to the current traffic conditions. The path-tracking con-
troller output is modified so that the robot will move with the fastest
possible speed, while the tracking performance is maintained in a
certain tolerance. Simulation and experimental results on a mobile
robot path-tracking platform show that the GSM approach can sig-
nificantly maintain the robot path-tracking performance with the
existence of IP network delays.

Index Terms—Adaptive control, control systems, dc motors,
distributed control, Internet, mobile robots, networks, real-time
system, telerobotics.

1. INTRODUCTION

ART I of this paper [1] introduced the fundamental con-

cept of external gain scheduling and the structure of gain
scheduler middleware (GSM) to enable an existing controller
for networked control and teleoperation with a case study on
a proportional—integral (PI) controller for dc motor speed con-
trol over IP network delays [1]. The PI controller gains are
adapted externally at the control output via the GSM with re-
spect to the current network traffic conditions. Since an existing
PI controller can be utilized for networked control without in-
terrupting the internal controller operation, the GSM approach
can save much cost and time for practical controller upgrades.
In Part II, another case study to apply GSM on a more com-
plicated teleoperation application, which is mobile robot path-
tracking control over an IP network, is presented. The similar
GSM concept and structure will be applied to enable an existing
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robot path-tracking controller for teleoperation control. By iden-
tifying network traffic conditions in real time, the GSM will pre-
dict the future tracking performance. If the predicted tracking
performance tends to be degraded over a certain tolerance due
to network delays, the GSM will modify the path-tracking con-
troller output with respect to the current traffic conditions. The
path-tracking controller output is modified so that the robot will
move with the fastest possible speed, while the tracking perfor-
mance is maintained in a certain tolerance.

II. CASE STUDY: GSM FOR REMOTE MOBILE ROBOT
PATH TRACKING

A mobile robot path-tracking problem is used to illustrate the
GSM concept and its effectiveness for mobile robot teleopera-
tion. The robot model and path-tracking algorithm are described
as follows.

A. Mobile Robot Model
The robot used to illustrate the proposed approach is a differ-
ential drive mobile robot with two driving wheels and two caster

wheels [2] as shown in Fig. 1.
The mobile robot is described as
WR
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where (, y) is the position in the inertial coordinate, (s, yar)
is the position in the robot coordinate,  is the azimuth angle
of the robot, v is the linear velocity of the robot, W is the dis-
tance between the two wheels, p is the radius of the wheels, w
is the angular velocity of the robot, wy, and wg are the angular
velocities of the left and right wheels, wy, , and wg ;- are the ref-
erence angular velocities for wheel speed controllers at the left
and right wheels, and €, and e are the differences between the
reference velocities and the actual velocities of the left and right
wheels, respectively. The speed of each wheel is controlled by
a PI controller

u(t) = Kpe () + K /0 ()it ©)
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Fig. 1. Differential drive mobile robot. (a) Robot drawing diagram. (b) Actual
mobile robot platform.

where K p is the proportional gain, K is the integral gain, u (¢)
is the input voltage to a dc motor, and e (¢) is the error, which
can be either 7, or eg.

B. Path-Tracking Algorithm

A generalization of the quadratic curve approach proposed
in [2] is used as the path-tracking algorithm in our illustration.
The main concept of this path-tracking algorithm is to move the
robot along a quadratic curve to a reference point on a desired
path. A point on the path is described in the inertial coordinate as
(zp (8),yp (8)), where s is the distance traveled on the path. By
assuming that the orientation of the mobile robot moves close
to the desired value in the motion along the reference path, this
algorithm controls only the position of the robot regardless to
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Fig. 2. Example of robot path.

its orientation. This algorithm is suitable for real-time usage be-
cause of its simple computation with minimal amount of infor-
mation compared to other approaches. The algorithm is outlined
as follows.

1) Based on the current robot position x(i) =
[2(i) y(i) 0(i)]", where i € N7 is the iteration
number, optimize

min /(o () = (0P + G ()~ @F D

to find s = sg that gives the closest distance between the robot
and the path. Depending on the forms of =, (s) and y,, (s), this
optimization could be performed in real-time by using a closed-
form solution, or a lookup table and a numerical technique such
as linear interpolation. The iteration number ¢ can be thought
of as the sampling time index of the path-tracking controller if
t;+1 — t; is constant.

2) Compute the reference point for the robot to track. Without
loss of generality, in this paper, the path is constructed by a com-
bination of lines and curves. Each line or curve has a constant
curvature.Fig. 2 shows an example of a robot path, which is the
combination of

* Segment 1: Straight line:

lfse,O <s< Se,1;Se,0 = 0786,1 =1

®

Tp (s) = 0, yp (s) =s,
* Segment 2: Arc with a radius of 1:

xp(s) =1—cos(s —1),

Yp (8) =14sin(s—1), ifsc1 <8< Se2,82=1+7

&)
* Segment 3: Arc with a radius of 0.2:
zp(s) =2.2—-02cos5(s—1—m)
Yp (5) =1—-0.2sin5(s — 1 —m)
if s5ep0 <5< 503,8.3=14+127 (10)

where 6, (s) is the tangent angle at (z,(s),y,(s)), j is
the index of the jth segment of the path, k; = df, (s)/ds
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Fig. 3. Procedures for determining the reference distance traveled s(z).

is the curvature of the j-th segment, s.; is the endpoint
of the j-th segment. The reference position x, (i) =
[z, () wr(i) 6, (i)]" is computed from z,. (i) = z, (s (i),
yr (1) = yp (s (7)), 0. (1) = 0, (s(4)), where s (4) is the ref-
erence distance traveled and is determined by the procedures
shown in Fig. 3.

The value of s () is initially determined from sq by

Smax

1+ Br; (1D

s(i) = st = so+ 75,7 =

where s, is a temporary variable, y; is the projecting distance,
Smax < Sej — Se j+1, VJ, is the maximal projecting distance,
and 3 € R is a positive constant. The projecting distance indi-
cates how far the reference distance traveled should be projected
ahead from (z, (S0) , ¥p (S0)). The values of the constants Syax
and [ depend on the robot path, the robot configuration, and the
designer’s preference, whereas the curvature ; depends only
on the jth segment of the path to track. The reference point
will be closer to (z, (s0),¥p (80)) if &, is high. However, if
s(i) = st > Sej, s (i) will not be on the jth segment. In this
case, the controller needs to evaluate if the robot should track
the path based on segment j or segment 7 + 1. For evaluation,
s¢ 1s recomputed by

s(7) = 8¢ = 80 + Vjt1- (12)
When s (i) = s¢ < e, s (i) may be less than s (¢ — 1), which
causes the robot to move backtrack if (z, (s (2)),y, (s (¢))) is
used as the reference position. Therefore, the better choice of
s (4) in this case should be s, ; in order to guarantee that the
robot will not move backtrack.

3) Compute the error x,. () — x (4), and transform this error to
the error in the robot coordinate as

cosfl  sinf O
e(i)=[e. e, eg]'=|—sinf cosh 0|(x,(i)—x(i)).
0 0 1

13)

4) Find a quadratic curve that links between x (i) and x,. ()
from

yar = A (i) 22, where A (i) = sgn (e,) 2. (14)

e
The robot will move forward if x, (¢) is in front of the robot
(ez > 0). On the other hand, the robot will move backward if
x, (4) is behind of the robot (e, < 0).
5) Compute the reference linear and angular velocities of the
robot along the quadratic curve. The original equations of the
velocities are

or (i) =sgu (e2) \ /i3, (L4442 () a3,) (1)
L 24(i)3,
7 = " 1
wn (i) == (16)
Let z; att; <t < t;41 be given by
Tpr = K (L) (t — ti) (17)
where
K (i) = sgn (e,) —— (18)
1) =sgn(e,) —————
BT TR TAG))

and « is a positive constant used as a speed factor. The robot
will move fast if « is set to a high value, and vice versa. In order
to control the robot to move fast so it can arrive at a destination
with the minimal time requirement, a large gain K (7) is usually
required. If ¢ — ¢; is very small, v, (¢) can be approximated
during ti <t <tipr by

r

2 (i) = K2 (i) (1 FAA2 () K2 () (t — ti)2> ~ K2 (i).

(19)

Thus,(15) and (16) can be approximated by
Oy (1) ~ K (1) (20)
wr (i) ~2A (1) K (7) 21
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Fig. 4. Data flow of networked mobile robot.

The reference speeds of both wheels are then calculated by

o (i) | W, (i)

(i) =2\ er ) 2
wrr (1) p + 2 (22)

L (i) = _ ety 23
wr,,r (%) P % (23)

6) Repeat all steps by going back to 1) and set ¢ = 7 + 1.

C. Path-Tracking Control Over an IP Network

In order to control a mobile robot to track a predefined path
over an IP network, the path-tracking controller computes and
sends the reference speed wy, . (7) and wg, (i) in a packet
across the network at every iteration ¢ to the robot as shown in
Fig. 4.

The path-tracking computation at iteration ¢ starts when the
controller receives the feedback data in a packet from the mo-
bile robot at time ¢ = ¢;. Compared with the network delays,
the computation time at the controller is usually and relatively
insignificant. Thus, the computation could be assumed to finish
at t = t; as well. The basic arrival feedback data in this case
are the reference speeds wy, » (¢ — 1) and wg » (¢ — 1), and the
robot position x (¢; — Trc (7)), where Tge (7) is the network
delay from the robot to the controller at . The controller then
sends wr, .- (7) and wr,,- (7) to the robot once the computation is
finished. Likewise, wr, ,- (i) and wg , (7) are also delayed by the
network. The network delay to send these reference speeds to
the mobile robot is defined as 7cg (7). The robot then period-
ically monitors and updates the reference speeds by the newly
arrival data of wy, ,- (i) and wg , () at every sampling time pe-
riod T'. The waiting time to update the reference speeds is de-
fined as 7 (7).

Network Delay Effect on Path-Tracking Algorithm: To
modify the controller output with respect to network conditions
characterized by q, the effects of network delays on the mobile
robot have to be analyzed. There are two concerns in the use of
the original path-tracking algorithm due to ¢ g (7) and Trc (7).

1) Due to Tre (7), the controller does not have the current

robot position x (¢;), but x (t; — Trc (7).
2) The reference speeds wr, ,- () and wg - (7) are computed
att = t;, but will be applied at t = t; + 7cr (¢) + 77 (2).

If the controller directly uses x (¢; — Trc (7)) as x (i) to com-
pute wr, , (4) and wg,, (), and if x (t; — Tre (7)) and x (¢;) are
very different, then the result may be far away from what it ac-
tually should be. In addition, even if the controller uses x (;)
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to compute wr, ,- (i) and wg , (¢), the robot might have already
moved to another position at ¢t = t; + 7¢g (i) + 77 (¢) when
wr. (¢) and wg . (7) are applied. Thus, the robot response can
be undesirable. The delay of wy, , (¢) and wg - (¢) is crucial if
the robot moves far away from a desired position. In addition,
with long network delays, ¢t — ¢; may be large, and the approxi-
mation in (19) may be no longer valid. Thus, the robot may not
follow a desired quadratic trajectory.

Feedback Preprocessor: In this paper, we use feedback pre-
processor to predict the future position of the mobile robot at
t = t; + 7or (¢) + 7r (2). The predicted position is then for-
warded to the path-tracking controller. A future position at ¢t =
ti+7cr (i1)+7r (i), defined as x (t; + 7cr (i) + 77 (7)), is pre-
dicted from x (¢; — Trc (7). This predicted position, defined
as X (t; + 7cr (1) + 77 (7)), is then used instead of x (i) for
the path-tracking controller. Thus, wy, ,- () and wg .. (7) should
be properly applied when the packet containing the reference
speeds reaches the robot t = ¢; + 7cg (3) + 71 (7).

Before the mobile robot receives the reference speeds wr, - (¢)
and wg , (7), both left and right wheels have been controlled
by using wy, ,- (i — 1) and wg . (¢ — 1) as the reference speeds.
Thus, the robot can be assumed to move with constant linear
and angular velocities if the wheel speed controllers of both
wheels work perfectly such that ey, — 0, eg — 0 quickly, and
the weight of the robot is light. From this assumption, (3)—(5),
(20), and (21), we can approximate the robot movement during

[t: — Tre (7),t; + Tor (1) + 7r (7)] using

Arx (i) =x(t; + 1or (i) + 71 (1)) — x (t; — TrC (7))
=D (i) Ary(i) A0()] (24)

where

AG() = (i —1)7(3),7(@)=7cr (3) + 71 (1) + TrRC (7) -

(25)
1) If(f)r(i — 1) #£0
Az (i) :%
X [sinH (tz’+TCR (i)-l-TT (i))—SiIl G(ti—erC (Z))]
(26)
2003
X [COSH (ti_TRC (i))—COS H(ti—FTCR (">+TT (L))] .
(27
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2) It (i—1) =0

Arx (i) =0, (1 — 1) 7 (i) cos O (t; — Tre (7))
Ary (i) 20, (i — 1) 7 (i) sin 6 (¢; — Tre (7)) -

(28)
(29)

The delay variable 7 (4) is estimated by the network traffic es-
timator. The predicted position X (¢; + 7c g (¢) + 77 (4)) is then
computed from

}A((ti + Tcr (L) + 71T (L)) =X (ti — TRC (L)) + A/X (L) 30)

where A, x (i) is the approximation of A, x (i) computed from
(24)-(29).

Gain Scheduler: To avoid the robot deviating far from a de-
sired position, the gain scheduler is used to first evaluate the
predictive movement of the robot. If the robot tends to move
too fast and could be farther from the desired position because
of network delays, the gain scheduler will update wr, ,- (¢) and
wr,r () to compensate the network delay 7 (¢) before sending
the reference speed signals out. To evaluate the robot movement
with respectto wy, , (¢) and wg - (7) ahead of time, we could uti-
lize (24)—(30) to define the following cost function:

Min J; (i+1) = ||Ax(+ 1),
= ||)A( (ti-f—l + TCR ('l + 1) + ('L + 1))

=X (tiy1 = Tre (i + 1))l 31

Min.J, (i + 1) = — |K (i)] (32)
where l|o]], is the Euclidean norm,
ﬁ(ti+1—TRc (i—i—l)) ~ ﬁ(ti+TCR(i)+TT (Z)),
and X(tig1+717cr(E+ 1)+ 17 (1 4+ 1)) is the
predicted position, which can be determined by
using X (t;41 —Trc(i+1)) and a predicted delay

7(i+1)=71re (1+ 1)+ 70cr (1 4+ 1) + 77 (i + 1). Likewise,
assume that 7(i+ 1) is estimated by the network traffic
estimator. The cost function .J; (i 4+ 1) represents the amount
of robot movement with respect to the predicted network
delay after the robot receives the reference speed signals
wr (i) and wg, (i). A large value of Jy (i + 1) implies
that the robot could significantly be affected by network
delays. On the other hand, Jo (7 4 1) is linearly proportional to
the speed of the robot since both wy, ,- (7) and wg . (i) are a
linear function of K (i). Minimizing .J» (i + 1) is equivalent
to maximizing |K (7)|]. Depending on the actual robot
performance requirement (e.g., maximal efficiency control),
other cost functions could also be used.

From (25)—(29), jl (i 4+ 1) could be also expressed as fol-
lows.

1) If 9, (i) = 0 and &, (i) = 0

Ji(i+1)=0. (33)
2) If 4, (i) = 0 and &, (i) # 0
Ji(i41) = |0, (6) 7 (i +1)]. (34)
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3) If 9, (i) #0and &, (1) # 0

JGi+1)= w_cosa’“(i);(iﬂ) (@ ()7 i+ 1)

2A2 (i
(35)
4) If 6, (i) # 0 and &, (i) = 0
Ji(i4+1) = |0, (1) 7 (i + 1)]. (36)

In a vigorous approach, to find the optimal wpg,, (¢) and
wr., (i), a weighted cost function based on J; (i + 1) and
Jo (i 4+ 1) can be formed and an optimal control strategy can
be applied to minimize .J; (i 4+ 1) and J5 (i 4 1). However, this
approach may not be suitable for the path-tracking algorithm
used in real time because the algorithm is highly nonlinear
with uncertain delays and disturbances. A heuristic approach
can provide a feasible solution by maximizing |K (7)| while
maintaining .J; (i + 1) < e, where ¢ is defined as the tracking
performance degradation tolerance. In this case, wy, , (7) and
wr,r (1) are modified based on their original values so that the
robot will move as fast as possible by minimizing J (i+1)
while J; (i + 1) is maintained at an acceptable small value.
This approach does not minimize Jy (i 4 1) as in the vigorous
approach, but can provide feasible wr, , (¢) and wg - (¢), which
are optimal under the condition Ju (i 4+ 1) < e. In practice, gain
scheduler will optimally modify wr, , (i) and wg, (¢) when
J (i +1) > e so that the robot will move as fast as possible
based on 7 (i + 1).

Because A (7) is fixed by the path-tracking algorithm as
the requirement of the robot trajectory in (21), the speed
modification is equivalent to adjusting the gain K (7) in (20)
and (21). The optimal values of wr, , (i) and wg , (¢) in (34)
and (36) can be determined by solving &, (¢) and 9, (i), re-
spectively, whereas (35) requires a numerical method to solve
(35) for w, (7) to find the optimal wr, ,- (¢) and wg., (%). Since
r (1) =~ 2A (i) K (i), (35) could be viewed as a function of
A(1), K (i) and 7 (i +1). Because A (i) and 7 (i + 1) are
given, J; (i + 1) will be determined by K (i). The optimal
values of K (i) with respect to A (7) and 7 (7 + 1) subject to
Ji (i 4 1) < & can be found by computing .J; (i + 1) from var-
ious combinations of A (7), K (¢) and 7 (¢ + 1) in actual ranges
of operating conditions. Then, by fixing A (i) and 7 (i + 1),
we can search for the optimal K (%) with an iterative approach
that gives .J; (i + 1) < e. These optimal K (i) values are then
stored in a lookup table and will be utilized by gain scheduler
to compute the optimal wy, (i) and wg, (7). For example,
Fig. 5 shows the cost surfaces of .J; (i + 1) with respect to
A(3), K (i), and 7 (¢ + 1) withe = 0.2.

As shown in Fig. 5, € can be thought of as a plane cutting
through multiple surfaces of cost .Jy (i + 1) with different
values of K (). The optimal K (i) with respect to A (i) and
7 (i + 1) chosen to modify wy, , (¢) and wg - (¢) in this case is
the largest K (7) that has to be under or at the ¢ plane.

Fig. 6 shows the surface of the optimal K (¢) with respect to
A (i) and 7 (i + 1) with e = 0.2. As indicated in Fig. 6(a)—(c),
if A(i) and 7 (i + 1) are low, the optimal K (%) is large. This
implies that the robot can move very fast if the curvature of
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Fig. 5. Costsurfaces of J; (i 4 1) with respect to A (i), K (i),and 7 (i + 1)
withe = 0.2.

the quadratic curve is small and the network delay is short. Ac-
cording to Fig. 6(b), a larger A () enforces the optimal K (7)
to be small because the GSM has to reduce the robot speed in
order to follow the quadratic guideline with the higher curva-
ture closely. Likewise, as shown in Fig. 6(c), with a longer delay
7 (i + 1), the GSM has to apply a small optimal K (%) to reduce
the robot speed so that the robot will not deviate far from the
guideline and will still satisfy J; (i + 1) < e.

Network Traffic Estimator: Network variables representing
network traffic conditions are typically subjective to the algo-
rithm used in the feedback preprocessor and in the gain sched-
uler. Characterization of network conditions to network vari-
ables for use in both parts also depends on typical behaviors
and characteristics of the network used. In this paper, we il-
lustrate the GSM concept using delays from an actual IP net-
work. As mentioned in earlier sections, the required network
variable is the delay 7, which is estimated from the round-trip
time (RTT) delay measurements between the controller and the
mobile robot on an IP network.

An important concern is what should be a good representa-
tive value of RTT delays to be used as the network variable 7.
The feedback processor requires a delay value that is closed to
the actually delay as much as possible. If RTT delays on an ac-
tual IP network are assumed to have the distribution similarly
to the generalized exponential distribution, the median of RTT
delays 1 can be a good representative value [3]. In this case, a
majority of RTT delays should not be much different from 7,
and 7 could be used in the feedback preprocessor. On the other
hand, the gain scheduler requires the value of the delay 7 so the
networked mobile robot does not violate .J (1+1) <e. Wecan
relax this value by using a slightly larger 7 for some purposes
such as reducing the effects from robot modeling errors or delay
prediction errors in case that an actual RTT delay is larger than
7. By assuming the network traffic distribution is the generalized
exponential distribution, we proposed to use the mean of RTT
delays p in this case, which is ideally larger than 1. However, in
actual real-time traffic measurements with a limited number of
probing packets, we may have n > . To handle this case, we
propose to use the larger value between 1 and p

7 =max{n,u}. (37)

1233

Both 77 and p in a specific time interval can be computed by
sending probing packets as mentioned in [1, Sec. II-B]. Unlike
the PI controller in [1], the probing packet transmission in this
case is separated from the transmission of the reference speeds.

III. SIMULATION AND EXPERIMENTAL RESULTS

A. Testing Environment and Parameters Used for the
Simulation and Experiment of the Mobile Robot
Path-Tracking Control Over a Network

1) IP Network Delay: To verify the effectiveness of the
GSM concept, the RTT network delays of User Datagram
Protocol (UDP)packets between the Advanced Diagnosis And
Control (ADAC) Laboratory at North Carolina State University,
Raleigh, and Kasetsart University (KU), Bangkok, Thailand
(www.ku.ac.th at ), are measured for 24 h (00:00-24:00).
The reason to use UDP for networked control is to avoid
additional delays from retransmission. This data is used in the
simulation and experimental setups of the networked mobile
robot path-tracking control with the assumption that there is no
packet loss. Each value of these RTT delays is divided by 2 and
is utilized as Trc and T¢oR.

2) Path for the Robot to Track: The path of the robot used
for simulation and actual experimental verification is the same
path described in Section II.

3) Controller and Robot Parameters: The controller and
robot parameters used for the proposed GSM verification are
listed in Table I.

B. Simulation Results

The networked mobile robot path-tracking simulation pro-
gram is setup in a Matlab/Simulink environment to investigate
the effectiveness of the GSM. Three scenarios are compared in
the simulation.

1) The robot is controlled without IP network delay.

2) The robot is controlled with IP network delays from
ADAC to KU. The GSM is not applied.

3) The robot is controlled with IP network delays from
ADAC to KU. The GSM is applied.

The network traffic estimator is set to compute 7 and g with
the number of packet roundtrips for evaluation N = 10. The
initial position of the robot is arbitrarily set to (—0.01, —0.01).
The robot will stop if

@ (5es) = () + (g (508) — 9 () < 0.05. (38)

Fig. 7 shows the results from simulations.

As shown in Fig. 7, the original path-tracking controller per-
forms superbly when there is no IP network delay. The robot
track is basically overlaps with the path to be tracked. With IP
network delays, the robot without GSM fails to track the path
closely because the position feedback and the reference speeds
are delayed by IP network delays. On the contrary, the robot with
the GSM can track the path much better. The predicted position
applied for path-tracking computation and the gain scheduling
scheme have compensated the network delay effects on the mo-
bile robot system.
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Optimal K(7)

()

Fig. 6. Optimal ¥ (¢) surface with respect to A (¢) and 7 (¢ + 1) with ¢ = 0.2. (a) Front view. (b) Side view of A (). (c) Side view of 7 (i 4+ 1).

TABLE 1
CONTROLLER AND ROBOT PARAMETERS
Parameter Description Value
S Maximal projecting distance 0.5
a Speed factor 0.25
B Projecting factor 0.5
& Cost tolerance 0.2
w Distance between two wheels 0.4826 m
0 Radius of the wheels 0.073 m
T, Sampling time of probing packet transmission 0.01s
1. Sampling time of path-tracking controller 0.1s
T Sampling time for robot to update reference speeds 0.002 ms

C. Experimental Results

An experimental mobile robot platform is built to verify the
effectiveness of the proposed GSM using the same delay sce-
nario as in the simulations. The block diagram of the robot setup
isillustrated in Fig. 8. The mobile robot platform is composed of
a Celeron 1.5-GHz notebook computer, a C515C Siemens/Infi-
neon microcontroller board, two LMD18200 motor driver chips,
and two dc motors with two 500 pulses/rev optical encoders.

1
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2.5
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0.5 N
—Path to track
-=- No delay
oo ' | With delay, no GSM
--- With delay and GSM

.05 S : .
0.5 0 0.5 1 1.5 2 2.5

Fig. 7. Comparison of robot tracks from simulations. (a) Dashed—dotted line:
robot is controlled without IP network delay. (b) Dotted line: robot is controlled
with IP network delays from ADAC to KU. GSM is not applied. (c) Dashed line:
robot is controlled with IP network delays from ADAC to KU. GSM is applied.

The dc motor models used are Maxon A-max 236668. The mi-
crocontroller board controls the speeds of the two dc motors
by PI control algorithm. It reads the motor rotations from the
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Fig. 8.

encoders and converts them to the feedback data. The feed-
back data is then sent to the notebook via a parallel port. The
notebook uses this feedback data to perform path tracking by
computing the reference speeds of both dc motors, and sending
them back to the microcontroller board via the parallel port as
well. The microcontroller board then applies these references
to perform PI control computation, and send control signals in
the forms of TTL-level PWM signals to the motor drivers. The
motor drivers will amplify the pulsewidth-modulation (PWM)
signals to 0—12-V signals for driving the dc motors.

To focus specially on the effects of network delays, we create
an experimental simulation scenario of IP network delays by
delaying data transfers between the notebook computer and the
microcontroller board using real-time software and a hardware
timer. The delay applied in this program is the actual measured
IP network delays in Section III-A. The reasons for using the
collected IP delay data rather than using the real IP network are
as follows.

1) The experimental results can be compared with the simu-
lation results using the same delay data.

2) The experiment is ensured to be repeatable for various
future investigations.

This scenario is implemented by using three real-time pro-
grams running on RTLinux 3.2:

1) Delay Simulation Program: The delay simulation pro-
gram delays data transfers between the path-tracking controller
program and the robot interface program by using two linked-
list structures. The delay can range from O s to the maximal delay
measurement with the resolution about 0.1 ms.

2) Robot Interface Program: The robot interface program
handles parallel port communication between the notebook

Mobile robot teleoperation experimental setup. (a) Hardware schematic diagram. (b) Software schematic diagram.

computer and the microcontroller board. The interface program
receives the reference speeds from the path-tracking controller
program via the delay simulation program. Likewise, it forward
the feedback data from the microcontroller board through
the delay simulation program to the path-tracking controller
program.

3) Path-Tracking Controller Program: This program con-
tains two parts: path-tracking implementation and the GSM. The
GSM is responsible for data communication with the robot in-
terface program through the delay simulation program, for po-
sition prediction, and for the gain scheduling.

Fig. 9 shows the experimental results of the IP-based robot
path tracking. In addition, Fig. 10 shows the distance from the
robot to the path. This distance indicates how close the robot is
to the path when the robot is tracking the path.

As shown in Fig. 9, without IP network delay, the original
path-tracking controller performs superbly. When there are IP
network delays, the robot without the GSM cannot track the
path closely because the position feedback and the reference
speeds are delayed. The GSM can improve the path-tracking
performance by using predicted position and gain scheduling
to compensate the delay effects so the robot can track the path
more effectively as shown in Fig. 9. Fig. 10 also shows that the
robot without the GSM deviates from the path relatively more
than the other two cases, and spends a longer time to reach the
final destination. On the other hand, the robot with the GSM can
track the path much closer to the robot without delay.

IV. CONCLUSION

This paper has extended the concepts and methods of the
GSM described in [1] to enable an existing controller for
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Fig.9. Comparison of robot tracks from experiments. (a) Dashed—dotted line:
robot is controlled without IP network delay. (b) Dotted line: robot is controlled
with the existence of IP network delays from ADAC to KU. GSM is not applied.
(c) Dashed line: robot is controlled with the existence of IP network delays from
ADAC to KU. GSM is applied.
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Fig. 10. Closest distances from the robot to the path obtained from
experiments. (a) Solid line: robot is controlled without IP network delay; (b)
Dotted line: robot is controlled with the existence of IP network delays from
ADAC to KU. GSM is not applied; (c) Dashed line: robot is controlled with the
existence of IP network delays from ADAC to KU. GSM is applied.

teleoperation. The GSM concept for teleoperation is illustrated
on mobile robot path-tracking control with the existence of
IP network delays. In this case study, the GSM adjusts the
path-tracking controller output with respect to the current
network traffic conditions without interrupting the internal
design or structure of the existing controller. Thus, the existing
path-tracking controller can be still utilized to save cost and
time instead of installing the whole new teleoperation system.
The GSM can also be implemented along with other middle-
ware features such as in [4]-[9] to assist teleoperation in other
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ways. The GSM illustrated in this paper may be quite specific
to the path-tracking algorithm and the IP network environment.
Nevertheless, the concept of GSM and external gain scheduling
could be extended to be applied on different teleoperation ap-
plications, different path-tracking algorithms, different network
environments, or different performance measures by reformu-
lating an external gain scheduling control scheme based on
these concerns. In addition, the modular structure of the GSM
allows convenient algorithm updates in each part. For example,
another prediction algorithm can be updated in the feedback
preprocessor separately, or the network traffic condition can be
identified by using different models to be used on other types
of networks without modifying the other parts.
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